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Abstract. We study the hyperbolic system of Euler equations for an isentropic, compressible fluid governed
by a general pressure law. The existence and regularity of the entropy kernel that generates the family of weak
entropies is established by solving a new Euler-Poisson-Darboux equation, which is highly singular when the
density of the fluid vanishes. New properties of cancellation of singularities in combinations of the entropy
kernel and the associated entropy-flux kernel are found.

We prove the strong compactness of any sequence that is uniformly bounded in L∞ and whose weak entropy
dissipation measures are locally H−1 compact. The existence and large-time behavior of L∞ entropy solutions
of the Cauchy problem are established. The existence result also extends to the p-system of fluid dynamics
in Lagrangian coordinates. Our proof of the reduction theorem for Young measures also further simplifies the
proof known for the polytropic perfect gas.

1. Introduction.

The Euler equations for an isentropic compressible fluid read

∂tρ+ ∂xm = 0,

∂tm+ ∂x(
m2

ρ
+ p(ρ)) = 0,

(1.1)

where ρ ≥ 0 denotes the density, m the momentum, and p(ρ) ≥ 0 the pressure. As far as the well-
posedness of the Cauchy problem for (1.1) is concerned, the previous research was restricted to the
polytropic perfect gases (see (1.6)). This paper stems from a renewed interest in the applications toward
real gases and complex fluid flows governed by various pressure laws [9, 33]. One of the main difficulties
for the mathematical analysis of (1.1) is the singularity at the vacuum ρ = 0. The physical region for
(1.1) is {(ρ,m)| |m| ≤ C ρ}, for some C > 0, in which the term m2/ρ in the flux function is only Lipschitz
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continuous near the vacuum. For ρ > 0, v = m/ρ represents the velocity of the fluid. Another difficulty
is the development of shock waves in solutions of the Cauchy problem for (1.1),

(ρ,m)|t=0 = (ρ0,m0), (1.2)

no matter how smooth the initial data (ρ0,m0) are.
This system is an archetype of nonlinear hyperbolic systems of conservation laws

∂tu+ ∂xf(u) = 0, u ∈ RI N , f : RI N → RI N . (1.3)

For background on conservation laws, we refer to Lax [20, 21]. Strict hyperbolicity and genuine nonlin-
earity away from the vacuum for (1.1) require that

p′(ρ) > 0, 2 p′(ρ) + ρ p′′(ρ) > 0, for ρ > 0. (1.4)

At the vacuum, the two characteristic speeds of (1.1) may coincide and the system be nonstrictly hyper-
bolic.

An entropy-entropy flux pair (η, q), by definition, provides the additional conservation law

∂tη(ρ,m) + ∂xq(ρ,m) = 0,

for any smooth solution (ρ,m). A weak entropy is an entropy that vanishes at the vacuum. An entropy
solution is determined by the entropy inequality

∂tη(ρ,m) + ∂xq(ρ,m) ≤ 0 (1.5)

in the sense of distributions, for any weak entropy pair (η, q) with convex η.
The so-called polytropic perfect gas is described by the equation of state

p∗(ρ) = κργ , γ > 1. (1.6)

One may assume κ = (γ−1)2/(4γ), which is a convenient normalization. For early results on the existence
of entropy solutions, we refer to [29] for the Riemann problem, [34,14] for a special class of initial data
with bounded variation, and [28] for large total variation with small γ − 1 or vice versa by using the
Glimm scheme [18].

The first global existence for (1.1) with large initial data in L∞ was established in DiPerna [16] for
the case γ = 1 + 2/N (N ≥ 5 odd) by the vanishing viscosity method. The existence problem for general
values γ ∈ (1, 5/3] was solved in Chen [2] and Ding, Chen, and Luo [13]. The case γ ≥ 3 was treated by
Lions, Perthame, and Tadmor [23]. Lions, Perthame, and Souganidis [24] dealt with the interval (5/3, 3)
and simplified the proof for the whole interval.

The present paper is devoted to the compressible fluids governed by a general pressure law that has
singularities near ρ = 0. We assume that the pressure law p = p(ρ) is smooth away from the vacuum
but very singular near the vaccum: The principal singular part of p(ρ) coincides with (1.6) for some
γ ∈ (1, 3), but additional singularities not accounted for in (1.6) are allowed. See the precise statement
(2.1) in Section 2.

We will prove the following result announced in [7].
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Main Theorem. Consider the compressible Euler system (1.1) under assumptions (1.4) and (2.1).
(1) Given any measurable and bounded initial data (ρ0,m0) satisfying

0 ≤ ρ0(x) ≤ C0, |m0(x)| ≤ C0 ρ0(x), for a.e. x and some C0 > 0,

there exists an entropy solution (ρ,m) of the Cauchy problem (1.1)-(1.2) satisfying

0 ≤ ρ(t, x) ≤ C, |m(t, x)| ≤ C ρ(t, x), for a.e. (t, x), (1.7)

where C > 0 depends only on C0.
(2) Let (ρε,mε) be a sequence of functions, satisfying (1.7) uniformly in ε, such that, for any weak

entropy pair (η, q),

∂tη(ρε,mε) + ∂xq(ρε,mε) is compact in H−1
loc .

Then the sequence (ρε,mε) is compact in Lrloc, 1 ≤ r <∞.

The asymptotic decay of L∞ entropy solutions and the convergence of the Lax-Friedrichs scheme
are also established below. For the proof of Main Theorem, we develop new techniques to handle the
difficulties that arise with the general pressure law. In particular, in contrast with the case (1.6), no
explicit formula is available for the entropies of (1.1). Our approach turns out to simplify further the
proofs for the case (1.6).

When (1.6) holds, the weak entropies of (1.1) are given by a convolution product between an arbitrary
smooth function ψ = ψ(s) and the fundamental kernel of a linear wave equation, χ∗, defined by

χ∗(ρ, v, s) = M∗
[
ρ2θ − (v − s)2]λ

+, for ρ > 0. (1.8)

Here [y]+ = max(0, y), and θ, λ,M∗ are constants depending on γ (see (2.2) and (2.11)). The weak
entropies have the form

η(ρ, v) =
∫
RI

χ∗(ρ, v, s)ψ(s) ds. (1.9)

We refer to χ∗ as the entropy kernel of the γ-law gas. The singularities of χ∗ are easily read on the
explicit formula. One of the main difficulties for the general pressure law is to identify the singularities
of different orders of the entropy kernel, denoted by χ, when an explicit formula is not available.

The general strategy for proving the existence of entropy solutions is as follows. One first constructs
approximate solutions, (ρε,mε), by adding a higher-order regularization term to (1.1) or by using a finite
difference scheme. As the parameter ε converges to zero, the functions (ρε,mε) formally converge to an
entropy solution of (1.1). However, carrying out this approach rigorously is very challenging. In general,
only L∞ bounds on (ρε,mε) are available and a weakly convergent subsequence can be extracted. System
(1.1) contains nonlinear composite functions that are not continuous in the weak topology, and additional
information on the approximate solutions is needed.

Tartar [30] first used Young measures to describe oscillating solutions to nonlinear partial differential
equations. A Young measure ν(t,x) is a weakly-star measurable mapping from RI 2

+ := RI +×RI to the set of
all probability measures. For hyperbolic systems of conservation laws, the so-called Tartar commutation
relations constrain the Young measure:〈

ν(t,x), η1 q2 − η2 q1
〉

=
〈
ν(t,x), η1

〉 〈
ν(t,x), q2

〉
−
〈
ν(t,x), η2

〉 〈
ν(t,x), q1

〉
(1.10)
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for a.e. (t, x) and for any two (suitably restricted) entropy pairs (ηi, qi), i = 1, 2. These conditions
are derived by the method of compensated compactness, especially the div-curl lemma (see Tartar [30]
and Murat [26]). To this end, one needs certain uniform bounds on the approximate solutions and, in
particular, the H−1

loc compactness of the entropy dissipation measures, for which Murat’s lemma is useful
[27,30].

If any measure satisfying (1.10) reduces to a Dirac mass for a.e. (t, x), then the sequence of approxi-
mate solutions converges in the strong topology and, for appropriate approximations, toward an entropy
solution. For the Euler equations, to obtain that the Young measure ν(t,x) is a Dirac mass in the (ρ,m)-
plane, it suffices to prove that the measure in the (ρ, v)-plane, still denoted by ν(t,x), is either a single
point or a subset of the vacuum line

{(ρ, v)| ρ = 0, |v| ≤ sup
ε>0
‖mε/ρε‖L∞}.

The main difficulty is that only weak entropy pairs can be used, because of the vacuum problem.
In the proof of [2,13,16] (also cf. [3]), the heart of the matter is to construct special functions ψ in (1.9) in

order to exploit the form of the set of constraints (1.10). These test-functions are suitable approximations
of high-order derivatives of the Dirac measure. It is used that (1.10) represents an imbalance of regularity:
the operator on the left is more regular than the one on the right due to cancellation. DiPerna [16]
considered the case that λ ≥ 2 is an integer so that the weak entropies are polynomial functions of the
Riemann invariants. The novel idea of applying the technique of fractional derivatives was introduced in
[2,13] to deal with real values of λ.

A new analysis of equation (1.10) was proposed by Lions, Perthame, and Tadmor [23] for γ ∈ [3,∞)
and by Lions, Perthame, and Souganidis [24] for γ ∈ (1, 3). Motivated by a kinetic formulation of (1.1)
and (1.6), they made the crucial observation that the use of the test-functions ψ could in fact be bypassed,
and (1.10) be directly expressed with the entropy kernel χ∗. Namely, (1.10) holds for all s1 and s2 by
replacing ηj := χ∗(sj) and qj := σ∗(sj) for j = 1, 2. Here σ∗ is the entropy-flux kernel defined as

σ∗(ρ, v, s) =
(
v + θ (s− v)

)
χ∗(ρ, v, s).

In [24], the commutation relations were differentiated in s, using the fractional derivative operator ∂λ+1
s ,

so that singularities arise by differentiation of χ∗. This approach relies on the lack of balance in regularity
of the two sides of (1.10) and on the observation that < ν(t,x), χ∗(s) > is smoother than the kernel χ∗(s)
itself, due to the averaging by the Young measure.

Many of the previous arguments do not carry over to the general pressure law. Our first aim is to
construct all of the weak entropy pairs of (1.1). Sections 2–3 contain an extensive discussion of the entropy
and entropy flux kernels, denoted χ(ρ, v, s) and σ(ρ, v, s), respectively. The existence and uniqueness of
the kernels are established in Theorem 2.1. This allows us to generalize (1.9) and obtain the family of
weak entropy pairs. In Theorems 2.2–2.3, we determine the singularities of different orders arising in
fractional derivatives of the kernels. Specifically, we decompose the kernels as a sum of a most singular
part and a less singular part, the former given by an explicit formula which involves the pressure law
p(ρ). The proofs are postponed to Section 3. A connection between the entropy kernel and the entropy
flux splittings will be discussed in [8] (also see [6,7]).

In Section 4, we study the compactness of a sequence of approximate solutions to the Euler equations.
In Theorem 4.1, for a sequence with a uniform L∞ bound and the H−1

loc compactness of its weak entropy
dissipation measures, we prove that the sequence is compact in Lrloc for all r ∈ [1,∞). The main point is
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to establish the reduction theorem: a Young measure satisfying the commutation relations (1.10) for all
weak entropy pairs is a Dirac mass (Theorem 4.2). Our proof is based on new properties of cancellation
of singularities of the kernels χ and σ in the following combination

E(ρ, v; s1, s2) := χ(ρ, v, s1)σ(ρ, v, s2) − χ(ρ, v, s2)σ(ρ, v, s1).

Then we observe that the following identity is an elementary consequence of the symmetric form of (1.10) :〈
χ(s1)

〉 〈
∂λ+1
s2 ∂λ+1

s3 E(s2, s3)
〉

+
〈
∂λ+1
s2 χ(s2)

〉 〈
∂λ+1
s3 E(s3, s1)

〉
+
〈
∂λ+1
s3

χ(s3)
〉 〈
∂λ+1
s2

E(s1, s2)
〉

= 0,
(1.11)

for all s1, s2, and s3, where for instance
〈
χ(s1)

〉
:=
〈
ν(t,x), χ(s1)

〉
, and the derivatives are understood in

the sense of distributions. We prove that, when s2, s3 → s1, the second and third terms converge in the
weak-star sense of measures to the same term but with opposite sign. The first term is more singular
and contains the products of functions of bounded variation by bounded measures, which are known to
depend upon regularization (see Dal Maso, LeFloch, and Murat [10]). The first term in (1.11) converges
to a non-trivial limit which is determined explicitly. Finally, the genuine nonlinearity on p(ρ) is required
to conclude that the Young measure ν either reduces to a Dirac mass or is supported on the vacuum line.

In Section 5, we prove the convergence of the Lax-Friedrichs scheme for the general pressure law,
extending the approach in [2,13] for γ ∈ (1, 2). The same approach applies to show the strong convergence
of the approximate solutions (ρε,mε) constructed by the vanishing viscosity method, i.e.,

∂tρ
ε + ∂xm

ε = ε ∂xxρ
ε,

∂tm
ε + ∂x(

(mε)2

ρε
+ p(ρε)) = ε ∂xxm

ε.

The existence, compactness, and asymptotic decay of L∞ entropy solutions of the Cauchy problem then
follow, relying on the compactness framework in Section 4.

We point out that the approach developed in this paper is very general and applies to other hyperbolic
systems as long as the singularities of the entropy and entropy flux kernels are determined. See Chen
and LeFloch [8] for the details.

We remark that all of the results in this paper can be extended to the p-system of fluid dynamics in
Lagrangian coordinates

∂tτ − ∂yv = 0,

∂tv + ∂y p̃(τ) = 0,
(1.12)

where τ is the specific volume and v the velocity of the fluid. The system is hyperbolic under the
condition p̃′(τ) < 0 for all τ > 0 and is genuinely nonlinear when p̃′′(τ) > 0. Observe that, when the
density vanishes, the specific volume is unbounded and should be understood as a distribution.

There is a one-to-one correspondence between entropies and entropy solutions of the systems (1.1) and
(1.12) (Wagner [32]). Denote by χE and σE the entropy and entropy flux kernels for the Euler equations
(1.1). The p-system (1.12) admits an entropy kernel, χL, and a corresponding entropy flux kernel, σL,
that generate the family of weak entropy pairs. Indeed setting ρ = 1/τ ,

χL(τ, v, s) =
χE(ρ, v, s)

ρ
, σL(τ, v, s) =

(
σE − v χE

)
(ρ, v, s).

Observe that χL blows-up when τ →∞.
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2. Entropy and Entropy Flux Kernels : Main Results.

Throughout this paper, besides the hyperbolicity and genuine nonlinearity (1.4) of system (1.1) away
from the vacuum, it is assumed that p(ρ) is a function of class C4(0,∞) and that there exist γ ∈ (1, 3)
and C > 0 such that

p(ρ) = κργ(1 + P (ρ)),
∣∣P (n)(ρ)

∣∣ ≤ C ρ1−n, 0 ≤ n ≤ 4, (2.1)

for sufficiently small ρ. The solutions under consideration will remain in a bounded subset of
{
ρ ≥ 0

}
so that the behavior of p(ρ) for large ρ is irrelevant. In this paper the notation C represents a generic
constant which need not be the same at each occurrence.

Remark. The pressure law p(ρ) has the same principal singularity as the γ-law gas, but (2.1) allows
additional singularities in the derivatives when ρ → 0. Indeed observe that, for n > γ + 1, ργP (n)(ρ) is
unbounded when ρ→ 0. Observe also that p(0) = p′(0) = 0, but, for n > γ, the higher derivative p(n)(ρ)
is unbounded near the vacuum. tu

Denote the sound speed by
c(ρ) =

√
p′(ρ).

Condition (1.4) ensures that, away from the vacuum, (1.1) is strictly hyperbolic and admits two genuinely
nonlinear characteristic fields associated with two distinct wave speeds, v±c(ρ). At the vacuum, c(0) = 0,
and the wave speeds coincide. Consider also the function

k(ρ) =
∫ ρ

0

c(y)
y

dy,

in which the integral is finite in view of (2.1).
Define the constants θ ∈ (0, 1) and λ > 0 by

θ =
γ − 1

2
, λ =

3− γ
2(γ − 1)

. (2.2)

For the polytropic gas,
c(ρ) = θ ρθ, k(ρ) = ρθ.

Observe that 2λ + 1 = 1/θ and 2λ θ = 1 − θ. One has γ ∈ (1, 3) iff θ ∈ (0, 1) iff λ > 0. On the other
hand, γ ∈ (1, 5/3] iff θ ∈ (0, 1/2] iff λ ≥ 1.

Introduce the Riemann invariants

w = v + k(ρ), z = v − k(ρ),

which satisfy w > z except at the vacuum where w = z. In the special case

k′′(ρ) < 0 or, equivalently 2 p′(ρ)− ρ p′′(ρ) > 0,

which is a stronger condition than (1.4), the Riemann invariants w and z are concave and convex functions
of ρ, respectively. This is the case of the γ-law gas, but is not necessarily true for a real gas satisfying
solely (1.4) and (2.1).
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For smooth solutions away from the vacuum, (1.1) is equivalent to

∂tw + (v + c)∂xw = 0, ∂tz + (v − c)∂xz = 0.

The equation
∂tv + v ∂xv + ρ k′(ρ)2 ∂xρ = 0

is a consequence of (1.1), which is convenient to derive the following equations satisfied by an entropy-
entropy flux pair (η, q) :

qρ = v ηρ + ρ k′(ρ)2 ηv, qv = ρ ηρ + v ηv.

Eliminating q yields the following second-order linear hyperbolic PDE for the entropy η:

ηρρ − k′(ρ)2 ηvv = 0. (2.3)

In the variables (w, z), one gets

ηwz +
Λ(w − z)
w − z

(
ηw − ηz

)
= 0, (2.4)

where Λ(w−z) = −k(ρ) k′(ρ)−2 k′′(ρ) with ρ = k−1(w−z2 ). For the γ-law gas, Λ(w−z) = λ is a constant,
the simplest case.

The equation (2.3)-(2.4) belongs to the class of Euler-Poisson-Darboux equations. The main difficulty
comes from the singular behavior of Λ(w− z) near the vacuum. In view of (2.1), the derivative Λ′(w− z)
blows up like (w− z)−(γ−1)/2 when w− z → 0, and its higher derivatives are more singular, which is one
of the essential differences from the γ-law case. The classical theory of Euler-Poisson-Darboux equations
does not apply (cf. [12,31]). In the present section, we establish the existence of a fundamental solution
to (2.3) and study its regularity.

By definition, the entropy kernel is the solution χ(ρ, v, s) of the problem

(i) χρρ − k′(ρ)2 χvv = 0,

(ii) χ(0, v, s) = 0,

(iii) χρ(0, v, s) = δv=s,

(2.5)

in the sense of distributions, where s plays the role of a parameter and δv=s denotes the Dirac measure
at v = s. By definition, χ(ρ, v, s) satisfies∫ ∞

0

∫ ∞
−∞

χ(ρ, v, s)
(
ϕρρ(ρ, v) − k′(ρ)2 ϕvv(ρ, v)

)
dρdv − ϕ(0, s) = 0, (2.6)

for every test-function ϕ(ρ, v) with compact support in RI 2
+ := RI + ×RI .

Since the support of the initial data is the point (ρ, v) = (0, s), χ should be supported in the domain
of dependence of (0, s),

K :=
{
ρ ≥ 0, |s− v| ≤ k(ρ)

}
=
{

(w, z) | w ≥ s, z ≤ s
}
.

Indeed the curves
{
w = const.

}
and

{
z = const.

}
are the characteristics of the hyperbolic equation

(2.5i). By invariance under the transformation v 7→ ±(v− s), χ(ρ, v, s) = χ(ρ, |v− s|, 0) = χ(ρ, 0, |s− v|),
it suffices to study (2.5) when s = 0.
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The entropy flux kernel σ, by definition, satisfies

(i) σρρ − k′(ρ)2σvv =
p′′(ρ)
ρ

χv,

(ii) σ(0, v, s) = 0,

(iii) σρ(0, v, s) = v δv=s,

(2.7)

for each value of s. In contrast with problem (2.5), condition (2.7iii) above depends upon v, and
σ(ρ, v, s) 6= σ(ρ, v − s, 0). However, in terms of the function σ − v χ, condition (2.7iii) reads(

σρ − v χρ
)
(0, v, s) = 0,

and σ − v χ depends upon v − s only, as χ does. The γ-law gas is much simpler since σ∗ is determined
explicitly from χ∗; see (1.8).

In Section 3, we prove the following theorem.

Theorem 2.1 (Existence and uniqueness).
Problem (2.5) admits a unique Hölder continuous solution χ(ρ, v, s) = χ(ρ, v− s), supported in the set

K and positive in the interior of K.
Problem (2.7) admits a unique Hölder continuous solution σ(ρ, v, s) supported in the set K with σ−v χ

depending only on (ρ, v − s).
From Theorem 2.1, we deduce

Corollary 2.1. The family of weak entropies for the compressible Euler equations is described by

η(ρ, v) =
∫
RI

χ(ρ, v, s)ψ(s) ds,

where ψ(v) is an arbitrary function. By construction, η(0, v) = 0, ηρ(0, v) = ψ(v). The corresponding
entropy flux is

q(ρ, v) =
∫
RI

σ(ρ, v, s)ψ(s) ds.

tu
We now determine the singularities arising in the derivatives of χ and σ. Without loss of generality,

we assume here s = 0 and set χ = χ(ρ, v). The singularities of the kernels should be localized on the
characteristic curves which form the boundary of K:

∂K =
{

(ρ, v) | v ± k(ρ) = 0
}
.

Measure terms on ∂K arise when differentiating the kernel with respect to v (or equivalently s).
To state the results, we use the following notation. For any real α > 0, the fractional derivative ∂αs g

of a function g = g(s) with compact support is

∂αs g = Γ(−α) g ?
[
s
]−α−1
+ ,

where the convolution product is defined in the sense of distributions and Γ is the classical gamma
function. Observe that the formula

∂α+1
s (s g) = s ∂α+1

s g + (α+ 1)∂αs g

still holds for fractional derivatives.
All of the following properties are uniform for ρ ≥ 0 and v in a bounded set.
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Theorem 2.2 (Asymptotic expansion for χ). The entropy kernel admits the expansion

χ(ρ, v) = a](ρ)Gλ(ρ, v) + a[(ρ)Gλ+1(ρ, v) + g(ρ, v), (2.8)

where
Gλ(ρ, v) =

[
k(ρ)2 − v2]λ

+,

and the coefficients a](ρ) and a[(ρ) are explicitly determined and satisfy

a](ρ) = Mλ k(ρ)−λ k′(ρ)−1/2
> 0, for ρ > 0,

a](ρ) +
k(ρ)2

ρ
|a[(ρ)| ≤ C,

(2.9)

for some constant Mλ. The remainder g(ρ, v) and its derivative ∂λ+1
v g(ρ, v) are Hölder continuous in

(ρ, v) with
|g(ρ, v)| ≤ C Gλ+1+α0(ρ, v), for some α0 ∈ (0, 1). (2.10)

In (2.9), Mλ is given by
1
Mλ

=
2λ√

2λ+ 1

∫ 1

−1
(1− z2)λdz.

For the γ-law gas, we have

a] = M∗ =
√

2λ+ 1Mλ, a[ ≡ 0, g ≡ 0. (2.11)

Similarly, we have

Theorem 2.3 (Asymptotic expansion for σ). The entropy flux kernel admits the expansion(
σ − v χ

)
(ρ, v) = −v

(
b](ρ)Gλ(ρ, v) + b[(ρ)Gλ+1(ρ, v)

)
+ h(ρ, v), (2.12)

where the coefficients b](ρ) and b[(ρ) satisfy

b](ρ) = Mλ ρ k(ρ)−λ−1 k′(ρ)1/2
> 0, for ρ > 0,

b](ρ) +
k(ρ)2

ρ
|b[(ρ)| ≤ C.

(2.13)

The remainder h(ρ, v) and its derivative ∂λ+1
v h(ρ, v) are Hölder continuous in (ρ, v), and

|h(ρ, v)| ≤ C Gλ+1+α0(ρ, v), for some α0 ∈ (0, 1). (2.14)

For the γ-law gas, we have

b] =
Mλ√
2λ+ 1

, b[ ≡ 0, h ≡ 0.

The singularities in the derivatives of order λ+ 1 of the kernels are explicitly computable.
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Proposition 2.4 (Explicit singularities). The distributions ∂λ+1
v χ and ∂λ+1

v σ decompose into two
Dirac masses plus an integrable function, i.e.,

∂λ+1
v χ = k′(ρ)−1/2 ∑

±
K±δv=±k(ρ) + eI , (2.15)

∂λ+1
v

(
σ − v χ

)
= −v ρ k(ρ) k′(ρ)1/2∑

±
K± δv=±k(ρ) + eII , (2.16)

where K± are some constants, and eI , eII are Hölder continuous functions in the interior of K such that

|eI(ρ, v)| ≤ C k(ρ)λ−1+2αG−α(ρ, v), |eII (ρ, v)| ≤ C k(ρ)λ+2αG−α(ρ, v), (2.17)

for all α ∈ (0, 1].

Observe that, in (2.15)-(2.17), the coefficient k′(ρ)−1/2 is unbounded when ρ→ 0. It will be convenient
to use the notation fλ(y) =

[
1− y2

]λ
+ so that

Gλ(ρ, v) = k(ρ)2λ fλ

(
v

k(ρ)

)
. (2.18)

Proof. Consider first the function fλ(y). Its Fourier transform f̂λ(ξ) is a smooth, real-valued function
of the Fourier variable ξ, and

f̂λ(ξ) =
∫ 1

−1
cos(ξ y)

[
1− y2]λ

+ dy = C0 |ξ|−λ−1/2 Jλ+1/2(|ξ|)

for all real ξ, where the classical Bessel function Jλ+1/2(y) admits the asymptotic expansion

Jλ+1/2(y) = C1 y
−1/2 cos

(
y − (λ+ 1)π/2

)
+O

(
y−3/2)

as y → +∞ (e.g. Gelfand-Shilov [17]). We deduce that

f̂λ(ξ) = C2 |ξ|−λ−1 cos
(
|ξ| − (λ+ 1)π/2

)
+O

(
|ξ|−λ−2). (2.19)

On the other hand,
|f̂λ(ξ)| ≤ C3 (2.20)

for all ξ. The constants Cj , 0 ≤ j ≤ 3, may depend on λ.
Using (2.19)-(2.20) and λ > 0, it follows that f̂λ(ξ) is integrable in ξ ∈ RI . By the inverse Fourier

transform in the sense of distributions, one obtains (see [17])

∂λ+1
y fλ(y) = K+

λ δy=1 +K−λ δy=−1 +Qλ(y), (2.21)

where K±λ are constants, and Qλ is supported on [−1, 1] satisfying

|Qλ(y)| ≤ C | log(1− y2)|, for all y ∈ (−1, 1). (2.22)
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We also have
∂λy fλ(y) = K+

λ H(y − 1) +K−λ H(y + 1) +
∫ y

−1
Qλ(y) dy, (2.23)

where H is the Heaviside function.
From (2.18) we have

∂λ+1
v Gλ = k2λ∂λ+1

v fλ

(
v

k(ρ)

)
.

Hence we deduce from (2.23) that

∂λ+1
v

(
a]Gλ + a[Gλ+1

)
=a] kλ

(
K+
λ δv=k +K−λ δv=−k

)
+ a] k

λ−1 Qλ
(v
k

)
+ a[ k

λ+2
(
K+
λ+1 H(v − k) +K−λ+1H(v + k)

)
+ a[ k

λ+1
∫ v/k

−1
Qλ+1 dy.

By Theorem 2.2,
∂λ+1
v χ = ∂λ+1

v

(
a]Gλ + a[Gλ+1

)
+ ∂λ+1

v g,

where ∂λ+1
v g is Hölder continuous. Thus the above formula implies (2.15) with K± := MλK

±
λ . The

proof of (2.16) is similar. Estimate (2.17) for eI follows from (2.10) and (2.22). tu
In Section 4, we use the results in Proposition 2.4 formulated on the functions χ(ρ, v−s) and σ(ρ, v, s).

That is,
∂λ+1
s χ(ρ, v − s) = k′(ρ)−1/2 ∑

±
K±δs=v±k(ρ) + eI(ρ, v − s),

∂λ+1
s

(
σ(ρ, v, s) − v χ(ρ, v − s)

)
= (s− v) ρk(ρ)−1 k′(ρ)1/2∑

±
K± δs=v±k(ρ) + eII (ρ, v − s).

Integrating in s, we get

∂λs χ(ρ, v − s) = k′(ρ)−1/2 ∑
±
K±H(s− v ∓ k(ρ)) + ẽI (ρ, v − s),

∂λs

(
σ(ρ, v, s) − v χ(ρ, v − s)

)
= (s− v) ρk(ρ)−1 k′(ρ)1/2∑

±
K±H(s− v ∓ k(ρ)) + ẽII(ρ, v − s),

where ẽJ(ρ, v) :=
∫ v
−k(ρ) e

J(ρ, v′) dv′, J = I, II.
Finally we record a technical property needed in Section 4, which follows by a direct calculation based

on the expressions (2.9) and (2.13).

Proposition 2.5. The coefficients of the asymptotic expansions (2.8)-(2.12) satisfy

D(ρ) := a](ρ) b](ρ)− 2 k(ρ)2
(
a](ρ)b[(ρ)− a[(ρ)b](ρ)

)
=

M2
λ

4(λ+ 1)
k(ρ)

ρ2k′(ρ)3

(
(ρk′(ρ))′ + k′(ρ)

)
> 0, for ρ > 0.
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3. Entropy and Entropy Flux Kernels : Proofs.

This section contains the proofs of Theorems 2.1–2.3 and Proposition 2.5. We first state and prove
three lemmas. First of all, we study the singular behavior of the function

α](ρ) = Mλ k
λ+1(ρ)k′(ρ)−

1
2

near the vacuum ρ = 0 when the pressure law satisfies (2.1). This result plays an important role in
identifying the singularities of the entropy kernel χ. There is an extra singularity in α](ρ) which is not
seen in the γ-law case for which α](ρ) = Mλρ has no singularity. The notation C > 0 represents a
constant depending only on γ ∈ (1, 3) and a fixed upper-bound ρM > 0 for the density.

Lemma 3.1. The function α](ρ) satisfies

|α](ρ)| ≤ Cρ, |α′](ρ)| + |α′′] (ρ)| ≤ C, |α′′′] (ρ)| ≤ Cρ−1, for ρ ∈ (0, ρM ]. (3.1)

This fact can be seen from assumption (2.1) that

k(ρ) =
∫ ρ

0

√
p′(τ)
τ

dτ = ρθ (1 +H(ρ)) , (3.2)

where
|H(m)(ρ)| ≤ Cρ1−m, 0 ≤ m ≤ 3. (3.3)

It is then elementary to deduce (3.1) from (3.2)-(3.3).
The second lemma provides us with an priori energy estimate for

(i) µρρ(ρ, ξ) + k′(ρ)2
ξ2 µ(ρ, ξ) = r(ρ, ξ),

(ii) µ(ε, ξ) = 0,

(iii) µρ(ε, ξ) = 0,

(3.4)

where ε > 0 is a constant, the function r = r(ρ, ξ) ∈ C1[ε,∞) is given, and ξ ∈ RI is a parameter.

Lemma 3.2 (Energy estimates I). Let µ(ρ, ξ) be a C2 solution of (3.4) defined in (ε,∞) for any fixed
ξ ∈ RI . Then we have

µρ(ρ, ξ)2 + k′(ρ)2ξ2µ(ρ, ξ)2 ≤ C
3∑
i=1

Ii(ρ, ξ), for any ρ ≥ ε, ξ 6= 0, (3.5)

where
I1(ρ, ξ) := k′(ρ)−2 ξ−2 r(ρ, ξ)2, I2(ρ, ξ) := ξ−2

∫ ρ

ε

k′(τ)−2 r(τ, ξ)2 dτ,

I3(ρ, ξ) := ξ−2
∫ ρ

ε

rτ (τ, ξ)2∣∣k′(τ)k′′(τ)
∣∣+ k′(τ)2

dτ.

(3.6)

Furthermore, when |k(ρ)ξ| ≤ 1,

µρ(ρ, ξ)2 + k′(ρ)2
ξ2µ2(ρ, ξ) ≤ Cρ

∫ ρ

ε

r(τ, ξ)2dτ. (3.7)
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Proof. Multiply (3.4i) by 2µρ, integrate over (ε, ρ), and finally integrate by parts. One obtains

µρ(ρ, ξ)2 + k′(ρ)2 ξ2 µ(ρ, ξ)2 = 2
(
r(ρ, ξ)µ(ρ, ξ) −

∫ ρ

ε

rτ (τ, ξ)µ(τ, ξ) dτ +
∫ ρ

ε

k′(τ) k′′(τ) ξ2 µ(τ, ξ)2 dτ

)
.

Using the inequality αβ ≤ δα2 + 1
4δβ

2 with suitably chosen weights δ, it follows that

µρ(ρ, ξ)2 + k′(ρ)2 ξ2 µ(ρ, ξ)2

≤C k′(ρ)−2 ξ−2r(ρ, ξ)2 +C

∫ ρ

ε

{∣∣k′(τ)k′′(τ)
∣∣+ k′(τ)2}−1

ξ−2 rτ (τ, ξ)2 dτ

+
1
2
k′(ρ)2 ξ2 µ(ρ, ξ)2 +

∫ ρ

ε

{
2 k′(τ) k′′(τ) +

∣∣k′(τ) k′′(τ)
∣∣+ k′(τ)2} ξ2 µ(τ, ξ)2 dτ.

(3.8)

In view of (2.2) and for all ρ ≥ 0 in a bounded subset, one gets

2 k′(τ) k′′(τ) +
∣∣k′(τ) k′′(τ)

∣∣+ k′(τ)2 ≤ Cρ2 θ−2 + k′(τ)2 ≤ C k′(ρ)2. (3.9)

Indeed the principal term in the expansion of k′(ρ) k′′(ρ), − θ2 (1 − θ) ρ2θ−3, is a singular term with a
negative coefficient and does not contribute to the upper bound in (3.9).

Estimate (3.9) allows us to apply Gronwall’s inequality to (3.8) and obtain

k′(ρ)2 ξ2 µ(ρ, ξ)2 ≤ C
(
G(ρ, ξ) +

∫ ρ

ε

G(τ, ξ) dτ
)

for all ρ ≥ ε, where

G(ρ) := k′(ρ)−2 ξ−2r(ρ, ξ)2 + ξ−2
∫ ρ

ε

rτ (τ, ξ)2

|k′(τ)k′′(τ)|+ k′(τ)2 dτ.

Since the double integral involved in this upper-bound is bounded by the single integral, we arrive at

k′(ρ)2ξ2µ(ρ, ξ)2 ≤ C
(
I1(ρ, ξ) + I2(ρ, ξ) + I3(ρ, ξ)

)
.

Returning to (3.8), we also obtain

µρ(ρ, ξ)2 ≤ C (I1(ρ, ξ) + I2(ρ, ξ) + I3(ρ, ξ)).

We now derive (3.7) when |k(ρ)ξ| ≤ 1. Multiplying (3.4i) by 2µρ, we obtain

(µ2
ρ + k′(ρ)2

ξ2µ2)ρ = 2r µρ + 2k′(ρ)k′′(ρ)ξ2µ2 ≤
µ2
ρ

ρ
+Cρ r2 + 2 k′(ρ)k′′(ρ)ξ2µ2.

There exists ρ1 > 0 such that

2k′(ρ)k′′(ρ) < 0 <
k′(ρ)2

ρ
, for 0 ≤ ρ ≤ ρ1.
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Therefore, we have

(µ2
ρ + k′(ρ)2

ξ2µ2)ρ ≤
1
ρ

(µ2
ρ + k′(ρ)2

ξ2µ2) + C(ρ r2 +X[ρ1,∞)(ρ)µ2),

since |k(ρ)ξ| ≤ 1, where X[ρ1,∞) is the characteristic function. Then

(ρ−1(µ2
ρ + k′(ρ)2

ξ2µ2))ρ ≤ C(r2 + χ[ρ1,∞)(ρ)µ2),

that is,

µρ(ρ, ξ)2 + k′(ρ)2
ξ2µ(ρ, ξ)2 ≤ Cρ

(∫ ρ

ε

r(ρ, ξ)2dτ +
∫ max(ρ,ρ1)

ρ1

µ(ρ, ξ)2dτ

)
. (3.10)

First of all, for ρ ≤ ρ1,

µρ(ρ, ξ)2 + k′(ρ)2
ξ2µ(ρ, ξ)2 ≤ Cρ

∫ ρ

ε

r(ρ, ξ)2 dτ. (3.11)

Second, for ρ ≥ ρ1, we have |ξ| ≤ C(ρ1) since |k(ρ)ξ| ≤ 1. Note that

µ(ρ, ξ)2 ≤
∫ ρ

ε

µτ (τ, ξ)2dτ +
∫ ρ

ρ1

µτ (τ, ξ)2dτ ≤ C
(∫ ρ

ε

r(τ, ξ)2dτ +
∫ ρ

ρ1

µτ (τ, ξ)2dτ

)
,

so that from (3.10)

µρ(ρ, ξ)2 ≤ Cρ
∫ ρ

ε

r(τ, ξ)2dτ + C

∫ ρ

ρ1

µτ (τ, ξ)2 dτ.

Gronwall’s inequality implies

µρ(ρ, ξ)2 ≤ C
∫ ρ

ε

r(τ, ξ)2dτ.

Hence, when ρ ≥ ρ1,

µρ(ρ, ξ)2 + k′(ρ)2
ξ2µ(ρ, ξ)2 ≤ Cρ

∫ ρ

ε

r(τ, ξ)2 dτ. (3.12)

Estimates (3.11)-(3.12) yield (3.7). This completes the proof of Lemma 3.2. tu
Lemma 3.3 (Energy estimates II). Let µ = µ(ρ, ξ) be a C2 solution of (3.4) defined for ρ ∈ (ε,∞).
Let r(ρ, ξ) be such that

|∂jρr(ρ, ξ)| ≤
Cρp−j

(1 + |k(ρ)ξ|)q−j , j = 0, 1, (3.13)

for q ≤ (p+ 1)(2λ + 1). Then we have

|∂mρ µ(ρ, ξ)| ≤ Cρ2−m+p

(1 + |k(ρ)ξ|)β+1−m , for m = 0, 1, 2, (3.14)

where β = min(q, λ+ 1 + (p+ 1)λ0) and 0 < λ0 < min(1, λ).

Proof. We first derive the estimates for the case |k(ρ)ξ| ≥ 1. Using (3.13), we have

I1(ρ, ξ) ≤ Cρ2−2θ+2pξ−2
∣∣ρθξ∣∣−2q ≤ Cρ2(p+1)

∣∣k(ρ)ξ
∣∣−2(q+1)

. (3.15)
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To estimate I2, we decompose it into two terms, I2 = I2,1 + I2,2, with

I2,1(ρ, ξ) := ξ−2
∫ ρ

|ξ|−1/θ
k′(τ)−2 |r(τ, ξ)|2 dτ ≤ C ρ3+2p

∣∣k(ρ) ξ
∣∣−2q

, (3.16)

where we used q < (p+ 3
2 )(2λ+ 1). On the other hand,

I2,2(ρ, ξ) = ξ−2
∫ |ξ|−1/θ

ε

k′(τ)−2r(τ, ξ)2 dτ ≤ C ρ3+2p
∣∣k(ρ) ξ

∣∣−(3+2p)(2λ+1)
. (3.17)

Finally, we estimate I3 = I3,1 + I3,2 with

I3,1(ρ, ξ) := ξ−2
∫ ρ

|ξ|−1/θ

rτ (τ, ξ)2∣∣k′(τ)k′′(τ)
∣∣ + k′(τ)2

dτ ≤ Cρ2(p+1)
∣∣k(ρ)ξ

∣∣−2q
, (3.18)

where we used q < (p+ 1)(2λ+ 1). Similarly, we have

I3,2(ρ, ξ) ≤ Cρ2+2p|k(ρ)ξ|−2(p+1)(2λ+1) . (3.19)

Combining (3.15)–(3.19), we conclude that, when |k(ρ)ξ| ≥ 1,

µρ(ρ, ξ)2 ≤ C ρ2(p+1)
∣∣k(ρ) ξ

∣∣−2β
.

Returning to the energy estimates (3.5) and using k′(ρ)2ξ2 = ρ−2|k(ρ)ξ|2 and equation (3.4), one can
also bound

µ(ρ, ξ)2 + ρ4|k(ρ)ξ|−4µρρ(ρ, ξ)2 ≤ C ρ2(p+2)
∣∣k(ρ) ξ

∣∣−2(β+1)
.

When |k(ρ)ξ| ≤ 1, we conclude from (3.7) that

|µ(ρ, ξ)|+ ρ |µρ(ρ, ξ)|+ ρ2 |µρρ(ρ, ξ)| ≤ Cρp+2.

Then (3.14) follows. The proof of Lemma 3.3 is completed. tu
Lemma 3.4 (Energy estimate III). Let, for any fixed ξ ∈ RI , µ(ρ, ξ) be a C2 solution of the problem

µρρ(ρ, ξ) + k′(ρ)2
ξ2µ(ρ, ξ) = r(ρ, ξ), 0 < ρ ≤ ρM ,

µ(ρM , ξ) = 0, µρ(ρM , ξ) = 0.

Then, for all (ρ, ξ), we have

µρ(ρ, ξ)2 + k′(ρ)2ξ2µ(ρ, ξ)2 ≤ C
∫ ρM

ρ

r(τ, ξ)2dτ. (3.20)

Proof. Multiplying by 2µρ(ρ, ξ) both sides of the equation, we have

(µρ(ρ, ξ)2 + k′(ρ)2
ξ2µ(ρ, ξ)2)ρ = r µρ(ρ, ξ) + 2k′(ρ)k′′(ρ) ξ2µ(ρ, ξ)2,

so that

µρ(ρ, ξ)2 + k′(ρ)2
ξ2µ(ρ, ξ)2 ≤ C

∫ ρM

ρ

(µρ(τ, ξ)2 + k′(τ)2
ξ2µ(τ, ξ)2) dτ + C

∫ ρM

ρ

r(τ, ξ)2 dτ.

Gronwall’s inequality implies

µρ(ρ, ξ)2 + k′(ρ)2
ξ2µ(ρ, ξ)2 ≤ C

∫ ρM

ρ

r(τ, ξ)2dτ.

tu
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Proofs of Theorems 2.1-2.2. Without loss of generality, we view the entropy kernel as a function of
two variables, χ(ρ, s− v), and set s = 0 to simplify the notation. We first establish certain properties of
the Fourier transform of χ in the variable v and determine the singularities of χ. We will prove that χ̂
has the form

χ̂(ρ, ξ) = χ̂](ρ, ξ) + χ̂[(ρ, ξ) + ĝ(ρ, ξ),

χ̂](ρ, ξ) = a](ρ)k(ρ)2λ+1f̂λ(k(ρ)ξ),

χ̂[(ρ, ξ) = a[(ρ)k(ρ)2λ+3f̂λ+1(k(ρ)ξ),

(3.21)

where the above coefficients will be explicitly determined (see also (2.9)-(2.18)) and

|a](ρ)−Mλ|+ ρ2|a′](ρ)|+ ρ2|a′′] (ρ)|+ ρ3|a′′′] (ρ)| ≤ C ρ,
|a[(ρ)|+ ρ2|a′[(ρ)|+ ρ2|a′′[ (ρ)|+ ρ3|a′′′[ (ρ)| ≤ C ρ,

(3.22)

and

|∂mρ ĝ(ρ, ξ)| ≤ Cρ2−m(
1 + |k(ρ)ξ|

)λ+λ0+2−m , m = 0, 1, 2. (3.23)

Problem (2.5) becomes
(i) χρρ − k′(ρ)2 χvv = 0,

(ii) χ(0, v) = 0,

(iii) χρ(0, v) = δv=0.

(3.24)

Using the Fourier transform in the v variable, (3.24) is equivalent to

(i) χ̂ρρ + k′(ρ)2 ξ2 χ̂ = 0,

(ii) χ̂(0, ξ) = 0,

(iii) χ̂ρ(0, ξ) = 1,

(3.25)

which is a family of second-order differential equations in ρ, the Fourier variable ξ ∈ RI playing the role
of a parameter. Observe that χ̂ is real-valued and (3.25i) contains a singular coefficient at the “initial
time” ρ = 0.

Step 1 : Equation for the remainder function ĝ(ρ, ξ). Note that, in (3.21),

χ̂](ρ, ξ) =a](ρ)k(ρ)2λ+1
∫

cos(k(ρ)ξz)
[
1− z2]λ

+ dz

=:α](ρ)f̂λ(k(ρ)ξ), with α](ρ) = a](ρ)k(ρ)2λ+1.

Similarly, we have

χ̂[(ρ, ξ) = α[(ρ)f̂λ+1(k(ρ)ξ), with α[(ρ) = a[(ρ) k(ρ)2λ+3.

Using the identities f̂λ(y) + f̂ ′′λ (y) = f̂λ+1(y) = − 2(λ+1)
y

f̂ ′λ(y), we obtain

χ̂]ρρ + k′(ρ)2
ξ2χ̂] = α′′] (ρ)f̂λ(k(ρ)ξ), (3.26)
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provided
α′](ρ)
α](ρ)

= (λ+ 1)
k′(ρ)
k(ρ)

− k′′(ρ)
2k′(ρ)

.

Clearly a](ρ) determined by (2.8) satisfies the equation, and the constant of normalization Mλ given in
(2.11) is chosen to ensure that (3.25iii) holds.

Similarly, we get

χ̂[ρρ + k′(ρ)2
ξ2χ̂[ =

(
α′′[ −

(2λ+ 3)
k

(
2k′α′[ − 2(λ+ 2)

k′2

k
α[ + k′′α[

))
f̂λ+1

+
2(λ+ 1)

k

(
2k′α′[ − 2(λ+ 2)

k′2

k
α[ + k′′α[

)
f̂λ,

(3.27)

where we used the identity f̂ ′λ+1(y) = − 2λ+3
y f̂λ+1(y) + 2(λ+1)

y f̂λ(y).
We obtain the following equation from (3.26)-(3.27) for ĝ :

ĝρρ + k′(ρ)2
ξ2ĝ =−

(
α′′[ −

2λ+ 3
k

(
2k′α′[ − 2(λ+ 2)

k′2

k
α[ + k′′α[)

)
f̂λ+1

−
(
α′′] +

2(λ+ 1)
k

(
2k′α′[ − 2(λ+ 2)

k′2

k
α[ + k′′α[

))
f̂λ

=−
(
α′′[ +

2λ+ 3
2(λ+ 1)

α′′]

)
f̂λ+1 ≡ A(ρ)f̂λ+1,

(3.28)

provided that

α′[(ρ) +
(
−(λ+ 2)

k′(ρ)
k(ρ)

+
k′′(ρ)
2k′(ρ)

)
α[(ρ) = − k(ρ)

4(λ+ 1)k′(ρ)
α′′] (ρ). (3.29)

We choose α[(ρ) the less singular solution to this singular equation, that is,

α[(ρ) = − 1
4(λ+ 1)

k(ρ)λ+2k′(ρ)−1/2
∫ ρ

0
k(τ)−(λ+1)k′(τ)−

1
2α′′] (τ)dτ.

Note that
|α′′] (ρ)|+ ρ|α′′′] (ρ)|+ |α′′[ (ρ)|+ |α′′′[ (ρ)| ≤ C.

Therefore, ĝ satisfies
ĝρρ + k′(ρ)2

ξ2ĝ = A(ρ)f̂λ+1(k(ρ)ξ), (3.30)

where
|A(ρ)| + ρ|A′(ρ)| ≤ C. (3.31)

Step 2 : Existence of the entropy kernel and estimates for ĝ(ρ, ξ).
For every ε > 0 and ξ ∈ RI , we consider (3.30) with

ĝε(ε, ξ) = 0, ĝερ(ε, ξ) = 0.

This problem admits a smooth solution ĝε defined for ρ ≥ ε.
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Using Lemma 3.3 with p = 0 and q = 2λ+ 1, we have

|∂mρ ĝε(ρ, ξ)| ≤
Cρ2−m

(1 + |k(ρ)ξ|)λ+λ0+2−m , m = 0, 1, 2, (3.32)

where C > 0 is a constant independent of ε > 0.
By the Cauchy-Arzela theorem, it follows from (3.32) that, as ε → 0, the functions ĝε(ρ, ξ) converge

uniformly to a limiting function ĝ(ρ, ξ) that is a solution of (3.30) (on every compact subset of
{
ρ ≥ 0

}
)

with the initial data:
ĝ(0, ξ) = 0, ĝρ(0, ξ) = 0. (3.33)

Moreover, ĝ satisfies

|∂mρ ĝ(ρ, ξ)| ≤ Cρ2−m

(1 + |k(ρ)ξ|)λ+λ0+2−m , m = 0, 1, 2. (3.34)

In particular, ĝ(·, ξ) and ∂ρĝ(·, ξ) are continuous at ρ = 0, uniformly in all ξ. This shows that the initial
conditions (3.33) are satisfied in a classical sense.

This completes the proof for the existence and asymptotic behavior of ĝ, as a function of ρ ≥ 0, in
which ξ ∈ RI plays the role of a parameter. The uniqueness of ĝ follows easily from the energy estimates
derived in Lemma 3.2, by using ε = 0, q = 0, and r = 0. Then, using the inverse Fourier transform,
we conclude that there exists a solution χ(ρ, v) of problem (3.24) understood in the sense of (2.6) and
defined globally.

Step 3 : Hölder continuity of χ. It suffices to show that there exists δ > 0 such that

|∂δρ∂λ+1+δ
v g(ρ, v)| ≤ C, (3.35)

which implies that ∂λ+1
v g ∈ C0,δ(RI 2

+). In turn, since χ ≡ 0 outside the region K, (3.35) gives (2.10).
Estimate (3.35) is proved as follows:

|∂δρ∂λ+1+δ
v g(ρ, v)| ≤ C

(
1 +

∫
|ξ|≥1

|ξ|2λ+1+δ |∂δρ ĝ(ρ, ξ)|2dξ
)1/2

.

Since ∂δρ ĝ(0, ξ) = 0, we can extend ∂δρ ĝ(ρ, ξ) to the half-space ρ ≤ 0 by simply setting

∂δρ ĝ(ρ, ξ) ≡ 0, ρ ≤ 0.

Then we obtain

|∂δρ ĝ(ρ, ξ)|2 =C
∣∣∫ |τ |δ ˆ̂g(τ, ξ)e−iρτdτ

∣∣2 ≤ C ∫ |τ |2δ |ˆ̂g(τ, ξ)|2dτ

≤C
(∫
|ĝ(τ, ξ)|2dτ

)1−δ (∫
|∂τ ĝ(τ, ξ)|2dτ

)δ
,

where we used the Parseval identity and the interpolation inequality∫
|τ |2δ |f(τ)|2dτ ≤

(∫
|f(τ)|2dτ

)1−δ (∫
|τf(τ)|2dτ

)δ
.
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On the other hand, for |ξ| ≥ 1,∫
|ĝ(τ, ξ)|2dτ ≤ C

(∫ |ξ|−1/θ

0
+
∫ ρM

|ξ|−1/θ

)
τ4

(1 + |k(τ)ξ|)2(λ+λ0+2) dτ ≤ C|ξ|
−2(λ+λ0+2),

where we used 2(λ+ λ0 + 2) ≤ 5(2λ + 1). Similarly, we obtain∫
|∂τ ĝ(τ, ξ)|2dτ ≤ C

(∫ |ξ|−1/θ

0
+
∫ ρM

|ξ|−1/θ

)
τ2

(1 + |k(τ)ξ|)2(λ+λ0+1) dτ ≤ C|ξ|
−2(λ+λ0+1),

where we used 2(λ+ λ0 + 1) ≤ 3(2λ + 1). Therefore, we have

|∂δρ ĝ(ρ, ξ)|2 ≤
(∫
|ĝ(τ, ξ)|2dτ

)1−δ (∫
|∂τ ĝ(τ, ξ)|2dτ

)δ
≤ C|ξ|−2(λ+λ0+2−δ).

Then we obtain

|∂δρ∂λ+1+δ
v g(ρ, v)| ≤ C

(
1 +

∫
|ξ|≥1

|ξ|−2λ0−3+3δdξ

)1/2

≤ C,

provided that δ < min (2(1 + λ0)/3, 1).

Step 4 : Uniqueness of χ. We proved in Steps 1–3 that the Cauchy problem (3.24) admits a global
solution χ ∈ C0,δ(RI 2

+) in the sense of (2.6). For any two solutions χ1, χ2 of problem (3.24), the function
χ = χ1 − χ2 satisfies ∫∫

χ(ϕρρ − k′(ρ)2
ϕvv) dρdv = 0, (3.36)

for any function ϕ ∈ C∞0 (RI 2
+). By approximation, (3.36) also holds for any ϕ ∈ C0,1

0 (RI 2
+) ∩W 2,p(RI 2

+)
for some 1 ≤ p <∞.

For any ψ ∈ C∞0 (RI 2), consider the problem

ϕρρ − k′(ρ)2
ϕvv = ψ, ρ ≤ ρM ,

ϕ(ρM , ξ) = 0, ϕρ(ρM , ξ) = 0,
(3.37)

where ρM > 0 such that ψ|ρ>ρM ≡ 0.
Based on the arguments used in proving the existence of g from the energy estimates in Lemmas 3.2-

3.3, we can also conclude from Lemma 3.4 that there exists a global solution ϕ ∈ C0,1
0 (RI 2

+) ∩W 2,p(RI 2
+)

in ρ < ρM for p ∈ [1, 1 + 1
2λ ). This is checked as follows.

For any function ψ(ρ, v) with suppψ ⊂ (0,∞)×RI , we have

|ψ̂(ρ, ξ)| ≤ Cρm

(1 + |ξ|)m ,

for any m > 0. Then, from Lemma 3.4, we have

|ϕ̂ρ|2 + k′(ρ)2ξ2|ϕ̂|2 ≤ C
∫ ρM

ρ

|ψ̂|2dτ ≤ C

(1 + |ξ|)2m .
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This means

|ϕ̂(ρ, ξ)| ≤ C

k′(ρ)|ξ|(1 + |ξ|)m .

Then, from the equation,

|ϕ̂ρρ(ρ, ξ)| ≤ C |ψ̂(ρ, ξ)| + C k′(ρ)2ξ2|ϕ̂(ρ, ξ)| ≤ C 1 + ρθ−1

(1 + |ξ|)m−1 .

This implies that ϕ ∈ C0,1(RI 2
+)∩W 2,p(RI 2

+) for p ∈ [1, 1 + 1
2λ ). Then (3.36) holds for such functions. We

have ∫∫
χ(ρ, v)ψ(ρ, v)dρdv = 0,

for any ψ ∈ C∞0 (RI 2
+), which implies χ(ρ, v) ≡ 0.

Step 5 : Compact support and positivity of χ.
Problem (2.5) is hyperbolic, so the principle of propagation with finite speed applies : χ is identically

zero outside the domain of dependence, K =
{

(ρ, v) | |v| ≤ k(ρ)
}

, of the support of the initial data,
i.e. the point (ρ, v) = (0, 0). Therefore, suppχ ⊂ K (this can be also checked from (3.38) below). We
focus on the main issue that χ is strictly positive in K.

Claim: For any (ρ0, v0) ∈ K, we have

χ(ρ0, v0) =
1

2 ρ0k′(ρ0)

∫ ρ0

0
k′(ρ) d(ρ)

{
χ
(
ρ, v0 + k(ρ0)− k(ρ)

)
+ χ

(
ρ, v0 − k(ρ0)− k(ρ)

)}
dρ, (3.38)

where d(ρ) := ρp′′(ρ)+2 p′(ρ)
p′(ρ) > 0.

We deduce from the equation ρ k′2 χ̂ = −ρ ξ−2 χ̂ρρ that∫ ρ0

0
ρk′(ρ)2 sin

(
(k(ρ) − k(ρ0)) ξ

)
χ̂(ρ, ξ) dρ

=−
∫ ρ0

0
ρξ−2 sin

(
(k(ρ)− k(ρ0)) ξ

)
χ̂ρρ(ρ, ξ) dρ

=ξ−2
[{

sin
(
(k(ρ)− k(ρ0)) ξ

)
+ ρ k′(ρ)ξ cos

(
(k(ρ) − k(ρ0)) ξ

)}
χ̂(ρ, ξ)

]ρ0

0

− ξ−1
∫ ρ0

0

(
k′(ρ) + (ρk′(ρ))′

)
cos
(
(k(ρ) − k(ρ0)) ξ

)
χ̂(ρ, ξ) dρ

+
∫ ρ0

0
ρ2 k′(ρ)2 sin

(
(k(ρ) − k(ρ0)) ξ

)
χ̂(ρ, ξ) dρ,

where we used the integration by part and the initial conditions on χ̂. Thus we obtain

ρ0k
′(ρ0) χ̂(ρ0, ξ) =

∫ ρ0

0

(
k′(ρ) + (ρk′(ρ))′

)
cos
(
(k(ρ)− k(ρ0)) ξ

)
χ̂(ρ, ξ) dρ.
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The desired formula follows by the inverse Fourier transform since, for instance,∫
cos
(
(k(ρ)− k(ρ0)) ξ

)
χ̂(ρ, ξ) ei vξ dξ

=
1
2

∫
χ̂(ρ, ξ) ei (v+k(ρ)−k(ρ0))ξ dξ +

1
2

∫
χ̂(ρ, ξ) ei (v−k(ρ)+k(ρ0))ξ dξ.

This establishes the claim.
Next we recall that, by (2.8)-(2.10),

χ(ρ, v) ≥ a]Gλ(ρ, v)
(
1− Cρ

[
1− v2

k(ρ)2

]
+

)
.

Therefore, there exists ρ̃ > 0 such that, when ρ ∈ (0, ρ̃], χ(ρ, v) ≥ 1
2MλGλ(ρ, v), which implies

χ|K∩{0≤ρ≤ρ̃} > 0.

Finally, we check that χ > 0 in the interior of K for all ρ > 0, relying here on the maximal principle
for hyperbolic equations. By contradiction, assume that (ρ0, v0) ∈ K is the first point where χ vanishes
when ρ increases. Then identity (3.38) implies that

χ(ρ0, v0) > 0,

since the integrand in the right hand side is positive for all ρ ∈ (0, ρ̃). This is a contradiction.
This completes the proof of Theorems 2.1-2.2 for the entropy kernel. The same arguments apply to

the entropy flux σ and yield Theorems 2.1 and 2.3. tu

4. Compactness Framework.

In this section we consider a family of approximate solutions (ρε(t, x),mε(t, x)) of (1.1) and derive a
sufficient condition of its strong compactness.

Theorem 4.1 (Compactness framework). Let (ρε,mε) be measurable functions such that

0 ≤ ρε(t, x) ≤ C, |mε(t, x)| ≤ C ρε(t, x), a.e. (4.1)

for some C > 0. Assume that

∂tη(ρε,mε) + ∂xq(ρε,mε) is compact in H−1
loc (RI 2

+) (4.2)

for any weak entropy pair (η, q). Then there exists a function (ρ,m) such that

0 ≤ ρ(t, x) ≤ C, |m(t, x)| ≤ C ρ(t, x), a.e.

and, extracting a subsequence if necessary,

(ρε(t, x),mε(t, x))→ (ρ(t, x),m(t, x)) in Lrloc(RI 2
+) for all r ∈ [1,∞).

Denote by ν = ν(t,x)(ρ, v) a Young measure associated with the sequence (ρε, vε). Here vε := mε/ρε

for ρε > 0. By Murat’s div-curl lemma [26], condition (4.2) implies that ν satisfies Tartar’s commutation
relations. To conclude with the strong convergence of the sequence and establish Theorem 4.1, we need
the following theorem.
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Theorem 4.2 (Reduction of the support of ν). Let ν(ρ, v) be a probability measure with bounded
support in

{
ρ ≥ 0, v ∈ RI

}
such that〈
ν, η1 q2 − η2 q1

〉
=
〈
ν, η1

〉 〈
ν, q2

〉
−
〈
ν, η2

〉 〈
ν, q1

〉
(4.3)

for any two weak entropy pairs (η1, q1) and (η2, q2) of (1.1). Then the support of ν in the (ρ, v)-plane is
either a single point or a subset of the vacuum line

{
ρ = 0

}
. tu

In the proof of Theorem 4.2, we will use the following lemma.

Lemma 4.1. Suppose that the Young measure has a non-trivial support away from the vacuum line, i.e.,
supp ν ∩

{
w > z

}
6= ∅. Let {

(w, z) | zmin ≤ z ≤ w ≤ wmax
}

(4.4)

be the smallest triangle containing the support of ν in the (w, z) plane. Then its vertex (wmax, zmin)
belongs to supp ν.

Theorem 4.2 is based on the cancellation properties summarized in Lemmas 4.2-4.3. Nearby the
diagonal

{
s2 = s3

}
, the function

E(ρ, v; s2, s3) := χ(ρ, v − s2)σ(ρ, v, s3)− χ(ρ, v − s2)σ(ρ, v, s3) (4.5)

turns out to be much more regular than χ and σ themselves. For each j = 2, 3, consider a mollifying
sequence ϕεj(sj) = ε−1 ϕj(sj/ε), where the mollifier ϕj satisfies

ϕj(sj) ≥ 0,
∫
RI

ϕj(sj) dsj = 1, suppϕj(sj) ⊂ (−1, 1). (4.6)

Set
χεj(s1) :=

(
χ ? ϕεj

)
(s1), σεj(s1) :=

(
σ ? ϕεj

)
(s1).

Consider the differential operator P := ∂λ+1
s and set Pj := ∂λ+1

sj
.

Lemma 4.2 (Cancellation of singularities I). For j = 2, 3, the functions χ1 Pjσ
ε
j − σ1 Pjχ

ε
j are

Hölder continuous in (ρ, v, s1), uniformly in ε. Also there exists a continuous function X1 = X(ρ, v, s1),
independent of the mollifying sequence ϕj, such that

χ1 Pjσ
ε
j − σ1 Pjχ

ε
j → X1 uniformly in (ρ, v, s1). (4.7)

Lemma 4.3 (Cancellation of singularities II). The functions P2χ
ε
2 P3σ

ε
3 − P3χ

ε
3 P2σ

ε
2 are uniformly

bounded measures and

P2χ
ε
2 P3σ

ε
3 − P3χ

ε
3 P2σ

ε
2 ⇀ Y (ϕ2, ϕ3)Z(ρ)

∑
±

(
K±

)2
δs1=v±k(ρ) (4.8)

weakly-star in measures in s1 and uniformly in (ρ, v), where

Y (ϕ2, ϕ3) =
∫ ∞
−∞

∫ s2

−∞

(
ϕ2(s2)ϕ3(s3)− ϕ3(s2)ϕ2(s3)

)
ds2ds3,
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and
Z(ρ) := (λ+ 1)M−2

λ k(ρ)2λD(ρ),

where D(ρ) was introduced in Proposition 2.5.

In other words, we have∫ ∞
−∞

(
P2χ

ε
2 P3σ

ε
3 − P3χ

ε
3 P2σ

ε
2
)
ψ(s1) ds1 → Y (ϕ2, ϕ3)Z(ρ)

∑
±

(
K±

)2
ψ(s1 − v ∓ k(ρ))

uniformly in (ρ, v) for every test-function ψ = ψ(s1).

Remarks. 1). The limit X1 in (4.7) is continuous, so is twice more regular than ∂λ+1
s χ and ∂λ+1

s σ.
The singularities of the kernels cancel because σ (respectively χ) vanishes on the singularities of ∂λ+1

s χ
(resp. ∂λ+1

s σ), so that the corresponding products are bounded functions in s, rather than measures.
Furthermore, E has a symmetric form which provides further cancellation. The function

χ∂λ+1
s σ − σ ∂λ+1

s χ

can be regarded as a Hölder continuous function of (ρ, v, s).
2). The term treated in (4.8) is a product of measures. Expanding χ and σ and relying on the

symmetry property of E, we obtain only the functions of bounded variation multiplied by measures.
Such products depends upon regularization, as was pointed out by Dal Maso, LeFloch, and Murat [10];
see Lemma 4.4 below. tu

Now we prove Theorem 4.2 and Lemmas 4.1–4.3.

Proof of Theorem 4.2. A general formula of the entropy pairs was derived in Section 2. Plugging
the entropy-entropy flux pairs with the formulae in Corollary 2.1 in relations (4.3) and dropping the
test-function ψ, we obtain〈

χ(s1)σ(s2)− χ(s2)σ(s1)
〉

=
〈
χ(s1)

〉 〈
σ(s2)

〉
−
〈
χ(s2)

〉 〈
σ(s1)

〉
(4.9)

for all s1, s2 ∈ RI n. For simplicity, we set
〈
χi
〉

=
〈
χ(si)

〉
=
〈
ν(t,x), χ(si)

〉
.

Given s1, s2, s3 ∈ RI , consider (4.9) for the pairs

(s2, s3), (s3, s1), (s1, s2).

Multiply each identity by 〈
χ(s1)

〉
,
〈
χ(s2)

〉
,
〈
χ(s3)

〉
,

respectively, and add them up. By symmetry, the sum of the right hand side vanishes identically:〈
χ1
〉(〈

χ2
〉 〈
σ3
〉
−
〈
χ3
〉 〈
σ2
〉)

+
〈
χ2
〉(〈

χ3
〉 〈
σ1
〉
−
〈
χ1
〉 〈
σ3
〉)

+
〈
χ3
〉(〈

χ1
〉 〈
σ2
〉
−
〈
χ2
〉 〈
σ1
〉)

= 0,

whereas the sum of the left hand side is〈
χ1
〉 〈
χ2 σ3 − χ3 σ2

〉
+
〈
χ2
〉 〈
χ3 σ1 − χ1 σ3

〉
+
〈
χ3
〉 〈
χ1 σ2 − χ2 σ1

〉
= 0. (4.10)
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Using the differential operator P2P3 := ∂λ+1
s2 ∂λ+1

s3 , we deduce from (4.10) that〈
χ1
〉 〈
P2χ2 P3σ3 − P3χ3 P2σ2

〉
+
〈
P2χ2

〉 〈
σ1 P3χ3 − χ1 P3σ3

〉
+
〈
P3χ3

〉 〈
χ1 P2σ2 − σ1 P2χ2

〉
= 0

(4.11)

in the sense of distributions in s1, s2, s3. For instance, the distribution < Pχ > is defined by

(〈
Pχ
〉
, ψ
)

:= −
〈∫

RI

∂λs χ(s)ψ′(s) ds
〉

for any test-function ψ. Recall from Section 2 that ∂λs χ is bounded in s and continuous in (ρ, v).
Our goal is to let s2 and s3 tend to s1 in (4.11). For each j = 2, 3, consider a mollifying sequence

ϕεj(sj) = ε−1 ϕj(sj/ε) satisfying (4.6). From (4.11), we obtain〈
χ1
〉 〈
P2χ

ε
2 P3σ

ε
3 − P3χ

ε
3 P2σ

ε
2
〉

=
〈
P2χ

ε
2
〉 〈
χ1 P3σ

ε
3 − σ1 P3χ

ε
3
〉
−
〈
P3χ

ε
3
〉 〈
χ1 P2σ

ε
2 − σ1 P2χ

ε
2
〉
,

(4.12)

in which each term is a continuous function of s1. We now prove that, as ε → 0, the right-hand side of
(4.12) tends to zero, while the left-hand side converges to a non-zero limit, when the functions ϕεj are
suitably chosen.

First, consider the right hand side of (4.12). Since Pjχj is a bounded measure in sj , we have

Pjχ
ε
j = Pjχj ? ϕ

ε
j ⇀ P1χ1 (4.13)

weakly in measures and uniformly in (ρ, v). In particular, by Fubini’s theorem, we have〈
Pjχ

ε
j

〉
→
〈
P1χ1

〉
weakly in measures in s1. Hence, using the convergence property (4.7) in Lemma 4.2, we arrive at〈

P2χ
ε
2
〉〈
χ1P3σ

ε
3 − σ1P3χ

ε
3
〉
−
〈
P3χ

ε
3
〉 〈
χ1P2σ

ε
2 − σ1P2χ

ε
2
〉

→
〈
X1
〉〈
P1χ1

〉
−
〈
X1
〉〈
P1χ1

〉
≡ 0

(4.14)

weakly in measures in s1. This shows that the right-hand side of (4.12) converges to zero.
By Lemma 4.3, the left-hand side of (4.12) satisfies〈

χ1
〉〈
P2χ

ε
2P3σ

ε
3 − P3χ

ε
3P2σ

ε
2
〉
→
〈
χ1
〉〈
Y (ϕ2, ϕ3)Z(ρ)

∑
±

(
K±

)2
δs1=v±k(ρ)

〉
=
〈
χ1
〉
Y (ϕ2, ϕ3)

∑
±

(
K±

)2〈
Z(ρ)δs1=v±k(ρ)

〉
.

(4.15)

We conclude that, for every test-function ψ1 = ψ(s1),

Y (ϕ2, ϕ3)
∑
±

(
K±

)2 ∫∫ 〈
χ1(v ± k(ρ))

〉
Z(ρ)ψ(v ± k(ρ)) dν(ρ, v) = 0. (4.16)
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Choose the mollifying functions in such a way that

Y (ϕ2, ϕ3) 6= 0.

Such functions exist: for instance, choose ϕ2 ≥ 0 with unit total mass, and set ϕ3(s3) = ϕ2(s3 − s̄) for
a fixed s̄ 6= 0. Observe that the trivial choice ϕ2 = ϕ3 does not work and the regularization in (s2, s3)
should therefore be asymmetric.

Choose the compactly supported test-function ψ to be identically equal to 1 on the support of ν. Then〈〈
χ(v ± k(ρ))

〉
Z(ρ)

〉
= 0

for every test-function ψ, or equivalently,〈〈
χ(w)

〉
Z(ρ)

〉
=
〈〈
χ(z)

〉
Z(ρ)

〉
= 0,

where we regard ν = ν(w, z) and ρ = k−1(w−z2 ).
Assume that supp ν is not included in the vacuum line. Observe that the interior of the support of

the nonnegative function (w, z) 7→ χ(ρ, v − s) has a non-empty intersection with an open neighborhood
of the point (wmax, zmin). Moreover, Z(ρ) > 0 for ρ > 0 by Proposition 2.5. Therefore, by Lemma 4.1,〈

χ(s)
〉
> 0, for all s in the open interval (zmin, wmax).

It follows that
supp ν =

{
w = z

}
∪
{

(wmax, zmin)
}
.

Then, set
ν = ν̃ + ω δ(wmax,zmin),

where ω represents the mass of the measure ν at the extremal point and supp ν̃ ⊂
{
w = z

}
. Returning

to (4.9), we obtain, for all s1, s2,

(ω − ω2)
{
χ(s1)σ(s2)− χ(s2)σ(s1)

}
= 0,

where the functions are evaluated at the point (wmax, zmin). Therefore, either ω = 0 (supp ν ⊂
{
w = z

}
)

or ω = 1 (supp ν =
{

(wmax, zmin)
}

). This completes the proof of Theorem 4.2. tu
Proof of Lemma 4.1. By contradiction, assume that the point (wmax, zmin) does not belong to the
support, i.e.,

suppν ∩
[
wmax − α,wmax

]
×
[
zmin,zmin + α

]
= ∅, (4.19)

for some α > 0. Consider the commutation relation (4.9) in the form〈
χ(s1)σ(s2)− χ(s2)σ(s1)

〉〈
χ(s1)

〉 〈
χ(s2)

〉 =

〈
σ(s2)

〉〈
χ(s2)

〉 − 〈σ(s1)
〉〈

χ(s1)
〉 . (4.20)

Set
s− := zmin, s+ := zmax.
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By (4.19), for 0 < s+ − s2 < α and 0 < s1 − s− < α, the supports of s1 7→ χ(s1) and s2 7→ σ(s2) are
disjoint. The same is true for χ(s2) and σ(s1). Therefore, the left-hand side of (4.20) vanishes identically.

Since b] = ρk′ a]/k, by (2.8) and (2.12), the entropy flux has the form

σ(ρ, v, s) =
(
v − (v − s) c k−1)χ(ρ, v − s) + h̃(ρ, v − s),

where h̃ satisfies (see (2.10) and (2.14))

|h̃(ρ, v − s)| ≤ C |k(ρ)2 − (v − s)2|χ(ρ, v − s).

Thus
σ −

(
v ± c

)
χ =

(
∓k + (v − s)

)
c k−1χ+ h̃. (4.21)

Therefore, we have〈
σ(s)

〉〈
χ(s)

〉 =

〈(
v ± c

)
χ(s)

〉〈
χ(s)

〉 +

〈(
∓k + (v − s)

)
c k−1χ(s)

〉〈
χ(s)

〉 +

〈
h̃(s)

〉〈
χ(s)

〉 .
Define the trace measure µ+ by〈

j χ(s2)
〉〈

χ(s2)
〉 → 〈

µ+, j(wmax, .)
〉

:=
∫
j(wmax, .) dµ+(z), as s2 → s+,

for every continuous function j = j(w, z). The measure µ− is defined similarly as the trace on the line{
z = zmin

}
. As s1 → s− and s2 → s+ in (4.20), we use the decomposition (4.21) to obtain〈

µ+,
(
v − c

)〉
−
〈
µ−,

(
v + c

)〉
= 0. (4.22)

Indeed there is no contribution to (4.22) from the remaining terms in (4.21) since, on one hand,∣∣∣∣∣
〈(
k + (v − s2)

)
c k−1χ(s2)

〉〈
χ(s2)

〉 ∣∣∣∣∣ ≤ C max
(w,z)∈suppν

|w − s2| → 0,

as s2 → s+ (and similarly with s−) and, on the other hand,∣∣∣∣∣
〈
h̃(s)

〉〈
χ(s)

〉∣∣∣∣∣ ≤ C max
ρ,v∈supp ν

[
k(ρ)2 − (v − s)2]

+ ≤ C max
supp ν

|w − s| |z − s| → 0,

when s tends to either s− or s+.
Set

λ±(w, z) := v ± c.
By the genuine nonlinearity, we have

λ−(wmax, z) ≤ λ−(wmax, zmin) < λ+(wmax, zmin) ≤ λ+(w, zmin)

for all w, z between zmin and wmax. This contradicts (4.22). tu
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Proof of Lemma 4.2. We rely on the asymptotic expansions obtained in Theorems 2.2–2.3 and on the
explicit formulas in Proposition 2.4. Since only the first terms in expansions (2.8) and (2.12) are used
here, we set

g̃ := a[Gλ+1 + g, h̃ := −(v − s) b[Gλ+1 + h,

which are Hölder continuous in (ρ, v, s) and satisfy

|g̃(ρ, v − s)|+ |h̃(ρ, v − s)| ≤ C
[
k(ρ)2 − (v − s)2]λ+1

.

Also observe that b] = ρk′ a]/k.
By expanding the product, we get the decomposition

χ1 Pjσ
ε
j − σ1 Pjχ

ε
j =χ1 Pj

(
σεj − v χεj

)
−
(
σ1 − v χ1

)
Pjχ

ε
j

=
(
a]Gλ,1 + g̃1

)(
ρk k′

1/2∑
±
K±

(
(sj − v)δsj=v±k

)
? ϕεj + eIIj ? ϕεj

)
−
(
(s1 − v) b]Gλ,1 + h̃1

)(
k′
−1/2 ∑

±
K±δsj=v±k ? ϕ

ε
j + eIj ? ϕ

ε
j

)
:=EI,ε +EII,ε +EIII,ε,

where Gλ,j := Gλ(ρ, v − sj), and

EI,ε = a]ρk k
′1/2 Gλ,1

∑
±
K±

(
(sj − s1)δsj=v±k

)
? ϕεj ,

EII,ε = ρk k′
1/2 ∑

±
K±g̃1

(
(sj − v)δsj=v±k

)
? ϕεj − k′

−1/2 ∑
±
K±h̃1 δsj=v±k ? ϕ

ε
j ,

EIII,ε =
(
a]Gλ,1 + g̃1

)
eIIj ? ϕεj −

(
(s1 − v) b]Gλ,1 + h̃1

)
eIj ? ϕ

ε
j .

The term EI,ε is the most singular; it contains the products of Hölder continuous functions by measures.
Relying on the favorable factor s1 − sj , we have

|EI,ε(ρ, v − s1)| ≤ C ρθλ
[
k(ρ)2 − (v − s1)2]λ

+

∑
±
K±|s1 − v ∓ k(ρ)|ϕεj(s1 − v ∓ k(ρ))

≤ C ρ(1−θ)/2
∑
±
|s1 − v ∓ k(ρ)|λ+1 ϕεj(s1 − v ± k(ρ)) ≤ C ρ(1−θ)/2 ελ → 0

uniformly in (ρ, v, s1) in a compact set. Here we used that, since ϕj is continuous,

|sλ+1 ϕεj(s)| ≤ ελ sup
s
|sλ ϕj(s)| ≤ C ελ.

The term EII,ε contains the products of Dirac masses by Hölder continuous functions with exponent
> 1. We have

|EII,ε(ρ, v − s1)| ≤ C ρ3(1−θ)/2[k(ρ)2 − (v − s1)2]λ+1∑
±
K±ϕεj(s1 − v ∓ k(ρ))

≤ C ρ3(1−θ)/2
∑
±
|s1 − v ± k(ρ)|λ+1ϕεj(s1 − v ± k(ρ))

≤ C ρ3(1−θ)/2 ελ → 0, uniformly for (ρ, v, s1).
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Dealing with EIII,ε is easier. For example, we treat the product

ẼIII,ε := a]Gλ,1 e
II
j ? ϕεj .

In the region |k(ρ)2 − (v − s1)2| ≤ β (with β > 0 to be determined), we use (2.17) and so

|ẼIII,ε| ≤ C Gλ,1G−α,1 = C Gλ−α,1 ≤ C βλ−α,

which is as small as we want by taking β small, provided α ∈ (0, 1] ∩ (0, λ).
In the complement region |k(ρ)2 − (v − s1)2| ≥ β > 0, each of the two functions Gλ(s1) and eII(s1)

is Hölder continuous in (ρ, v, s1). The convergence of the convolution product is uniform in this domain
and the limit a]Gλ(ρ, v − s1) eII (ρ, v − s1) is continuous. This shows that ẼIII,ε converges uniformly in
(ρ, v, s1). This completes the proof of Lemma 4.2. tu
Proof of Lemma 4.3. This proof again relies on the asymptotic expansions in Theorems 2.2–2.3 and
on the explicit formulas obtained in Proposition 2.4. Observe that, in the sense of distributions,

P2χ2 P3σ3 − P3χ3 P2σ2

=P2χ2 P3
(
σ3 − v χ3

)
− P3χ3 P2

(
σ2 − v χ2

)
=
(
a]P2Gλ,2 + a[P2Gλ+1,2 + P2g2

) (
(s3 − v) (b]P3Gλ,3 + b[P3Gλ+1,3)

+ P3h3 + (λ+ 1) b]∂λs3Gλ,3 + (λ+ 1) b[∂λs3Gλ+1,3

)
+
(
a]P3Gλ,3 + a[P3Gλ+1,3 + P3g3

) (
(s2 − v) (b]P2Gλ,2 + b[P2Gλ+1,2)

+ P2h2 + (λ+ 1) b]∂λs2Gλ,2 + (λ+ 1) b[∂λs2Gλ+1,2

)
= : EI +EII +EIII ,

where we used the chain rule for fractional derivatives. We define

EI := (s3 − s2) a]b] P2Gλ,2 P3Gλ,3,

EII := a] P2Gλ,2

(
(s3 − v) b[P3Gλ+1,3 + (λ+ 1) b]∂λs3Gλ,3

)
− a] P3Gλ,3

(
(s2 − v) b[P2Gλ+1,2 + (λ+ 1) b]∂λs2Gλ,2

)
+ a[b]

(
P2Gλ+1,2(s3 − v)P3Gλ,3 − P3Gλ+1,3(s2 − v)P2Gλ,2

)
,

and EIII the remainder.
Consider the decomposition

P2χ
ε
2 P3σ

ε
3 − P3χ

ε
3 P2σ

ε
2 =

(
EI +EII +EIII

)
? ϕε2 ? ϕ

ε
3 =: EI,ε +EII,ε +EIII,ε

and determine the limit of the first two terms. Dealing with EIII,ε is easy since it involves only the
products of Hölder continuous functions (such as h3) by measures (such as a] P2Gλ,2), or more regular
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products. Classical theorems on weak convergence of convolution products apply. By symmetry, one
easily checks that

EIII,ε ⇀ 0 as ε→ 0,

weakly in measures and uniformly in (ρ, v).
In view of Proposition 2.4 and its proof which provides the asymptotic expansion of the functions Gλ,

the term
EI,ε := EI ? ϕε2 ? ϕ

ε
3 = ((s3 − s2) a]b] P2Gλ,2 P3Gλ,3) ? ϕε2 ? ϕ

ε
3

can be decomposed into the products of measures, products of measures by Lq functions, and the products
of Lq functions. We need consider the first two cases.

Consider the product of two measures. A typical product is k′(ρ)−1/2 δs=v+k(ρ) by k′(ρ)−1/2 δs=v−k(ρ).
Using the Riemann invariants w = v + k(ρ) and z = v − k(ρ), we estimate

k′(ρ)−1
∣∣∣ ∫ (w − z)ϕε2(s1 − w)ϕε3(s1 − z)ψ(s1) ds1

∣∣∣
≤ C

(
w − z)1+2λ

∫
ϕε2(s1 −w)ϕε3(s1 − z)|ψ(s1)| ds1

≤ C ε2λ
(
w − z
ε

)1+2λ ∫ 1

−1
ϕ2(s1)ϕ3

(
s1 +

w − z
ε

)
|ψ(w + εs1)| ds1 ≤ C ε2λ −→ 0.

We treat the product of a measure µ2 = µ(s2) by an Lq function l3 = l(s3) as follows :∣∣∣∫ ∫∫ (s3 − s2)ϕε2(s1 − s2)ϕε3(s1 − s3)l(s3) ds3dµ(s2)ψ(s1) ds1

∣∣∣
= ε2

∣∣∫ ∫∫ (s3 − s2)ϕ2(s1 − s2)ϕ3(s1 − s3)l(εs3) ds3dµ(εs2)ψ(εs1) ds1
∣∣

≤ C ε1−1/p ‖l‖Lqs ‖ψ‖Cs
∫
|dµ(s2)| −→ 0,

uniformly in (ρ, v), where p = q/(p− 1).
The other terms are handled similarly. This proves

EI,ε ⇀ 0, as ε→ 0,

weakly in measures in s1 and uniformly in (ρ, v).
The term EII,ε contains the products of functions of bounded variation by bounded measures. Such

products converge to the limits that depend on the regularization, i.e. on ϕ2, ϕ3. We can replace s2 and
s3 by s1 in EII,ε since the remaining terms converge to zero, as one can be checked by the arguments
used earlier. So we now study

ẼII,ε =:a] P2Gλ,2 ? ϕ
ε
2

(
(s1 − v) b[P3Gλ+1,3 + (λ+ 1) b]∂λs3Gλ,3

)
? ϕε3

− a] P3Gλ,3 ? ϕ
ε
3

(
(s1 − v) b[P2Gλ+1,2 + (λ+ 1) b]∂λs2Gλ,2

)
? ϕε2

+ a[b]

(
P2Gλ+1,2(s1 − v)P3Gλ,3 − P3Gλ+1,3(s1 − v)P2Gλ,2

)
? ϕε2 ? ϕ

ε
3,
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that is,
ẼII,ε =(λ+ 1) a]b]

(
P2Gλ,2∂

λ
s3
Gλ,3 − P3Gλ,3∂

λ
s2
Gλ,2

)
? ϕε2 ? ϕ

ε
3

+ (s1 − v)
(
a]b[ − a[b]

) (
P2Gλ,2P3Gλ+1,3 − P3Gλ,3P2Gλ+1,2

)
? ϕε2 ? ϕ

ε
3.

Since

∂λ+1
s Gλ+1(ρ, v − s) =

[
k2 − (v − s)2]

+ ∂
λ+1
s Gλ(ρ, v − s)− 2 (λ+ 1)(s− v)∂λsGλ(ρ, v − s),

the weak limit of ẼII,ε is the same as the limit of

(λ+ 1)
(
a] b] − 2 k2(a]b[ − a[b]))(P2Gλ,2∂

λ
s3Gλ,3 − P3Gλ,3∂

λ
s2Gλ,2

)
? ϕε2 ? ϕ

ε
3.

Denote by Hs=m the Heaviside function with a jump at the point m. Using the asymptotic expansions
in Section 2, we arrive at

Z(ρ)
(∑
±
K±δs2=v±k

∑
±
K±Hs3=v±k −

∑
±
K±δs3=v±k

∑
±
K±Hs2=v±k

)
? ϕε2 ? ϕ

ε
3.

To conclude, we observe

Lemma 4.4. For all m2,m3 ∈ RI , one has(
Hs2=m2 ? ϕ

ε
2
)(
δs3=m3 ? ϕ

ε
3
)
⇀ Ω(m2,m3) δs1=m3

in measures, where

Ω(m2,m3) :=


0, if m2 < m3,∫
RI
ϕ2(s)

∫ s
−∞ ϕ3(t) dtds, if m2 = m3,

1 =
∫
RI
ϕ2(s) ds

∫
RI
ϕ3(t) dt, if m2 > m3.

The proof is omitted. In view of the lemma, EII,ε converges in the weak sense in s1 to the limit stated
in (4.8). The proof of Lemma 4.3 is completed.

5. Existence, Compactness, and Asymptotic Decay.

In this section we will establish the existence, compactness, and asymptotic decay of entropy solutions
of the Cauchy problem (1.1)-(1.2), relying on the assumptions (1.4) and (2.1).

Theorem 5.1 (Existence). Assume that the initial data (ρ0,m0) satisfy

0 ≤ ρ0(x) ≤ C0, |m0(x)| ≤ C0 ρ0(x), a.e. (5.1)

Then there exists an entropy solution (ρ,m) of the Cauchy problem (1.1)-(1.2), globally defined in time,
satisfying

0 ≤ ρ(t, x) ≤ C, |m(t, x)| ≤ C ρ(t, x), a.e. (t, x),

where C depends only on C0 and the pressure function p(·).
The proof is postponed at the end of the section. A direct application of Theorem 4.1 then yields the

following compactness theorem.
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Theorem 5.2 (Compactness). The solution operator (ρ,m)(t, ·) = St(ρ0,m0)(·) determined by Theo-
rem 5.1 is compact in L1

loc(RI
2
+).

Proof. Consider any (oscillatory) sequence of initial data (ρε0,m
ε
0), ε > 0, satisfying

0 ≤ ρε0(x) ≤ C0, |mε
0(x)| ≤ C0 ρ

ε
0(x), (5.2)

with C0 > 0 independent of ε > 0. Then there exists C > 0 independent of ε > 0 such that the
corresponding sequence (ρε,mε), determined by Theorem 5.1, satisfies

0 ≤ ρε(t, x) ≤ C, |mε(t, x)| ≤ C ρε(t, x).

Since (ρε,mε) are entropy solutions satisfying ∂tη(ρε,mε) + ∂xq(ρε,mε) ≤ 0 in the sense of distributions,
for any C2 convex weak entropy pair (η, q), we deduce from Murat’s lemma (see [4] for details) that

∂tη(ρε,mε) + ∂xq(ρε,mε) is compact in H−1
loc (RI 2

+),

for any weak entropy pair (η, q). Combining with Theorem 4.1 yields that (ρε,mε) is compact in L1
loc(RI

2
+),

which implies our conclusion. tu
Finally, based on the analytical framework for the asymptotic decay of periodic solutions established

in Chen and Frid [4], we obtain

Theorem 5.3 (Asymptotic decay). Let (ρ,m) ∈ L∞(RI 2
+) be a periodic entropy solution of the Cauchy

problem (1.1)-(1.2) with period [α, β]. Then (ρ,m) asymptotically decays:

ess lim
t→∞

∫ β

α

(
|ρ(t, x) − ρ̄|r + |m(t, x)− m̄|r

)
dx = 0, for all 1 ≤ r <∞.

where (ρ̄, m̄) := 1
β−α

∫ β
α

(ρ0(x),m0(x))dx.

Remark. The results in Theorems 5.2–5.3 are somewhat surprising since the flux-function of (1.1) is only
Lipschitz continuous. Notice that a counterexample found by Greenberg and Rascle [19] demonstrates
that there exist certain systems with only C1 (but not C2) flux functions admitting time-periodic and
space-periodic solutions. This example indicates that the compactness and asymptotic decay of entropy
solutions are sensitive with respect to the smoothness of the flux functions.

Proof. Theorem 5.2 implies that the self-similar scaling sequence

uT (t, x) ≡ (ρT (t, x),mT (t, x)) = (ρ(Tt, Tx),m(Tt, Tx))

is compact in L1
loc(RI

2
+) as T →∞. From [4], it follows that

esslim
t→∞

∫ β

α

(η∗(u(t, x)) − η∗(ū)−∇η∗(ū)(u(t, x) − ū)) dx = 0,

or, equivalently,

esslim
t→∞

∫ β

α

∫ 1

0
(1− τ)(u(t, x)− ū)>∇2η∗(ū+ τ(u(t, x) − ū))(u(t, x) − ū)dτdx = 0. (5.3)
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Here ū = (ρ̄, m̄), etc, and η∗ is the standard entropy associated with the physical energy of (1.1).
We observe the following facts.
1. For 1 < γ ≤ 2, the entropy η∗ is uniformly convex, that is ∇2η∗ ≥ c0, for some c0 > 0, and (5.3) is

equivalent to

esslim
t→∞

∫ β

α

|u(t, x)− ū|2dx = 0. (5.4)

2. For γ > 2, (5.3) means that

esslim
t→∞

∫ β

α

(
1
2
ρ(t, x)(

m(t, x)
ρ(t, x)

− m̄

ρ̄
)2 +

∫ 1

0
(1− τ)

p′(ρ̄+ τ(ρ(t, x)− ρ̄))
ρ̄+ τ(ρ(t, x) − ρ̄)

dτ(ρ(t, x) − ρ̄)2
)
dx = 0,

which implies

esslim
t→∞

∫ β

α

(
ρ(t, x)(

m(t, x)
ρ(t, x)

− m̄

ρ̄
)2 + |ρ(t, x) − ρ̄|γ

)
dx = 0. (5.5)

Note that
|m− m̄|2 = |(m

ρ
− m̄

ρ̄
)ρ+

m̄

ρ̄
(ρ− ρ̄)|2 ≤2(

m

ρ
− m̄

ρ̄
)2ρ2 + 2(

m̄

ρ̄
)2(ρ− ρ̄)2

≤ C{(m
ρ
− m̄

ρ̄
)2ρ+ (ρ− ρ̄)2},

(5.6)

and ∫ β

α

|ρ− ρ̄|2dx ≤ C
(∫ β

α

|ρ− ρ̄|γdx
)1/2

(5.7)

by Hölder’s inequality. We conclude from (5.5)-(5.7) and the uniform bound on the solution (ρ,m) that,
for any 1 ≤ r <∞,

esslim
t→∞

∫ β

α

(|m(t, x)− m̄|r + |ρ(t, x) − ρ̄|r) dx = 0. (5.8)

Combining (5.4) with (5.8) leads to the completion of the proof. tu
To establish the existence result stated in Theorem 5.1, we now apply the compactness framework

established in Theorem 4.1 and prove the convergence of the Lax-Friedrichs scheme for the Cauchy
problem (1.1)-(1.2) satisfying (5.1) for some C0 > 0.

As every difference scheme, the Lax-Friedrichs scheme satisfies the property of propagation with finite
speed, which is an advantage over the vanishing viscosity method: our convergence result applies without
assumption on the decay of the initial data at infinity. We now introduce the family of Lax-Friedrichs
approximate solutions (ρh(t, x),mh(t, x)). Set also vh = mh/ρh when ρh > 0 and vh = 0 otherwise. The
Lax-Friedrichs scheme is based on a regular partition of the half-plane t ≥ 0 defined by tn = n τ , xj = j h
for n ∈ NI , j ∈ Z. Here τ and h are the lengths of time step and space step, respectively. It is assumed
that the ratio h/τ is constant and satisfies the Courant-Friedrichs-Lewy stability condition :

τ

h
sup
(t,x)
|vh(t, x)± c(ρh(t, x))| < 1.

For each n ∈ NI , we set
Jn =

{
j | j integer with even n+ j

}
.
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In the first strip {(t, x) | 0 < t < t1, xj−1 < x < xj+1, j odd}, we define (ρh(t, x),mh(t, x)) by solving a
sequence of Riemann problems for (1.1) corresponding to the Riemann data:

(ρh,mh)(x, 0) =
{ (ρ0

j−1,m
0
j−1), x < xj ,

(ρ0
j+1,m

0
j+1), x > xj ,

with
(ρ0
j+1,m

0
j+1) =

1
2h

∫ xj+2

xj

(ρ0,m0)(x) dx.

It can be checked that the Riemann problem is uniquely solvable for the general pressure law (1.4) and
(2.1).

If (ρh,mh) is known for t < tn, we set

(ρnj ,m
n
j ) =

1
2h

∫ xj+1

xj−1

(ρh,mh)(tn − 0, x) dx.

In the region {(t, x) | tn < t < tn+1, xj < x < xj+2, j ∈ Jn}, we define (ρh(t, x),mh(t, x)) by solving the
Riemann problems with the data

(ρh,mh)(tn, x) =
{ (ρnj ,m

n
j ), x < xj+1,

(ρnj+2,m
n
j+2), x > xj+1.

This completes the construction of the Lax-Friedrichs approximate solutions (ρh(t, x),mh(t, x)).
The main result of this section is the following.

Theorem 5.4. Let (ρ0,m0) be the Cauchy data satisfying (5.1). Extracting a subsequence if necessary,
the Lax-Friedrichs approximate solutions (ρh,mh) converge strongly to a limit (ρ,m) ∈ L∞(RI 2

+) which is
an entropy solution of the Cauchy problem (1.1)-(1.2). tu

The following two lemmas are used toward the proof of Theorem 5.4.

Lemma 5.5. For all w0 > z0, the regions

R(w0, z0) =
{

(ρ,m) : w ≤ w0, z ≥ z0, w − z ≥ 0
}

are invariant for both the Riemann solutions and the Lax-Friedrichs approximate solutions. tu
Proof. The fact that R(w0, z0) is an invariant region for the Riemann solutions can be checked directly
from the explicit formulas known for the Riemann problem. Since, the sets R(w0, z0) are convex in the
(ρ,m)-plane, it follows from Jensen’s inequality that, for any function satisfying {(ρ(x),m(x)) : a ≤ x ≤
b} ⊂ R(w0, z0) for some (w0, z0), we have

(ρ̄, m̄) =
1

b− a

∫ b

a

(ρ(x),m(x))dx ∈ R(w0, z0).

Therefore, R(w0, z0) is also an invariant region for the Lax-Friedrichs scheme. tu
In particular, Lemma 5.5 shows that the density ρh remains nonnegative so that it is indeed possible

to construct the approximate solutions globally, as described earlier.
Consider the entropy pair defined from the kinetic and internal energies by

η∗(ρ,m) =
m2

2ρ
+ ρ

∫ ρ

0

p(r)
r2 dr, q∗(ρ,m) =

m3

2ρ2 +m

∫ ρ

0

p′(r)
r

dr. (5.9)
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Lemma 5.6. For any weak entropy pair (η, q) and any invariant region R(w0, z0), there exists a constant
C > 0 such that, for any solution (ρ(t, x),m(t, x)) of the Riemann problem with initial data in R(w0, z0),
one has ∣∣x′(t) [η(ρ,m)](t) − [q(ρ,m)](t)

∣∣ ≤ C
∣∣x′(t) [η∗(ρ,m)](t)− [q∗(ρ,m)](t)

∣∣,
where x′(t) is the speed of any shock located at x(t) in the Riemann solution (ρ,m) and [g(ρ,m)](t) :=
g(ρ,m)(x(t)+, t) − g(ρ,m)(x(t)−, t) for any function g(ρ,m).

The proof of Theorem 5.4 then follows similar lines as in [2,13] for the γ-law case. It is not difficult to
include the interval γ ∈ (2, 3) for which the standard entropy (5.9) is degenerate near the vacuum.
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