
VOLUME 89, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 22 JULY 2002

046401-1
Compressibility Divergence and the Finite Temperature Mott Transition
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In the context of the dynamical mean-field theory (DMFT) of the Hubbard model, we study the behav-
ior of the compressibility near the density driven Mott transition at finite temperatures. We demonstrate
this divergence using DMFT and quantum Monte Carlo simulations in the one-band and the two-band
Hubbard model. We supplement this result with considerations based on the Landau theory framework,
and discuss the relevance of our results to the a-g end point in cerium.
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The Mott transition, namely, the metal-insulator transi-
tion (MIT) driven by electron-electron interactions [1], is a
fascinating phenomenon realized experimentally in many
compounds such as V2O3 and Ni�Se, S�2 [2]. The Mott
transition concept is also relevant to elements in the lan-
thanide and actinide series [3]. Viewed from a broader
perspective, the Mott transition problem forces us to de-
velop tools to describe materials where the electron is not
fully described by either a real space picture or a momen-
tum space picture, and continues to spur advances in many
body and electronic structure methods.

On the theory side, the Hubbard model is the simplest
Hamiltonian that captures some of the essential physics of
the transition. It has been intensively studied in one di-
mension, but in this limit no finite temperature phase tran-
sition can take place. In recent years, theoretical progress
has been made in the understanding of the Mott-Hubbard
transition using the DMFT [4]. In this framework, the tran-
sition can be viewed as bifurcation points of a functional
[5,6] of the local Green’s function, or of its conjugate vari-
able, the Weiss field which describes the local environment
of a correlated site.

The case of the correlation strength �U� driven MIT at
half filling (particle-hole symmetric case) is now well un-
derstood. At temperature T � 0, there are two bifurcation
points, one denoted by Uc1�T � 0�, where the insulating
solution disappears, and the other denoted by Uc2�T � 0�,
where the metallic state disappears in a fashion reminis-
cent of the Brinkman-Rice scenario [7]. As shown in the
inset of Fig. 1, in the U-T plane, at zero doping, the phase
diagram of the frustrated Hubbard model displays a re-
gion where two mean-field solutions, one metallic- and one
insulating-like, can be obtained. This region is delimited
by the Uc1�T� and Uc2�T� bifurcation lines. Within this
region, there is a first-order MIT line [8,9] where the free
energies of the two solutions cross. The line starts out at
Uc2 for T � 0 and ends at a finite temperature second-
order critical point �UMIT, TMIT�, which has the character
of a regular Ising bifurcation with a rapid variation of the
susceptibility connected to the double occupancy [10,11].
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At higher temperatures, the Uc1�T� and Uc2�T� lines be-
come crossover lines, which have a well-defined experi-
mental significance [12].

The zero temperature aspects of the doping driven MIT
were studied in [13]. It was shown that in the U-m plane
�T � 0� there are two solutions within a region bounded
by the curves mc1�U� where the insulating solution disap-
pears, and mc2�U� where the metallic state disappears. At
T � 0, one finds that the mc1 line ends at U � Uc1 and
m � U�2, and the mc2 line ends at U � Uc2 and m �
U�2. The finite temperature aspects of the doping driven
Mott transition have not been investigated thus far. This is
the subject of our paper.

Our main interest is the behavior of the charge com-
pressibility near the doping driven Mott transition in the
paramagnetic phase at finite temperatures. We will not
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FIG. 1. Schematic phase diagram for the Hubbard model. The
cross sections shown are on the T -m plane for different values
of U . mc1 and Uc1 are the chemical potential and interaction,
respectively, at which the insulating solution gets destroyed. mc2
and Uc2 are those at which the metallic solution gets destroyed.
The dashed lines denote the first-order transition. The thick
solid lines denote the second-order lines where the compress-
ibility diverges. The black circle at �UMIT, TMIT� denotes the
second-order transition at n � 1. The Uc2�T � 0� end point is
denoted with a grey circle. Inset: phase diagram at particle-hole
symmetry m � U�2 (m̃ � 0). Solid lines denote Uc1�T� (left)
and Uc2�T� (right).
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consider the effects of long range order. Furukawa and
Imada [14] pointed out that the compressibility diverges
at the density driven MIT in two dimension at T � 0.
This behavior has been also observed on other models of
correlated electron systems, indicating that this phenome-
non is quite general [15]. It is important to understand the
physical origin of this result, and to see if it is realized in
the DMFT solution of the Hubbard model. The previously
investigated bifurcations within the DMFT have either a
finite charge compressibility, such as in the T � 0 density
046401-2
driven MIT, or a vanishing charge compressibility, as in
the T � 0 correlation driven MIT.

Our study of the neighborhood of the Mott transition is
relevant to materials which have a finite temperature iso-
structural phase transition such as cerium (Ce). This can
be seen by generalizing the derivation of the Landau free
energy of [11]. Near the second-order end point, the free
energy of more complicated models would have the same
form as that studied in our paper.

We focus on the m-band degenerate Hubbard model:
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The first term describes the hopping between nearest
neighbors �ij� on a lattice with coordination number z.
m, m0 � 1, 2 are the band indices and s �", # labels the
spin index. The parameter U is the energy cost associated
with having a double occupancy on each site. t and U
are assumed to be independent of the band indices. In
the limit of infinite dimensions, z ! `, this model can be
mapped onto a single-impurity Anderson model (SIAM)
supplemented by a self-consistency condition [4]. The
DMFT equation of the model reads

t2Gms�ivn� �D, a� � D�ivn� , (2)

where vn are the fermionic Matsubara frequencies, Gms

is the impurity Green’s function, and D is the hybridiza-
tion function of the SIAM. Here, a denotes a control
parameter such as T , U, or m. We adopt a semicircular
density of states, r�e� � � 2

pD �
p

1 2 �e�D�2, where the
half-bandwidth D � 2t � 1 is our unit of energy.

We propose a schematic phase diagram (Fig. 1) for the
one-band Hubbard model. The figure shows regions of co-
existing solutions in cross sections of constant U in the
�U, T , m� parameter space. The m̃ axis starts at zero dop-
ing, thus n � 1 on the �U, T � plane where m̃ � 0, which
for the one-band model is m̃ � m 2 U�2. At larger values
of U, the regions of coexisting solutions are two triangles,
one for n , 1 and the other for n . 1. These triangles
are delimited by the mc1�T� and mc2�T � lines which cor-
respond to the vanishing of the insulating and the metallic
solutions, respectively. As U decreases, the triangular re-
gions approach each other and fully merge at U � UMIT.
Further lowering U makes the single triangular region di-
minish until U � Uc1�T � 0�, where it vanishes. Within
the triangular regions, two mean-field solutions can be ob-
tained, therefore a first-order transition exists where their
free energies cross. This leads to a first-order transition
surface between an insulating and a metallic-like state
at finite T . The intersections of this surface with the
constant-U cross sections are first-order lines that we de-
note by the dashed lines in Fig. 1. At T � 0 within the
coexistence regions (the base of the triangles), the metal-
lic state is always stable, thus one can cross the first-order
surface towards the insulator by either increasing T , in-
creasing U, or decreasing the doping.

At finite T , the two solutions merge where the trian-
gular regions end. Hence, there is a line of second-order
transitions where the first-order surface ends. This is de-
noted by the thick solid line in Fig. 1. The doping is small
but nonzero along this line except at U � UMIT where
n � 1. As we shall show below, an interesting result of
our work is the divergence of the compressibility on this
line of second-order transitions.

For the two-band model, the phase diagram is qualita-
tively similar to the one-band case, except that the pairs
of triangles at a given U do not have the same height due
to the absence of particle-hole symmetry. The presence of
a coexistence region and a first-order phase transition in
the two-band model was apparent in earlier Monte Carlo
calculations [16]. This also follows from the form of the
Landau functional of this problem [5], which is similar
for the one-band and the multiband situations. The finite
temperature and general chemical potential aspects of this
problem, and the behavior of the compressibility, had not
been discussed previously in the literature.

We now turn to our numerical results that support this
scenario. We solved the DMFT equation (2) iteratively us-
ing quantum Monte Carlo (QMC) methods in the �U, T , m�
parameter space for the one- and the two-band models. In
Fig. 2 we show the doping (per spin) d � �n� 2 1�2 as a
function of the chemical potential m obtained from QMC
calculations with Dt � 0.5 in the one-band case. The in-
teraction value U � 2.46 is chosen to be within the small
region delimited by UMIT , U , Uc2�T � 0� [10]. In
the lower panel, we show the results at several tempera-
tures above the critical temperature TMIT where only one
solution exists. As T is decreased and TMIT is approached,
the curves show a fast crossover from small to large com-
pressibility. The sigmoidal shape of the curve is a hallmark
of the approach to a second-order critical point in Landau
theory, as in the familiar Ising mean-field (IMF) model.
In fact, upon further lowering T beneath TMIT, two so-
lutions are found to coexist, analogous to the IMF model
case. The results are shown in the upper panel, where a
046401-2
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FIG. 2. Doping d per spin as a function of the shifted chemical
potential m 2 U�2 for various T . Lower panel: QMC data
obtained at T � 1�40, 1�30, 1�20, 1�16 (right to left), all above
TMIT. Upper panel: Similar data at T � 1�64, 1�50, below
TMIT. The arrows indicate a hysteresis-like cycle obtained by
following the metallic and insulating solutions.

hysteresis-like cycle is obtained. The cycle becomes larger
at lower temperatures as the stability region of the solutions
increases. At T � 1�64 we find that the metallic state per-
sists all the way down to zero doping at m � U�2. This
implies that, for UMIT , U , Uc2, the mc2�T� line does
not go all the way down to T � 0 in contrast to the case
when U . Uc2 (cf. Fig. 2).

To obtain the two solutions below TMIT, we first start at
high doping where only the metallic state exists, and then
decrease m as indicated by the left arrow in the upper panel
of Fig. 2. We use a converged solution as the input seed for
the next iteration. When the metallic solution disappears at
mc2, a sudden drop in the occupation is seen. To obtain the
other branch of the hysteresis loop, we begin with the in-
sulating solution at m � U�2 �n � 1� and slowly increase
m, again using the previous converged solution as seed for
the next value of m. This state is essentially incompress-
ible as n almost remains constant while increasing m. The
system is gradually doped until n jumps up at mc1, where
the insulating state becomes unstable. This procedure can
be used to map out the contour of the schematic phase dia-
gram of Fig. 1 [17].

Similar behavior was found in the two-band model, and
the results for the total occupation number n as a func-
tion of m are shown in Fig. 3. The QMC calculation was
performed at Dt � 0.25 and U � 3.0. At higher tempera-
tures, only one solution is present, whereas on lowering T
to 1�40 both metallic and insulating solutions coexist.

A common feature that emerges from the models is that,
in the regions where two mean-field solutions exist, the
system has two different values of n for given T and m.
Furthermore, these two solutions have different free ener-
gies and the actual thermodynamic state of the system is
that of minimum energy. Hence, a jump in the particle
046401-3
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FIG. 3. Particle occupation n function of m for different tem-
peratures. in the two-band model at U � 3.0. In the upper
panel, the temperatures are above the critical temperature while,
in the lower panel, we see coexistence at T , TMIT.

occupation is predicted at a first-order line. The determi-
nation of this line implies a precise calculation of the free
energy which, in principle, is possible but technically hard
and is outside the scope of the present work.

From the n versus m curves in Figs. 2 and 3, we com-
puted the numerical derivative of the particle number with
respect to the chemical potential to obtain charge com-
pressibility k. The results for k21 as a function of the
temperature above TMIT (Fig. 4) indicate that k21 ! 0 as
we approach the critical (thick solid) line in Fig. 1.

We also mention that in our simulations we observed
characteristic effects of enhanced fluctuations and critical
slowing down as the MIT is approached. Hence, simu-
lations have to be done with extreme care, appropriately
choosing the seeds for the iterative process and gathering
many sample points for accurate statistics. In practice, we
use up to �105 Monte Carlo sweeps and hundreds of it-
erations to obtain converged solutions when we are close
to the second-order critical line.
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FIG. 4. The inverse compressibility k21, at a constant doping
as a function of T . Left: One-band model at U � 2.46 with
doping d � 0.002. Right: Two-band model at U � 3.0 at n �
1.003. The solid lines are a guide to the eye.
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We now present Landau theory arguments to support
the idea of divergent compressibility at the Mott end point.
The mean-field equation (2) can be obtained by differenti-
ating the Landau functional [5],

FLG�D� � 2T
X
n

D�ivn�2

t2 1 Fimp�D� , (3)

with respect to the hybridization D�ivn� of the SIAM,
which has the meaning of a Weiss field. Fimp�D� is the
free energy of the SIAM in the presence of a hybridization.
The Green’s function of the SIAM is G�ivn� �D, a� �
�1�2T �dFimp�dD. This Landau approach was used to
describe the Mott transition at half-filling [10,11].

As discussed in Ref. [11], the finite temperature Mott
transition is a regular bifurcation point. On differentiating
the Landau functional twice, we get a matrix of the form
2dnm 1 Mnm, where Mnm acquires a zero mode:

Mnm �
t2

2T

d2Fimp�D�
dD�ivn�dD�ivm�

Ç
c.p.

. (4)

We now make a small change in m around the critical
point and expand Eq. (2) to first order in da � �m 2 mc�,
dD � D�ac 1 da� 2 D�ac�. We get

dD�ivn�
da

�
X
m

1
1 2 Mmn

t2 ≠Gimp�ivn�
≠a

. (5)

From (2), the lattice occupation at any site which is
identical to the local impurity occupation is related to the
hybridization by �n� � �2T�t2�

P
n D�ivn�. Thus,

d�n�
dm

� 2
X
n

∑
1

1 2 M

∏
T

≠Gimp�ivn�
≠m

. (6)

Clearly, unless the derivative on the right-hand side of
(6) is exactly orthogonal to the zero mode of the matrix M,
the bifurcation condition leads to the singular behavior of
the compressibility. The QMC studies shown above dem-
onstrate that this orthogonality does not occur in general.

From the experimental viewpoint, we believe that our
results highlight important aspects of the physics of the
a-g transition in Ce. The detailed description of the non-
universal aspects of this material requires more elaborate
models such as those studied by Held et al. [18]. However,
the functional describing these complicated models near
the finite temperature Mott transition would reduce to the
one underlying the equations we studied. Hence, it is plau-
sible that the behavior of the compressibility that we iden-
tified in our basic model applies to the a-g transition of Ce
as well. The divergence of compressibility in the Ce a-g
transition therefore has an electronic origin and can be un-
derstood from model calculations without involving lattice
degrees of freedom (which would renormalize values of
046401-4
the critical points without changing qualitative features).
In our data, we find a decrease in compressibility dur-
ing the transition from the insulating to the metallic phase
which is similar to what has been measured by Beecroft
and Swenson in [19].

In summary, we presented a careful QMC study of
the doping driven Mott transition within the DMFT. Our
study unveils that the divergence of the compressibility is
a generic feature of the finite temperature Mott end point.
We understood this divergence in terms of an argument
based on Landau theory, which indicates that these results
are more general than the specific models for which the
numerical studies were performed. Our results were found
to be relevant to the Ce a-g transition.
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