
Compressed words and automorphisms in fully

residually free groups ∗

Jeremy Macdonald
Department of Mathematics and Statistics, McGill University

805 Sherbrooke Street West
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Abstract

We show that the compressed word problem in a finitely generated
fully residually free group (F-group) is decidable in polynomial time, and
use this result to show that the word problem in the automorphism group
of an F-group is decidable in polynomial time.
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1 Preliminaries

The word problem for a finitely presented group G = 〈X |R〉 asks, given a
word w over the alphabet X± = X ∪ X−1, whether w represents the identity
element ofG. Being proposed for study by Dehn in 1911, decidabliliy of the word
problem for particular groups and classes of groups was the main focus of study,
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without regard to the efficiency of the proposed algorithms. Once computational
complexity became of interest, time complexity of word problems was considered
and has now been studied in many classes of groups. One such class was the
automorphism group of a finite rank free group. The problem reduces, with an
exponential increase in size, to the word problem in the underlying free group.
Schleimer has shown ([Sch08]) that one can encode the exponential expansion
using Plandowski’s techinque of compressed words and, using an algorithm for
comparing compressed words ([Pla94]), obtain a polynomial time algorithm.
We use a similar strategy to obtain a polynomial time algorithm for the word
problem in the automorphism group of a finitely generated fully residually free
group.

1.1 The compressed word problem

A straight-line program (SLP) is a tuple A = (X,A, An,P) consisting of a finite
alphabet A = {An, . . . , A1} of non-terminal symbols, a finite alphabet X of
terminal symbols, a root non-terminal An ∈ A, and a set of productions P =
{Ai → Wi | 1 ≤ i ≤ n} where Wi ∈ {AjAk | j, k < i} ∪ X ∪ {φ}, where φ
represents the empty word. Computer scientists will recognize SLPs as a type
of context-free grammar. We ‘run’ the program A by starting with the word
An and replacing each non-terminal Ai by Wi and continuing this replacement
procedure until only terminal symbols remain. The condition j, k < i ensures
that the program terminates. The resulting word is denoted wA, and we also
denote by wAi the result of running the same program starting with Ai instead of
the root An. The SLP A (and, abusing language, wA) is also called a compressed
word over X. The reader may consult [Sch08] for a more detailed introduction
to compressed words.

The production tree associated with a non-terminal Am is the rooted binary
tree with root labelled Am and where vertex Ai has children as follows: if
Ai → AjAk then Ai has left child Aj and right child Ak, if Ai → x (where
x ∈ X) then Ai has a single child labelled x, and if Ai → φ then Ai has a single
child labelled by the empty word φ. Notice that wAm

is the word appearing at
the leaves of the production tree. We say that Am produces wAm

.
Let the size |A| of an SLP be the number n of non-terminal symbols. Note

that the number of bits required to write down A is O(n log2 n) (the factor of
log2 n appears in writing down the non-terminal symbols Ai). An SLP with n
non-terminal symbols can encode a word wA of length 2n. Any algorithm that
takes as input a word over the alphabet X can, of course, be used on compressed
words over X by simply running the algorithm on wA, but this converts a time
f(n) algorithm to one that runs in time O(f(2|A|)). The goal then is to develop
algorithms that work directly with the SLP without expanding it.

In this paper we consider the compressed word problem for finitely generated
fully residually free groups. For an alphabet X, let X−1 be the set of symbols
{x−1 | x ∈ X} and set X± = X∪X−1. If G is a group presented by G = 〈X | R〉
the compressed word problem asks to decide, given a compressed word A over
X±, whether wA represents the identity element of G.
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We will use the following result of Lohrey [Loh04] that solves the compressed
word problem for free groups in polynomial time:

Lemma 1 (Lohrey). There is a polynomial time algorithm which, given a
straight-line program A over the alphabet X±, decides whether wA = 1 in the
free group on X.

Lohrey’s result relies on the fundamental result of Plandowski [Pla94]:

Lemma 2 (Plandowski’s Algorithm). There is a polynomial time algorithm
which, given straight-line programs A and B over an alphabet X, decides if wA =
wB (as words in the free monoid over X).

A nice description of both results and their proofs is given in [Sch08].

1.2 Fully residually free groups and Lyndon’s group FZ[t]

Definition 3. A group G is fully residually free if for every finite set
{g1, g2, . . . , gn} of elements of G there exists a free group F and a homomor-
phism ϕ : G→ F such that ϕ(gi) 6= 1 for all i = 1, 2, . . . , n. We refer to finitely
generated fully residually free groups as F-groups (they are also known as limit
groups).

Finitely generated free groups are F-groups, and the first example of a non-
free F-group was Lyndon’s group FZ[t], introduced in [Lyn60]. F-groups are
now known to be precisely the finitely generated subgroups of FZ[t] ([KM98]).
We will use a description of FZ[t] in terms of HNN-extensions, following [MRS05]
rather than [Lyn60]. The construction is as follows.

For a group G, let R(G) be a set of representatives of conjugacy classes of
generators of all proper cyclic centralizers of G. That is, every centralizer in
G which is cyclic is conjugate to CG(u) = 〈u〉 for some u ∈ R(G), and no two
elements of R(G) are conjugate. Then the extension of (all) cyclic centralizers
of G is the HNN-extension

〈G, tu,i (u ∈ R(G), i ∈ N) | ∀ (u ∈ R(G), i, j ∈ N) [tu,i, u] = [tu,i, tu,j ] = 1 〉. (1)

Let F be a free group. Then Lyndon’s group FZ[t] is (isomorphic to) the direct
limit (i.e. union) of the infinite chain of groups

F = H0 < H1 < H2 < . . . (2)

where Hi+1 is obtained from Hi by extension of all cyclic centralizers. Lyndon
showed that FZ[t] is fully residually free [Lyn60], hence so are all its subgroups.

In addition to this HNN construction, there are two other constructions of
FZ[t]. Lyndon’s original construction represented elements as parametric words,
and Myasnikov, Remeslennikov, and Serbin [MRS05] construct FZ[t] using in-
finite words. The latter construction has proven to be particularly fruitful in
solving algorithmic problems, yielding solutions to the conjugacy and power
problems in FZ[t]. Two of the important constructions from [MRS05] that we
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will need are normal forms for elements of FZ[t] (in terms of infinite words) and
a Lyndon length function on FZ[t].

A regular free Lyndon length function on a group G is a map l : G → A,
where A is an ordered abelian group, satisfying

(i) ∀ g ∈ G : l(g) ≥ 0 and l(1) = 0,

(ii) ∀ g ∈ G : l(g) = l(g−1),

(iii) ∀ g ∈ G : g 6= 1 =⇒ l(g2) > l(g), and,

setting

cp(g1, g2) =
1
2
(
l(g1) + l(g2)− l(g−1

1 g2)
)
,

called the length of the maximum common prefix,

(iv) ∀ g1, g2 ∈ G : cp(g1, g2) ∈ A,

(v) ∀ g1, g2, g3 ∈ G : cp(g1, g2) > cp(g1, g3) =⇒ cp(g1, g3) = cp(g2, g3) ,

(vi) ∀ g1, g2 ∈ G ∃h, g′1, g′2 ∈ G such that l(h) = cp(g1, g2) and g1 = h ◦ g′1 and
g2 = h ◦ g′2

where ◦ is defined by

g1 = g2 ◦ g3 ⇐⇒ (g1 = g2g3 and l(g1) = l(g2) + l(g3)) .

For elements g, h ∈ G we say that h is a prefix of g if there exists g′ ∈ G such
that g = h ◦ g′.

Consider the polynomial ring Z[t] as an ordered abelian group via the
right lexicographic order induced by the direct sum decomposition Z[t] =
⊕∞m=0〈tm〉 ' Z

∞. We use the natural isomorphism Z[t] ' Z
∞ throughout.

Using the infinite words technique, [MRS05] shows that FZ[t] has a regular free
Lyndon length function l : FZ[t] → Z[t] ' Z∞.

Recall that any word w over an alphabet X has a word length |w| equal to
the number of characters in w. FZ[t] is generated by X = X0 ∪ {tu,i | u ∈⋃∞
j=0R(Hj), i ∈ Z}, where X0 generates F , so every word w over X± has both

a Lyndon length l(w) and a word length |w|.

Example 4 (A Lyndon length function). Let F = F (a, b) be the free group on
generators a, b. We will construct a Lyndon length function l : G → Z

2 on the
extension of centralizer G = 〈a, b, t | [ab, t] = 1〉. For the construction in a more
general setting and for proof, refer to [KM05] and [MRS05]. Let w be a word
over G. First, write w in reduced form as an element of the HNN-extension, i.e.

w = g1t
a1g2t

a2 · · · gmtamgm+1

where gi ∈ F for all i and [gi, t] 6= 1 for i = 2, . . . ,m + 1. Let lF be the usual
length function on F (i.e. lF (w) = min{|u| | u ∈ {a±1, b±1}∗, u = w in F}) ,
and for M ∈ Z set

l1(w,M) = lF (g1(ab)ε1Mg2 · · · gm(ab)εmMgm+1)−mlF ((ab)M )
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where εi = sgn(ai). Observe that there exists a positive integer M0 such that
for any M > M0, l1(w,M0) = l1(w,M) (in particular, M0 = |w| will suffice).
Then set the Lyndon length of w to be

l(w) =

(
l1(w,M0),

m∑
i=1

|ai|

)
.

For example, the word w = a(ab)11t−1aaba−1t (which is in reduced form as
written) has word length |w| = 29. For its Lyndon length, use M = 30 and
compute

l1(w, 30) = lF (a(ab)11(ab)−30aaba−1(ab)30)− 2(60) = −21.

Hence w has Lyndon length l(w) = (−21, 2).

Every F-group G is known to embed into FZ[t], and the embedding is effec-
tive ([KM98]). Since G is finitely generated, G embeds in some finitely generated
subgroup Gn of some Hn of (2), and Gn can be obtained by a sequence of finite
extensions of centralizers,

F = G0 < G1 < . . . < Gn, (3)

where Gk < Hk for all k. That is, there are finite subsets R(Gk) ⊂ R(Hk) and
Tk = {tu,i | u ∈ R(Gk), 1 ≤ i ≤ Nk(u)} such that Gk is the HNN-extension

〈Gk−1, Tk | ∀ u ∈ R(Gk−1), 1 ≤ i, j ≤ Nk(u) : [u, tu,j ] = [tu,i, tu,j ] = 1〉. (4)

Denote by Xk the generating set of Gk such that X0 is a generating set of F
and Xk+1 = Xk ∪ Tk.

2 The compressed word problem in F-groups

In this section we prove the following theorem.

Theorem 5. Let G be a finitely generated fully residually free group. Then there
is an algorithm that decides the compressed word problem for G in polynomial
time.

Since G embeds (effectively) in some Gn (of (3)), it suffices to give a poly-
nomial time algorithm for the compressed word problem in Gn (Theorem 10).

2.1 Normal form

We will need to represent elements of Gn in a normal form, which is based on
the normal form given in [MRS05] for infinite word elements of FZ[t].

We define normal form in Gn recursively. For α = (α0, α1, . . .) ∈ Z[t] let
σ(α) = sgn(αd) where d = deg(α). A word w over X±0 is written in normal
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form if it is freely reduced. A word w over X±k is in normal form if w is written
as

w = g1u
c1
1 τ

α1
1 g2 . . . gmu

cm
m ταm

m gm+1, (5)

where ui ∈ R(Gk−1), ci ∈ Z, αi = (αi1, . . . , αiNk(ui)) ∈ Z
Nk(ui), ταi

i =
tαi1
ui,1

tαi2
ui,2
· · · tαiNk(ui)

ui,Nk(ui)
and

(i) for all i, αi 6= 0,

(ii) for all i, gi is a word over X±k−1,

(iii) for every i = 1, . . . ,m, either [ui, ui+1] 6= 1 or [ui, gi+1] 6= 1,

(iv) for any integers qi 6= 0 with sgn(qi) = σ(αi) we have

g1u
q1
1 g2 . . . gmu

qm
m gm+1 = g1 ◦ uq11 ◦ g2 ◦ . . . ◦ gm ◦ uqm

m ◦ gm+1.

Note that we do not require the gi to be written in normal form for Gk−1. We
call m the number of syllables of w.

Lemma 6. For every word w over X±n there is a word NF(w) in normal form
such that w = NF(w) in Gn and |NF(w)| ≤ (10L)n|w|, where L = max{|u| | u ∈⋃n
i=0R(Gi)}.

Proof. Proceed by induction on n. For n = 0, G0 is a free group and reduced
forms are simply freely-reduced words, so they exist with |NF(w)| ≤ |w|. As-
sume that the theorem holds for n− 1.

Using the commutation relations [u, tu,i] = [tu,i, tu,j ] = 1 in Gn, and an algo-
rithm for the word problem in Gn−1 (an algorithm for the conjugacy problem,
hence for the word problem, is given in [MRS05]), we can bring the word w into
the form

w′ = h1τ
α1
1 h2 . . . hmτ

αm
m hm+1,

where ταi
i are as in (5) with αi 6= 0 for all i, and for every i = 1, . . . ,m either

[ui, ui+1] 6= 1 or [ui, hi+1] 6= 1. Notice that |w′| ≤ |w|.
To produce a reduced form from w′, we appeal to [MRS05], which constructs

normal forms for elements of FZ[t], but without proof of the length bound that
we require. Only minor changes to that construction are needed, and we draw
the reader’s attention to the relevant sections.

The key fact is the following: for any word g over X±n−1 and any u ∈ R(Gn−1)
we have that, for any r > (10L)n−1|g|,

ur+1g = u ◦ (urg) and gur+1 = (gur) ◦ u. (6)

The proof of this fact is part of Lemma 7.1 of [MRS05], which shows that the
above holds as long as r is greater than the number of syllables in a normal
form of g. Since g ∈ Gn−1, we have by induction that |NF(g)| ≤ (10L)n−1|g|
hence NF(g) has at most (10L)n−1|g| syllables.
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There is an isomorphism φ from our HNN-representation of FZ[t] to the infi-
nite words representation. The word w′ corresponds, via φ, to what in [MRS05]
is called a reduced R-form. Lemma 6.13 of [MRS05] constructs normal forms
from reduced R-forms, and the first step of this construction produces a form
that corresponds, via φ, to our normal form. The construction attaches powers
of ui−1 and ui to hi, using rewritings of the form

hiτ
αi
i −→ (hiu

σ(αi)ri

i )(u−σ(αi)ri

i ταi
i ),

τ
αi−1
i−1 hi −→ (u−σ(αi−1)ri

i−1 τ
αi−1
i−1 )(uσ(αi−1)ri

i−1 hi),

where ri = (10L)n−1|hi|+ 1, with property (6) being used to achieve condition
(iv). It produces a normal form

NF(w′) = g1u
c1
1 τ

α1
1 g2 . . . gmu

cm
m ταm

m gm+1,

where |gi| ≤ ri|ui−1|+ |hi|+ ri|ui| and |ci| ≤ ri + ri+1 for all i. Then the length
of NF(w′) has the bound

|NF(w′)| =
m∑
i=1

(|ταi
i |+ |ci||ui|+ |gi|) + |gm+1|

≤

(
|w′| −

m+1∑
i=1

|hi|

)
+

m∑
i=1

((ri + ri+1)L+ 2riL+ |hi|) + 2rm+1L+ |hm+1|

≤ |w′|+ 4L
m+1∑
i=1

ri ≤ |w′|+ 4L(10n−1Ln−1|w′|+ |w′|)

≤ (10L)n|w|

as required.

Example 7 (Normal forms). Consider again the word w = a(ab)11t−1aaba−1t
from Example 4. A normal form for w is given by

a
(
(ab)12

)
t−1(b−1a−1aaba−1ab)

(
(ab)−1

)
t

where g1 = a, c1 = 12, g2 = b−1a−1aaba−1ab, c2 = −1. It is not necessray to
freely reduce g2, though we may do so if desired. Notice that for any q1 < 0
and q2 > 0,

a(ab)q1(b−1a−1aaba−1ab)(ab)q2 = a ◦ (ab)q1 ◦ (b−1a−1aaba−1ab) ◦ (ab)q2 ,

satisfying (iv).

2.2 Algorithm for the compressed word problem

To solve the compressed word problem in Gn, we construct a reduction of the
word problem in Gn to the word problem in F , then apply the reduction to
compressed words and use Lemma 1 to solve the compressed word problem in
F .
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Definition 8. For P ∈ N, define a homomorphism ϕ(n,P ) : Gn → Gn−1 by
setting ϕ(n,P ) to be the identity on Gn−1 and setting ϕ(n,P )(tu,i) = uP

i

.

Note that ϕ(n,P ) is a homomorphism since, for every i, j,

[u, ϕ(n,P )(tu,i)] = [u, uP
i

] = 1 = [uP
i

, uP
j

] = [ϕ(n,P )(tu,i), ϕ(n,P )(tu,j)].

Let w be a word over X±n . Recalling from (4) that Nk(u) is the number of
letters tu,i for a given u ∈ R(Gk), set N = 1 + max{Nk(u) | k ∈ [0, n− 1], u ∈⋃n−1
i=0 R(Gi)}. For P ∈ N define a sequence of n constants Pn, Pn−1, . . . , P1 by

Pn = P and
Pi−1 = PNi · L,

i.e. Pn−i = PN
i

LN
i−1
LN

i−2 · · ·L, and define a homomorphism Φ(n,Pn) : Gn →
F by the composition Φ(n,Pn) = ϕ(1,P1)ϕ(2,P2) · · ·ϕ(n,Pn). The sequence is de-
fined so that when Pn > (10L)n|w|, Pi−1 is an upper bound on the length of
ϕ(i,Pi) · · ·ϕ(n,Pn)(w), as we will see below.

Theorem 9. Let Gn be obtained by a sequence of extensions of centralizers as
in (3) and let w be a word over X±n . Then for any Pn > (10L)n|w|,

Φ(n,Pn)(w) = 1 in F ⇐⇒ w = 1 in Gn.

Proof. Since Φ(n,Pn) is a homomorphism, if w = 1 in Gn then Φ(n,Pn)(w) = 1
in F . It remains to show that for any Pn > (10L)n|w|,

w 6= 1 in Gn =⇒ Φ(n,P )(w) 6= 1 in F .

We proceed by induction on n. Letting Φ(0,P0) : F → F be the identity map,
there is nothing to prove in the base case n = 0. Assume the theorem holds up
to n− 1 and that w 6= 1 in Gn. Let

NF(w) = g1u
c1
1 τ

α1
1 g2 . . . gmu

cm
m ταm

m gm+1

be a normal form of w, as in Lemma 6. If no tu,i appears in NF(w), then
w ∈ Gn−1 and Φ(n,Pn)(w) = Φ(n−1,Pn−1)(w). The induction assumption applies
since Pn−1 > (10L)n|w| ≥ |NF(w)|, so Φ(n,Pn)(w) 6= 1 in F . Otherwise, at
least one tu,i appears with a non-zero power so we may assume that m ≥ 1 and
α1 6= 0.

We claim that ϕ(n,Pn)(u
ci
i τ

αi
i ) is a non-zero power of ui of sign σ(αi). We

simplify notation by setting u = ui, a = αi, and d = Nn−1(u). We have

ϕ(n,Pn)(τ
αi
i ) = ϕ(n,Pn)(t

a1
u,1 · · · t

ad

u,d) = uadP
d
n+ad−1P

d−1
n +...+a1Pn

and we want a lower bound of the magnitude of the exponent of u. Since, for
all s,

|as| ≤ |NF(w)| ≤ (10L)n|w| ≤ Pn − 1,
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we have that
d−1∑
s=1

|as|P sn ≤
d−1∑
s=1

(Pn − 1)P sn = P dn − Pn.

Hence |adP dn | − |ad−1P
d−1
n + . . .+ a1Pn| ≥ Pn, and so

adP
d
n + ad−1P

d−1
n + . . .+ a1Pn = Ci

where |Ci| ≥ Pn and sgn(Ci) = sgn(ad) = σ(a). Then

ϕ(n,Pn)(u
ci
i τ

αi
i ) = uCi+ci

with Ci + ci 6= 0 (since |ci| ≤ |NF(w)| < Pn) and sgn(Ci + ci) = σ(αi), proving
the claim.

Since ϕ(n,Pn) is the identity on Gn−1, we have, using property (iv) of normal
forms,

ϕ(n,Pn)(w) = ϕ(n,Pn)(NF(w)) = g1 ◦ uC1+c1
1 ◦ g2 ◦ · · · ◦ gm ◦ uCm+cm

m ◦ gm+1.

In particular, l(ϕ(n,Pn)(w)) ≥ l(uC1+c1
1 ) > 0 hence ϕ(n,Pn)(w) 6= 1 in Gn−1.

We have Φ(n,Pn)(w) = Φ(n−1,Pn−1)(ϕ(n,Pn)(w)) and we can apply the induction
hypothesis to ϕ(n,Pn)(w) since Pn−1 is large enough. Indeed, in the worst case
w = t

|w|
u,i where |u| = L and i = N − 1 making

|ϕ(n,Pn)(w)| = |uP
N−1
n |w|| = |w|PN−1

n L < PNn L = Pn−1,

so by induction 1 6= Φ(n−1,Pn−1)(ϕ(n,Pn)(w)) = Φ(n,Pn)(w) in F .

We now can solve the word problem in Gn by setting P = (10L)n|w| + 1
and checking if Φ(n,Pn)(w) is trivial in F . Notice that the bound on the length
of Φ(n,Pn)(w) is given by

P0 = PN
n

LN
n−1

LN
n−2
· · ·L.

We use this reduction to solve the compressed word problem in Gn.

Theorem 10. Let Gn be a group obtained from a free group by a finite sequence
of finite extensions of centralizers as in (3). There is an algorithm that decides
the compressed word problem for Gn in polynomial time.

Proof. Let A be a compressed word over X±n . For any word w and any q ∈ Z
we can write a straight-line program W q of size 2|w| + log2 |q| producing wq.
Indeed, the root production is W q → W q/2W q/2, where W q/2 produces wq/2,
and we continue by induction (make the appropriate changes when q is odd),
noting that we get at most log2 |q| non-terminals of the form W p. We can obtain
the program W 1, which produces w and has size 2|w|, by successively dividing
w in half. Consequently, for each u ∈ R(Gn) and q ∈ Z, we have an SLP with
root Uq producing uq and having size 2|u|+ log2 |q|.
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Set Pn = (10L)n|wA|+1 and build an SLP An by replacing every production
of A of the form

A→ tεu,i,

where tu,i ∈ Tn and ε = ±1, by

A→ U εP
i
n .

Notice that wAn
= ϕ(n,Pn)(wA). Repeat this replacement process for An to pro-

duce An−1 and continue until we get A1, which is an SLP producing Φ(n,P )(wA).
By Theorem 9, wA1 = 1 in F if and only if wA = 1 in Gn so we now apply
Lohrey’s algorithm (Lemma 1) to decide if wA1 = 1 in F .

We need to show that the size of A1 is polynomial (in fact, linear) in
the size of A. At each level k, we add, for each u ∈ R(Gk), programs
UP

1
k , UP

2
k , . . . , UP

Nk(u)
k . Recalling that N = 1 + max{Nk(u) | k ∈ [0, n− 1], u ∈⋃n−1

i=0 R(Gi)}, each new UP
i
k adds less than

2|u|+ log2 |P ik| ≤ 2L+ log2(PNk )

new non-terminals to Ak. Letting M = maxk{|R(Gk)|}, level k introduces less
than

2LM +NM log2(Pk)

new non-terminals. In total, over all n levels, the number of new non-terminals
is bounded by

2nLM +NM

n−1∑
i=0

log2(Pn−i).

Noting that L,M, n are constants (i.e. they depend of Gn, not on w) and
recalling Pn−i = PN

i

LN
i−1
LN

i−2 · · ·L, we have that the number of new non-
terminals is in

O

(
n−1∑
i=0

log(Pn−i)

)
= O

(
n−1∑
i=0

N i log(P )

)
= O(log(P ))

= O
(

log((10L)n2|A| + 1)
)

= O(|A|).

Therefore |A1| ∈ O(|A|) and since Lohrey’s algorithm runs in polynomial time
in |A1| we have a polynomial time algorithm for the compressed word problem
in Gn.

3 Word problem in the automorhpism group of
an F-group

In [Sch08], Schleimer uses a polynomial time algorithm for the compressed word
problem in a free group to produce a polynomial time algorithm for the word
problem in its automorphism group. We apply the same method to F-groups.
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Theorem 11. Let G be a finitely generated fully residually free group. Then
the word problem for Aut(G) is decidable in polynomial time.

The theorem follows from Theorem 5 and known results, which we collect
and summarize here. The main idea is that the word problem in Aut(G) reduces
to the compressed word problem in G:

Lemma 12 (Proposition 2 of [LS07]). Let G be a finitely generated group and
H a finitely generated subgroup of Aut(G). Then the word problem in H reduces
in logarithmic space to the compressed word problem in G.

To construct the reduction, one needs the generators of H to be described by
their action on generators of G. That is, if G = 〈g1, . . . , gn〉 then each φi ∈ H
must be given by

φi(gj) = wij(g1, . . . , gn), (7)

where wij(g1, . . . , gn) is a word over the alphabet {g1 . . . , gn}±1. Now suppose
H = 〈φ1, . . . , φk〉 and we want to decide if a word φi1 . . . φim represents the triv-
ial element of H. Build a set of non-terminals {Aj,p, Aj,p}, where j ∈ {1, . . . , n}
and p ∈ {1, . . . ,m}, with productions

Aj,0 → gj ,

Aj,0 → g−1
j ,

Aj,p → wipj(A1,p−1, . . . , An,p−1), p ≥ 1,

Aj,p → (wipj(A1,p−1, . . . , An,p−1))−1, p ≥ 1,

where wipj(A1,p−1, . . . , An,p−1) is the word wipj with every instance of gi re-
placed by Ai,p−1 and of g−1

i by Ai,p−1. One sees that wAj,m = φi1 . . . φim(gj).
Then the word problem in H reduces to checking that wAj,m = gj for all j, i.e.
it reduces to n instances of the compressed word problem in G.

To prove Theorem 11 then, it suffices to show that Aut(G) is finitely gener-
ated and that every generator can be described as in (7).

First, consider the case when G is freely indecomposable. The structure of
the automorphism group of such G has been described in [BKM07] using an
Abelian JSJ-decomposition of G. It follows from the results in §5 of that paper
that Aut(G) is finitely generated and the automorphisms can be described as
in (7). Note that constructing an Abelian JSJ-decomposition of an F-group is
effective (Theorem 13.1 of [KM05]).

For the general case, let G be any F-group. Then G has a Grushko decom-
position as a free product

G = G1 ∗ · · · ∗Gk ∗ Fr,

where the Gi are freely indecomposable non-cyclic groups and Fr is a free group
of rank r. This decomposition is unique in the sense that any other such de-
composition has the same k and r and its freely indecompasable non-cyclic
factors are conjugated in G to the factors G1, . . . , Gk. One can effectively find
a Grushko decomposition for F-groups [KM05].
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The automorphism group of a free product has been described by Fouxe-
Rabinovitch and Gilbert [Gil87] in terms of the automorphisms of its factors.
Aut(G) is generated by the following automorphisms.

(i) Permutation automorphisms. For each pair of isomorphic factors Gi ' Gj ,
fix an automorhism φij . Choose φij such that the collection is compatible,
that is if Gi ' Gj and Gj ' Gk then φik = φjkφij .

(ii) Factor automorphisms. Each automorphism of Gi and of Fr induces an
automorphism of G by acting as the identity on all other factors. Any
product of such automorphisms is called a factor automorphism.

(iii) Whitehead automorhpisms. Let S be a basis of Fr. An automorhpism of
G is a Whitehead automorphism if there is an x in some Gi or in S such
that each factor Gj is conjugated by x of fixed pointwise, and each s ∈ S
is sent to one of s, sx, x−1s, x−1sx.

It follows from Theorem 4.13 of [BKM07] that we can construct a compatible
set of permutation automorphisms. Since each Gi is freely indecomposable we
can construct a finite generating set for Aut(Gi). The automorphism group of
a free group F (x1, . . . , xr) is well-known to be finitely generated by the Nielsen
automorphisms,

αi(xk) =
{
x−1
k k = i
xk k 6= i

, i ∈ {1, . . . , r}

βij(xk) =
{
xkxj k = i
xk k 6= i

, i, j ∈ {1, . . . , r}, i 6= j.

Consequently, the factor automorphisms are finitely generated. Since each Gi
(and Fr) is finitely generated, the set of Whitehead automorphisms is finitely
generated. Therefore we have proven the following lemma, which completes the
proof of Theorem 11:

Lemma 13. Let G be an F-group. Then Aut(G) is finitely generated and one
can construct a generating set in the form (7).

The author would like to thank O. Kharlampovich and D. Serbin for valuable
discussions related to this paper.
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