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Abstract

In this work we investigate the Brinkman volume penalization technique in the context

of a high-order Discontinous Galerkin method to model moving wall boundaries for

compressible fluid flow simulations. High-order approximations are especially of

interest as they require few degrees of freedom to represent smooth solutions

accurately. This reduced memory consumption is attractive on modern computing

systems where the memory bandwidth is a limiting factor. Due to their low dissipation

and dispersion they are also of particular interest for aeroacoustic problems. However, a

major problem for the high-order discretization is the appropriate representation of

wall geometries. In this work we look at the Brinkman penalization technique, which

addresses this problem and allows the representation of geometries without modifying

the computational mesh. The geometry is modelled as an artificial porous medium and

embedded in the equations. As the mesh is independent of the geometry with this

method, it is not only well suited for high-order discretizations but also for problems

where the obstacles are moving. We look into the deployment of this strategy by briefly

discussing the Brinkman penalization technique and its application in our solver and

investigate its behavior in fundamental one-dimensional setups, such as shock

reflection at a moving wall and the formation of a shock in front of a piston. This is

followed by the application to setups with two and three dimensions, illustrating the

method in the presence of curved surfaces.

Keywords: Moving geometries, Compressible flow, High-order Discontinuous

Galerkin, Brinkman penalization

Introduction

In engineering applicationsweareoftendealingwithmovingparts.When investigating the

fluidmotion in those scenarios, we therefore, need to consider complex, moving obstacles

that influence or even drive the flow. In this work we look into a method to realize

moving obstacles in simulations with a high-order discontinuous Galerkin scheme. High-

order schemes need less number of degrees of freedom to represent smooth solutions. On
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modern computing systems,wherememory bandwidth is one of themain bottlenecks, this

is a big advantage. The discontinuous Galerkin method combines a high-order local state

representation within elements with a coupling of elements via fluxes on the surface as in

the finite volumemethod. This relatively loose coupling via the element surfaces is a strong

advantage on modern distributed parallel computing systems, as only comparatively little

data needs to be communicated between elements.

Obstacles in such mesh-based schemes are usually represented by fitting the mesh to

the geometry and prescribed via boundary conditions. An alternative option is the use

of some immersed boundary method [22]. Immersed boundaries have the advantage that

they do not require the mesh to be fitted to the geometries that are to be represented.

This is especially attractive when consideringmoving obstacles as themovement does not

necessitate a change of the mesh.

In high-order discretizations it also becomes difficult to achieve an accurate represen-

tation of the geometry by fittedmeshes, due to the large elements that we want to employ.

With moving geometries the problem of fitting the mesh of a high-order discretiza-

tion to complex geometries gets magnified. Thus, immersed boundaries are a promising

choice for moving obstacles in a high-order discontinuous Galerkin scheme. Compre-

hensive reviews of immersed boundary methods are available by Mittal and Iccarino [22],

Sotiropoulos and Yang [27] and recently Maxey [21]. We use a penalization method as

described by Liu and Vasilyev [20].

Volume penalization methods introduce penalty terms in the continuous equations,

while imposing nothing in the discretization context [4]. Arquis and Caltagirone [5] intro-

duced a type of volume penalization method for simulations of isothermal obstacles in

incompressible flows that makes use of the Brinkman model for porous media. The basic

idea is tomodel obstacles as a porousmedia, where the porousmedium approaches a solid

obstacle. A distinct advantage this method, in comparison to other penalization methods,

is its error estimation, which can be rigorously predicted in terms of the penalization

parameters [24]. Kevlahan and Ghidaglia [15] used a pseudo-spectral method and applied

this Brinkman penalization method to model stationary, as well as moving geometries.

Liu and Vasilyev [20] used the Brinkmann penalization method for the compressible

Navier-Stokes equations. They introduced new penalization term for the mass conser-

vation and showed promising results for their acoustic setups. Several other success-

ful investigations using different numerical methods speak for the effectiveness of the

Brinkmann penalization method. Application in pseudo-spectral methods are found in

[23] and [13]. In [24] the Brinkman penalization is used in the context of finite volumes

and finite elements. To the authors knowledge, the Brinkman penalization method used

for compressible flows, either involves non-moving obstacles or mostly considered for

aero-acoustic problems e.g. in [18] or [20].

In [2] we applied the Brinkman penalization in our high-order discontinuous Galerkin

method for compressible Navier-Stokes equations with non-moving obstacles. That anal-

ysis showed that the method can be successfully used to represent obstacles even when

using high-order schemes and coarse elements. Thus, we now look into the application of

this scheme to moving geometries. Our implementation is available in our open-source

solver Ateles [26].
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Numerical method

In the following we revisit the fundamental equations of compressible viscous flows.With

the continuum assumption fluid motion is modeled in terms of the compressible Navier-

Stokes equations. Tomodel obstacles as immersed boundaries, we extend those equations

byBrinkmanpenalization terms as described byKomatsu et al. [18].With the introduction

of the penalization terms we also discuss their treatment in the time integration scheme.

Compressible Navier-Stokes equations

Conversation of mass, momentum and energy applied to fluids leads to the equation sys-

tem that we refer to as compressibleNavier-Stokes equations. In conservative formulation

with density ρ, momentumm and energy E the system can be written as:

∂tρ + ∇ · m = 0 (1a)

∂tm + ∇ · (u ⊗ m + pI) − ∇τ = ρf (1b)

∂tE + ∇ · (u ((E + p))) − ∇ · (τu + κ∇T ) = −m · f. (1c)

Where τ is the viscous stress tensor defined by (2).

τ = μ

(

∇u + (∇u)T
)

− λ(∇ · u)I (2)

Equation (1a) represents conservation of mass, (1b) conservation of momentum and (1c)

conservation of energy. Velocity is denoted by u = m/ρ and I indicates the identity

matrix. The parameter μ represents the dynamic viscosity of the fluid and λ the volume

viscosity, assumed as λ = 2μ/3 here. The temperature of the fluid is denoted by T and κ

represents its thermal conductivity. Additional source terms, like gravity, are represented

on the right hand side of (1b) and (1c) by f . The equation system is closed by the equation

of state for the ideal gas that provides a relation between pressure p, temperature and

density:

p = ρRT = (γ − 1)

(

E − ρu2

2

)

. (3)

With γ = cp/cv denoting the heat capacity ratio and R the ideal gas constant as given in

(4).

R = cp − cv = (γ − 1)cv (4)

Brinkman penalization

The volume penalization methods introduce additional artificial terms to the equations

to be solved in areas where obstacles are to be present. With the Brinkman penalization

method these appear as source terms on the right hand sides of the equations. In [20] the

Brinkmanpenalizationmethodwas introduced for compressibleNavier-Stokes equations.

While these included the possibility formoving obstacles, theywere notGalilean invariant.

This was corrected by Komatsu et al. [18], resulting in the formulation we use in this

scheme.

The equation system with the penalization terms is given in (5).

∂tρ + ∇ · m = −

(

1

φ
− 1

)

χ
∂(ui − Uoi)ρ

∂xi
(5a)



Ebrahimi Pour et al. Adv. Model. and Simul. in Eng. Sci.           (2021) 8:10 Page 4 of 23

∂tmi = −
∂

∂xj

(

miuj
)

−
∂p

∂xi
+

∂τij

∂xj
−

χ

η
(ui − Uoi)

− ui

(

1

φ
− 1

)

χ
∂

∂xj
[ρ(ui − Uoi)] (5b)

∂tE = −
∂

∂xj

[

(E + p)uj
]

+
∂

∂xi
(uiτij) +

∂

∂xj

(

k
∂T

∂xj

)

−
χ

ηT
(T − To)

−
χ

η
(u − Uo) · u −

|u|2

2

(

1

φ
− 1

)

χ
∂

∂xj
[ρ(ui − Uoi)] (5c)

Where η and ητ are the viscous and thermal permeability and φ the porosity of the

Brinkman model. Velocity and temperature of the obstacle is given by Uo and To, respec-

tively and its location is defined by the masking function χ . While the permeabilities

only appear in source terms, the porosity affects the divergence operators and thereby

changes the Eigenvalues of the convective system and necessitate smaller timesteps when

considered in explicit time integration schemes. The geometrical modelling can therefore

primarily be influenced by the permeability terms and the porosity. They allow to tune

the modelling towards a solid obstacle. Hence, they need to be chosen appropriately.

Aswe show in [2], it is feasible to ignore the porosity, introduced by Liu andVasilyev [20]

for compressible fluids, if the permeabilities are chosen sufficiently small.While the source

terms get extremely stiff by tiny permeabilities, this allows us to avoid any complications

by the porosity in the spatial divergence operators. The source terms are purely local and

can be solved pointwise. Thus, a implicit mixed explicit time integration is deployed to

deal with the source terms implicitly while the remaining parts are still solved explicitly.

We ignore the porosity by choosing φ = 1, which results in the following, simplified

model:

∂tρ = −
∂mi

∂xi
(6a)

∂tmi = −
∂

∂xj

(

miuj
)

−
∂p

∂xi
+

∂τij

∂xj
−

χ

η
(ui − Uoi) (6b)

∂tE = −
∂

∂xj

[

(E + p)uj
]

+
∂

∂xi
(uiτij) +

∂

∂xj

(

k
∂T

∂xj

)

−
χ

ηT
(T − To)

−
χ

η
(u − Uo) · u . (6c)

To solve the source terms introduced by this penalization implicitly, we use a diagonally

implicit Runge-Kutta scheme [1]. In this work we make use of the values for the perme-

ability proposed in our analysis of the method for non-moving obstacles, see also there

for details on the time integration method [2]. We showed, that with a smaller value of

β the modelling error can be decreased considerably, allowing to neglect the porosity in

the conserved quantities, as the permeability enables to model solid obstacles. With the

viscous permeability η = β2 · φ2 and the thermal viscosity ηT = 0.4β · φ, the expected

modelling error as described in [20] has a magnitude of β1/4 for a porosity of 1. For our

simulations we consider the outcomes of Anand et al. and consider a scaling factor of

β ≤ 10−6.
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a b

Fig. 1 Immersed boundary (red) representation in polynomial space with 16 terms. Comparison of the

numerical (black) and the analytical integration (blue) for the masking function χ . Black dots represent the

non-equidistant integration points (Chebyshev nodes). aWall location between two Chebyshev nodes and b

wall location exactly at a Chebyshev node

Representation of immersed boundaries

With the penalization method to represent obstacles, we can use the same discretization

technique for the obstacles as for the solution in our scheme. Thus curvature of the

geometries to represent poses no special problem as the discretization of the obstacles

can be chosen from the same realm as the solution. In the penalization method, obstacles

are given by the masking function χ . This function is one wherever an obstacle is to be

modeled and zero everywhere else.

An algorithm to find this polynomial representation of themasking function for surfaces

defined by polygons, for example in the form of STL files is proposed in [17].

To discuss the representation of χ in our high-order discontinuous Galerkin imple-

mentation on the basis of Legendre polynomials we consider a simple one dimensional

setup with a single element. Figure 1a shows this single element and the masking function

that models a wall within that element. To the left with χ = 0 the fluid is to behave

undisturbed, while to the right with χ = 1 the flow is to be penalized. This step function

is mapped to the polynomial space and uses a Legendre expansion with a maximal poly-

nomial degree of 15. The blue line illustrates the projection with an analytic integration,

while the black line indicates the resulting polynomial from a numerical integration with

the shown 16 (Chebyshev) integration points.

With the numerical integration an error is introduced, as the jump of the masking

function χ can only be determined up to the accuracy of the integration points. This is

illustrated more clearly in Fig. 1b, which also clearly shows how this integration error

depends on the location of the discontinuity in relation to the integration points. When

considering a continuously moving wall, we will, therefore, see discrete jumps in the

numerical representation of χ as the discontinuity moves across the integration point

intervals. We further note that, as the integration points are not equidistantly spaced, this

localization error is not constant, but depends on its locationwithin the element. Closer to

the element boundaries the localization is more accurate than in the middle of elements.

To decrease this error from numerical integration, we utilize over-integration and

use more integration points for the approximation [16]. In Fig. 2 we consider an over-
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Fig. 2 Masking function χ (red) approximated in polynomial space with 16 terms. Comparison of the

numerical integration with over-integration by a factor of three (black) and analytical integration (blue)

integration factor of three. Comparing Fig. 1b without over-integration and the same

case with this over-integration by a factor of three in Fig. 2, the improved representation

of the wall location becomes apparent. As Fig. 2 shows, an over-integration by factor

three already yields a polynomial approximation that is close to the analytical integration.

Another approach to improve the geometrical representation is introduced by Engels

et al. [7]. The authors assume the masking function to be smooth by introducing a thin

smoothing layer. This avoids the strong discontinuity introduced by the jump of themask-

ing function at the interface. However, this approach does not improve the convergence

in the vicinity of the geometry surface.

Numerical results

Moving wall test case

To investigate the penalization scheme for a moving geometry in our discontinuous

Galerkin implementation, we first analyze the fundamental behavior in a one-dimensional

setup.We look into the reflectionof an acousticwave fromamovingwall. Figure 3 sketches

this setup with the initial wave and wall positions.

The traveling wave has the form of a Gaussian pulse given by Eq. (7). Its center is initially

located at x = 0.25, while the wall is located at x = 0.5.

ρ′ = u′ = p′ = ǫexp

[

−ln(2)
(x − 0.25)2

0.004

]

(7)

The amplitude of the pulse is chosen to be ǫ = 10−3. The perturbations in density

ρ′, velocity u′ and pressure p′ from (7) are applied to a constant, non-dimensionalized

state with a speed of sound of 1. This results in the initial condition for the conservative

variables density ρ, momentumm and total energy e as described in (8).

ρ = 1 + ρ′, m = ρ(u′ + v), e =
1

γ (γ − 1)
+

p′

γ − 1
+

1

2
ρ(u′)2, (8)

where v is the background velocity equal to the velocity of the moving wall.

Thepenalizationwith porousmedium is applied in the right half of the domain (x > 0.5).

In acoustic theory the reflection should be perfectly symmetric, and the reflected pulse



Ebrahimi Pour et al. Adv. Model. and Simul. in Eng. Sci.           (2021) 8:10 Page 7 of 23

Fig. 3 One-dimensional acoustic wave setup: The figure at top depicts the initial position of the acoustic

wave and the wall. Here v denotes the velocity of the wall, which is set to v = 0.01. The domain to the right of

the wall is penalized. The amplitude of the pulse is ǫ = 10−3 . Bulk of the fluid moves along with the wall at

velocity v . The figure at the bottom shows the final position of the wall and the pulse after t = 0.5 seconds.

The pulse after reflection from the wall, has reached the position x = 0.25 and is seen to be travelling in the

opposite direction

should have the same shape and size, only with opposite velocity. After the simulation

time of t = 0.5, with linear acoustic wave transport and a speed of sound of 1, the position

of the pulse will again be at a distance of d = 0.25 away from the position of the wall at

that time. During this duration, the wall travels a distance of vt to the right, reaching the

point x = 0.5. Therefore, the final position of the pulse has its center x = 0.25 after the

time interval t.

For the linear model we can easily compute the analytic solution and use this to judge

the quality of the numerical computation with the penalization method. This simple

setup allows us to analyze the dampening of the reflected wave amplitude as well as

induced phase shifts.While the analytical result for linear wave transports provides a good

reference in general for the acoustic wave with small perturbation, it sufficiently deviates

from the nonlinear behavior to limit its suitability for convergence analysis in small error

values. Therefore, we compare the simulation results with the penalization method and

moving walls to numerical results with a traditional fixed wall boundary condition and

a high resolution. This reference is computed with the same element length, but the

domain ends at x = 0.5, which is the final position of the wall after t = 0.5 seconds, with a

wall boundary condition and a maximal polynomial degree of 255 is used (256 degrees of

freedomper element) to approximate the smooth solution. The pressure perturbation and

the final position of the reflected wave (i.e at time, t = 0.5), for different orders, is shown

in Fig. 4. The domain for all the simulations shown in the figure comprises of 12 elements,

i.e dx = 1/12. Here, we can observe that both loss in wave amplitude as well as phase
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Fig. 4 Plot for the pressure perturbation of the reflected wave at t = 0.5 for different orders. The numerical

reference solution is obtained with a traditional wall boundary condition and a high resolution

Fig. 5 L2-error for 12 elements over increasing maximal polynomial degree (p-refinement)

shift of the reflected wave gets diminished with increasing orders. With sufficiently large

degrees of freedom, the wave shows an excellent agreement with the reference solution.

The error convergence is done in reference to this solution.

Figure 5 shows the error convergence in terms of the L2 norm over the maximal poly-

nomial degree in the discretization scheme (p-refinement) with a fixed number of 12

elements.We observe a linear convergence rate with increasing polynomial degree, which

matches the worst case scenario from the analysis with a non-moving wall in [2]. As in

the moving case the discontinuity of the masking function χ ranges through all locations

of the elements, we can not expect a better convergence rate.

Figure 6 shows the L2 norm of the error for the reflected pressure wave with a maximal

polynomial degree of 7 over an increasing number of elements (h-refinement). Again a

first order convergence can be observed in the overall domain. The moving discontinuity
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Fig. 6 L2-error for polynomial degree of 7 over increasing number of elements (h-refinement)

a b

Fig. 7 L2 Error in the reflected acoustic pulse with respect to computational effort needed. a On the left: the

L2 Error for various spatial orders over the required memory in terms of degrees of freedom. b On the right:

same runs, but over the computational effort in terms of running time in seconds. All simulations were

performed on a single node with 12 cores using 12 processes

in the masking function eliminates the fast error convergence rate of the high-order dis-

cretization close to the discontinuity. However, away from the discontinuity we maintain

the fast convergence rate and still expect benefits.

In Fig. 7 the computational effort is shown for various spatial scheme orders. Figure 7a

shows the error over the used number of degrees of freedom and, thus the required

memory consumption. And Fig. 7b shows the respective running times of the simulations

on a single computing node with 12 Intel Sandy-Bridge cores.

The test was performed starting with 12 elements in each data series, which is the

leftmost point in the plot. For subsequent points in the series, the number of elements are

always increased by factor of 2. While we do not achieve a spectral convergence as in a

purely smooth solution, we still find the higher order discretizations to be advantageous

with respect to the required memory. In the computational effort a strong improvement

from second to fourth order discretization is observed.However, for higher spatial scheme
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orders than 16, the required computational running time increases again. Though this

specific timing result is tied to the system, the simulations were run on, we generally

expect the running time to be worse for higher orders in this metric on other computing

systems as well.

There aremainly two contributions to this error that diminishes the convergence order.

One cause is the Gibbs phenomenon that describes induced oscillations due to the dis-

continuity in the masking function and the other is the accuracy of the localization of the

discontinuity fromthenumerical integration. Both effects are illustrated inSect. Represen-

tation of immersed boundaries. The inaccuracy fromnumerical integration can be limited

by over-integration and using more points. The error from the Gibbs phenomenon can

also be limited by employing a re-projection method [10]. Though, such a re-projection

method potentially could restore the convergence up to the point of discontinuity, we do

not consider it here.

Reflected shock wave

While in the previous setup we looked into a smooth acoustic wave, we now look into

the reflection of a shock. We thus, not only have a discontinuity in the masking function

χ but also in the solution itself. For the inviscid equations the solution to this problem

can be computed analytically. Thus, we will neglect viscous terms in this setup and use

the inviscid Euler equations. However, the same Brinkman penalization is used to model

the moving wall. The reflection of a shock at a fixed wall with this method has been

studied in [2]. Now, we move the wall similarly to the reflection of the acoustic pulse

in the previous section. Of course the shock incurs more problems with a high-order

discretization, nevertheless, this analysis shows that it is feasible to use it in this setting.

The state variables downstream (indicated by 1) are listed in Table 1. The upstream

state is computed via the Rankine-Hugoniot conditions for shock Mach numberMs. The

Rankine-Hugoniot conditions yield the following relations:

p2

p1
= 1 +

2γ (Ms − ws
us
)2 − 1

γ + 1
(9)

for the relation of the pressure p before and after the shock and

ρ2

ρ1
=

1 +
γ+1
γ−1 ·

p2
p1

γ+1
γ−1 +

p2
p1

(10)

for the relation of the densities ρ. From these we can also find the pressure relation of

before and after (p3) the reflected shock, see [3]. Additionally, the wall velocity ws needs

to be taken into account here, leading to Eq. (11) for the pressure relation.

p3

p2
=

(Ms − ws
c1
)2(3γ − 1) − 2(γ − 1)

2 + (Ms − ws
c1
)2(γ − 1)

(11)

The speed of the reflected shock wave is than given by Eq. (12) [9].

ur =
1

Ms

(

1 +
2(Ms

2 − 1)

(γ + 1)/(γ − 1)

)

c1 (12)

These relations provide us with the piecewise constant exact solution, that we use as a

reference to compare the numerical results with.
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Table 1 Initial condition of the shock state

Downstream speed of sound c1 1.0

Shock Mach number Ms 1.2

Shock velocity us 1.2

Wall velocity ws 0.012

Downstream density ρ1 1.0

Downstream pressure p1 γ −1

Downstream velocity u1 0.012

Isentropic coefficient γ 1.4

a b

Fig. 8 Different curves represent different discretization for different scheme orders and number of

elements. a Normalized pressure of the reflected shock wave. b Zoom of the reflected shock

With a shock wave Mach number ofMs = 1.2 and a wall speed of ws = 0.012 the exact

solution for the pressure relation across the reflected shock wave is according to Eq. (11)

1.44911145. The simulation domain for this test case is the unit interval of x ∈ [0, 1] with

the wall initially located at x = 0.49437415. Hence the porous material covers at t = 0

more than half of the simulation domain (x ∈ [0.49437415, 1]). The initial shock position

is x = 0.24437415 with a distance of 0.25 to the wall. The simulation is run until the wall

reaches x = 0.5, the reflected shock is then at x = 0.25. Between wall and shock the fluid

assumes the velocity of the wall u1 = ws.

For our investigation, we consider four different numerical discretization, 256, 512,

1024, and 2048 elements (n) in total (Δx = 1/n) and a scheme Order (O) of 32, 16, 8,

and 4, respectively. This yields the same number of degrees of freedom (8196) across all

runs. The penalization parameters are chosen to be φ = 1 and β = 10−6, the β value can

be chosen that large as the numerical error is higher, when compared to the modelling

error. Figure 8 presents the reflected shock wave for the different spatial resolutions.

On the left in Fig. 8a the overall pressure distribution is shown along with the piecewise

constant reference. As can be seen, all discretizations with the same number of degrees of

freedom provide a good approximation of the exact solution (indicated by the black line).

Thus, while the higher spatial scheme order does not offer a benefit in this scenario with

piecewise constant solutions, it still is quite capable to represent the solution.

Figure 8b on the right shows a close-up of the solution close to the reflected shock and

shows the oscillatory of the high-order approximation. These small oscillations were not

observed in [2] with a non-moving wall. Thus, they are induced by the movement of the
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Table2 Comparison of simulation results with the exact solution

Test case p3/p2 Error in p3/p2 in [%] Δx ·10−4

O(4), n2048 1.44845372 0.04538827 6.17999817

O(8), n1024 1.44847062 0.04422237 4.95925779

O(16), n512 1.44858607 0.03625527 5.56962798

O(32), n256 1.44871493 0.02736308 4.34888760

discontinuity in the masking function. As described in Sect. Representation of immersed

boundaries, the wall position is not uniformly well represented, which results in some

oscillations as the discontinuity of the masking function moves through the stationary

mesh. Yet, the error from this effect is relatively small and does not grow with higher

scheme orders as shown in Table 2.

Table 2 shows the pressure ratio (p3/p2) and the distance between the numerical shock

and the exact shock location. The pressure ratio in the numerical solution is obtained

by averaging the solution left and right of the shock. Apparently the pressure relation

is captured quite well by all scheme orders with this fixed number of 8196 degrees of

freedom and we observe an error of less than 0.05% with a decreasing tendency for higher

spatial scheme orders. The shock location in the numerical result is assumed to be at the

middle point of the jump, and again all simulations provide a good approximation of the

reference shock location. Again the highest scheme order yields the smallest error, but the

trend is not as clear as in the pressure relation. This can be explained by the approximately

same spatial resolution of the wall position in the numerical integration. With the fixed

number of degrees of freedom we also have a fixed average density of integration points,

which limits the accuracy of the wall position. However, in comparison to the distance

between wall and reflected shock (0.25) at this point, the error is again negligibly small

and in the largest case of the fourth order approximation less than 0.25% of the distance

to the wall.

Formation of shock: moving Piston

In the previous section we investigated the reflection of a shock at a moving wall. Now

we want to look into a shock that is formed by a moving wall itself. A piston moves in a

tube of fluid at rest. Ahead of it a shock will form and travel away from the moving wall.

Behind the piston a suction area will build up with a rarefication traveling away from the

moving wall. This one-dimensional setup is well studied in literature [19] and the exact

solution for the inviscid equations is known. For this simulation we use a rigid rectangular

piston, modeled by the Brinkman penalization and moving with velocity vp = 150 in a

one-dimensional domain. The domain length L is set to 1.0 and the width of the piston

is 0.04. Initially, the piston is positioned at 0.4. The fluid is initially at rest, with density

ρ = 1.0 kg/m3 and pressure p = 105Pa. A time interval of 0.008s is computed. This

setup is particularly significant, as it indicates, whether conservation is maintained by

the wall model. A shock will not form, if conservation is not maintained or will have a

wrong speed, as a loss of conservation properties occur [19]. We have a closer look into

the density and pressure. Important here is the correct capturing of the shock position as

well as the pressure and density relation behind and ahead of the formed shock. The exact

position of the shock after t = 0.008s is expected at x = 0.819870, whereas the piston

interface is located at x = 0.56 at the end of the simulation. During post-processing we
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a b

Fig. 9 Different curves represent different discretization using different scheme orders and elements. a

Normalized density over the length of the domain. b Zoom of the shock area, in front of the shock

a b

Fig. 10 Different curves represent different discretization using different scheme orders and elements. a

Normalized pressure over the length of the domain. b Zoom of the shock area, in front of the shock

apply a smoothing filter that addresses Gibbs oscillations close to the shock [28]. As in the

previous Sect. Reflected shock wave with the reflected shock, we consider discretizations

with different scheme orders (O) but with the same overall number of degrees of freedom.

We use spatial schemes of order O(4), O(8), O(16) and O(32) with element counts (n) of

n2048, n1024, n512 and n256, respectively. Thus, the domain is resolved by 8192 degrees

of freedom in each case.

The state of the simulation result after t = 0.008s is shown in Fig. 9 for the density and

in Fig. 10 for the pressure. Once for the overall domain in Figs. 9a and 10a and once with

close-ups of the shock in Figs. 9b and 10b. The overall image shows that the state is well

captured by all scheme orders for this number of degrees of freedom. In the close-ups

the shown grid indicates the mesh for the fourth order discretization and discontinuities

at the element surfaces can be observed. The discretizations with higher spatial scheme

orders span accordingly multiple grid cells in Figs. 9b and 10b. In the run with 32nd order

a single element spans 8 of the shown 10 grid cells, all but the outer left and outer right.

As with the shock reflection in the previous section we find that the high order can

properly handle both the moving geometry and the discontinuity in the solution. Thus, it
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Fig. 11 Sketch of domain with cylinder, the non-moving cylinder (solid line) is located at the center and the

moving cylinder (dashed line) is initially shifted slightly to the right

is viable to use a high spatial scheme order in the complete domain, across discontinuities

in state and masking function without special measures.

Subsonic cylinder movement

We now move on to a two-dimensional test case, where we consider the movement of a

cylinder through a fluid with a low velocity. As a reference for this simulation, we use the

simulation of a cylinder at rest within a fluid moving with a higher velocity. In this setup

we neglect again the viscosity and only solve the penalized compressible Euler equations.

We define the simulation domain with an extent of [4d × 4d] where d is the diameter of

the cylinder. In the reference solution the fixed cylinder is put in the center of the domain.

Accordingly, the moving cylinder is put initially shifted from a center such that it reaches

the center of the domain after a simulation time of 0.04s. The relative motion between

cylinder and fluid has a Mach number of Ma = 0.5. In the reference computation this

defines the velocity of the fluid around the cylinder in rest. For themoving cylinderwe split

the velocity parts and have the cylinder move with half the velocity differenceMa = 0.25

upstream through the fluid that has a velocity ofMa = 0.25.

Figure11 sketches the simulationdomain. In the caseof themoving cylinder, the cylinder

is initially slightly shifted towards the right (dashed line cylinder) and moves to the left

during the simulation. The fluid moves from left to right in both computations.

In the simulation we use a spatial scheme order of O(16) with three different meshes.

The coarsest mesh (L8) uses 64 × 64 = 4096, the intermediate (L9) 128 × 128 = 16384

and the finest (L10) 256×256 = 65536 elements.We compare the solutions bymeasuring

the pressure along the surface of the cylinder with a resolution of one degree. In Fig. 12 all

three mesh resolutions (L) for the moving cylinder are shown. We can observe how the

pressure, normalized by the background pressure converges with finer mesh resolution.

For the mesh refinement L9 and L10 the normalized pressure at the stagnation point is

almost the same. Additionally, in all three cases we can clearly observe the decrease of the

pressure value at the stagnation point, as the resolution becomes better. Thus, also the

representation of the cylinder.

In Fig. 13 we compare the solution in normalized pressure for the mesh refinement

level L10 for the moving (M) and non-moving (NM) cylinder (cf. Fig. 13a). The pressure
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a b

Fig. 12 Comparison: Moving cylinder for different mesh refinement levels (L) over the angle. a Surface

pressure of the cylinder geometry over the angle for different mesh resolutions. b Zoom-in of the stagnation

area (maxima)

a b

Fig. 13 Comparison: Moving (M) and non-moving (NM) cylinder for mesh refinement levels L10 over the

angle. a Surface pressure of the cylinder geometry over the angle. b Zoom-in of the stagnation area (maxima)

behavior for both cases is very close and in agreement with each other. We can observe

a slight shift in the stagnation point between both solutions (cf. Fig. 13b), which is again

due to the movement of the cylinder and the different representation in each time step.

However, apart from that, both curves show the same behavior in pressure and are in very

good agreement.

Supersonic movement

In this section we increase the velocity of the moving cylinder to reach the supersonic

regime, where we again see shocks in the flow, but now in a two-dimensional simulation.

The simulation domain is rectangular of the form [L × H ] with the length L = 4 · H and

H is the height of the domain. The cylinder is 1/4 of the height of the domain and has a

diameter of d = 0.25m. Initially the cylinder is located close to the right boundary (outlet)

and moves with Mach 1.5 towards the left boundary (inlet). The fluid has a velocity of

Mach 1.5 towards the right, resulting in a total relative velocity between fluid and obstacle

ofMach 3. Upper and lower boundaries are set to slip walls. This setup is also described in

a report by P. Hu et al. [12]. The mesh has elements of the length 1/128 resulting in 65536

elements in total. We solve the inviscid Euler equations with a spatial scheme order of six.
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Fig. 14 Cylindrical geometry moves from an initial location near the outflow towards the inflow with a

relative Ma = 3.0. The movement is captured showing the density after a 0.35 s, b 0.5 s, c 0.8 s, d 1.2 s and e 1.5

s

Figure 14 shows the density for various positions of the cylinder at consecutive points in

time. Ahead of the cylinder the formation of a bow shock can be observed (cf. Fig. 14a–e).

The shock is sharply resolved anddrastic change in state can be observed in this supersonic

setting. In Fig. 14a we can observe the interaction of the bow shock with the walls. The

shock is reflected at the upper and lower wall. Besides the interaction of the shock with

the wall, we can observe the interaction of the reflected shock with vortices in the wake of

the obstacle (cf. Fig. 14d, e). Further, we can nicely observe the structure of a Richtmyer-

Meshkov instability behind the shock along the walls. All figures show a good resolution
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Fig. 15 Rotation of a fan composed by three NACA0012 airfoil profiles. The depicted pressure is normalized

by the background pressure. The rotational movement is captured after: a 5s, b 10s, c 15s and d 20s. The

normalized pressure is shown in the background. The streamlines (white) illustrate the velocity flow pattern

of the flow features, as small structures are clearly visible. The cylindrical geometry is well

modeled and its movement causes the expected physical phenomena. Our results are in

good agreement with the report of Hu et al. [12]. However, we can observe that small

scale structures are more clearly resolved in the presented high-order simulation here.

This highlights the advantage of high-order methods even with discontinuities present in

the solution. It also shows, that the Brinkman penalization can successfully be used in the

supersonic regime.

Rotation of a fan

This three dimensional test case is solvedwith the full compressible viscousNavier-Stokes

equations. The setup features a rotating fan, that is composed by three NACA0012 airfoils
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with a chord length of 1m. The first blade is initially positioned at an angle of 90◦, the

second one at 210◦ and the third at 330◦. The pressure is set to 1bar, the density to 1kg/m3

and the fluid is initially at rest. The fan rotates with a frequency of 6.283Hz. The Reynolds

number with respect to the chord length is 67, 114. The kinematic viscosity is defined to

be 1.49 · 10−5m2/s and the thermal conductivity is set to 0.024W /(m ·K ). All lengths are

normalized by the cord length. The computational domain is of size [10 × 10 × 2] unit

length and the mesh consists of a total of 102400 cubical elements with an edge length

of 1/8m. A spatial scheme order of O(6) is used on this mesh. The fan rotates counter-

clockwise around its center point at P(0, 0, 1) of the domain. In Fig. 15 the time evolution

of the rotating fan is shown after 5s, 10s, 15s and 20s from Fig. 15a to d respectively. The

pressure, normalized by the background pressure is shown as a color field, while white

streamlines illustrate the velocity pattern in the vicinity of the rotating obstacle. Three

strong vortices appear, that are due to the sudden movement of the fan in the initially

not moving fluid. Those are still visible in 15d, but are far from the obstacle at that point

and the influence from the initial condition vanishes. Clearly the meeting point of high

and low pressures at the tip of the blades can be observed. Resulting pressure waves are

well resolved and propagated through the domain forming the depicted spiral pattern.

The three vortices from the start-up travel towards the outer boundaries, disturbing the

outgoingpressurewaves (cf. Fig. 15b tod). Between the fanblades the streamlines illustrate

how the flow is captured in circulation areas confined by the blades. The geometry is

well represented and the observed behavior is in agreement with the expectations. The

simulationwas conducted onGermans national supercomputer JUWELS located in Jülich

Supercomputing Center using 15k core-h. Each compute node on the system is equipped

with 48 cores [14].

Collision of three spheres

The three-dimensional test case is solved with the compressible Euler equations. The

simulation domain has a length of L = 4 m, a height of H = 4 m and a width ofW = 1.5

m. Three spheres are located in the domain, that are at the beginning of the simulation

in contact with each other at their respective interfaces. The first sphere is located at

S1(−0.1, 0.0, 0.0) and has a radius of 0.2 m, the second and third sphere have a radius of

0.15 m and are located at S2(0.0, 0.45, 0.0) and S3(0.0, 0.0,−0.45) respectively. All spheres

movewith apredefined cosine function, away fromeachother and towards eachother, that

is defined as A · cos2π t with A being the amplitude, which is 0.1. The Euler equations are

solved with a scheme order ofO(8). The fluid is in rest, the pressure is defined to be 1 bar

and the density is 1 kg/m3. The computational mesh has 98304 elements, with an edge

length of 1/16 m. The simulation is carried out for 10 s. In z-direction the computational

domain is periodic. In Figure 16 different positions of the spheres at different points in

time are shown. Figure 16a illustrates the spheres at their maximum position, with the

largest distance to each other after 9.5 s. The spheres move from that position again back

to their original location, that is shown in Fig. 16b (after 9.8 s). As expected, the fluid

is compressed between the spheres, resulting in high velocity value on the right and left

of the spheres, as the fluid is squeezed out from the region between them. Finally, the

spheres reach their respective position in Fig. 16, where their interfaces get in contact

with each. It needs to be highlighted, that the numerical scheme is able to handle the
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Fig. 16 Collision of three spheres at different simulation time, when a the spheres are at their respective

maximum position after 9.5 s. In b spheres move towards each other after 9.8 s and c spheres get in contact

with each other at their respective interfaces after 10 s

Fig. 17 Contour plot showing the Q-criterion of 7.0 after 9.6 s simulation time. The contours are coloured by

the velocity magnitude

collision of objects, without further stability restrictions. Furthermore, the presence of

multiple moving geometries can be handled accordingly by the solver and the method

used to model the geometries.

In Fig. 17 the Q-criterion of 7.0 is shown for the time 9.6 s, when the spheres move again

back to their origin. Again, high velocity values can be observed in the region between the

spheres, where the fluid is compressed. Small structures appear close and away from the

spheres, where the fluid is disturbed by themovement of the three geometries. Please note

that simulation results provided by the solver are represented by polynomial series. For

visualization purposes this representation is voxelized during post-processing. Therefore,

the spheres in Fig. 16a appear relatively rough, as the voxelization was done in a coarse

resolution for the geometry here, while the sliced data of the flow state is resolved to a

finer level.
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Conclusion

We applied the Brinkman penalization method in our modal discontinuous Galerkin

implementation Ateles and the presented analysis shows that it offers an effective method

tomodelmoving obstacles.While the convergence order breaks down at the discontinuity

of the masking function for the penalization, the accuracy is still high in the remaining

domain and overall not worse than with a lower order discretization. Thus, the complete

domain can be computed with the same discretization without the need to adapt to the

moving obstacles. The Brinkman penalization scheme worked in our implementation for

smooth flow states like a reflected acoustic wave as well as for shocks. It is working in the

subsonic and supersonic regimes and independent of the location of obstacles relative to

the mesh. Small and closing gaps between moving parts can effortlessly modelled up to

the contact of obstacles.

We observe small scale oscillations in the solution that are not present in simulations

with fixed walls, but they remain small and decrease with better resolutions. An over-

integration in the representation of themasking function is necessary andwe found that an

over-integration by a factor of three is sufficient tomostly recover an accurate geometrical

approximation.Thepresentedmethod enables us tomodelmoving geometries of arbitrary

shape within a high-order discontinuous Galerkin scheme and provides a large flexibility

in its application.

Further improvements could be offered by incorporating re-projection methods that

promise the reconstruction of error convergence even in the vicinity of discontinuities

e.g. in [8].
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Appendix

The discontinuous Galerkin discretization

This section is devoted to a brief review, of the semi-discrete form of the discontinuous

Galerkin Finite Element method (DG) for compressible flows. For brevity we restrict this
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discussion to the inviscid part. The vicsous terms are discretized using the DG method

with symmetric interior penalty [11]. We refer to the equations obtained by neglecting

diffusive terms from the compressible Navier-Stokes equations as the Euler equations.

They provide a model for the conservation of mass, momentum and energy of the fluid

and are defined in vectorial notation by

∂tu + ∇ · F(u) = 0, (13)

with respective initial and boundary conditions. u is a vector, that includes all variables

to be conserved. Further the flux function F(u) = (f(u), g(u))T is defined for the spatial

dimensions and is in 2D given by

u =

⎡

⎢

⎢

⎢

⎣

ρ

ρu

ρv

ρE

⎤

⎥

⎥

⎥

⎦

, f(u) =

⎡

⎢

⎢

⎢

⎣

ρu

ρu2 + p

ρuv

(ρE + p)u

⎤

⎥

⎥

⎥

⎦

, g(u) =

⎡

⎢

⎢

⎢

⎣

ρv

ρuv

ρv2 + p

(ρE + p)v

⎤

⎥

⎥

⎥

⎦

,

with density ρ, velocity v = (u, v)T , specific total energy E, and pressure p. The sys-

tem is closed by the equation of state. Which for an ideal gas provides p = (γ −

1)ρ
(

e − 1
2 (u

2 + v2)
)

. Here γ =
cp
cv

is the ratio of specific heat capacities and e is the

total internal energy per unit mass.

The discontinuous Galerkin formulation of the mentioned equation is obtained, by

multiplication with a test function ψ and integration over the domain Ω . Afterward, we

apply integration by parts and obtain the weak formulation
∫

Ω

ψ
∂u

∂t
dΩ +

∮

∂Ω

ψF(u) · nds −

∫

Ω

∇ψ · F(u)dΩ = 0, ∀ψ . (14)

Where ds denotes a segment on the surface integral. The overall domain Ω is split

into smaller, n non-overlapping elements Ωi|i = 1, 2, . . . , n, such that Ω = ∪n
i=1Ωi and

Ωi ∩ Ωj = ∅∀i �= j. Within in each of these elements a polynomial series Pm with

a maximal degree of m ≥ 0 is used to approximate the solution u. We refer to this

approximate solution as uh(x, t), in each element i.

uh(x, t) =

m
∑

i=0

ûiφi (15)

The expansion coefficients ûi are the degrees of freedom of the numerical solution. It is

important to keep in mind, that no global continuity requirement for uh in the previous

definition is needed. Dividing the integrals in Eq. (14) into a sumof integrals over elements

Ωi, we can obtain the space-discrete variational formulation with test functionsψj in each

element

∂

∂t

∫

Ωi

ψjuhdΩ +

∮

∂Ωi

ψjF(uh) · nds −

∫

Ωi

∇ψj · F(uh)dΩ = 0, ∀ψj . (16)

By using m + 1 linearly independent test functions ψ0, . . . ,ψm we arrive at a fully deter-

mined linear system ofm+ 1 equations for them+ 1 degrees of freedom. The appearing

inner products of φi and ψj , can be precomputed and we can represent the system in

the form of matrices that are multiplied with the degrees of freedom û representing the

state. Since the numerical representation is only supported locally, the flux term is not

uniquely defined at the element interfaces. Thus, the flux function has to be replaced by

an approximative numerical flux function F∗(u−
h
,u+

h
,n), where u−

h
and u+

h
are the interior

and exterior traces at the element face in the normal direction n to the interface.
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To simplify the above equation, we can re-write it in a matrix vector notation as

∂

∂t
û = M−1

(

S · F(û) − MF · F(û)
)

=: rhs(û). (17)

Hereby M,S are the mass and the stiffness matrices and MF are the so called face mass

lumpingmatrices. The computational cost to perform these operations obviously depends

on the choice of basis functions. Using the orthogonality of Legendre polynomials the

mass matrix gets diagonalized and trivially invertable, such that the multiplication with

M−1 can be performed in O(m + 1) operations. The stiffness matrix is not as trivially

applied, however due to the recursive properties of the Legendre polynomials it can still

be computed in O(m + 1) operations by exploiting this recursiveness.

The obtained ordinary differential equations (17) can be solved in time using any stan-

dard time-stepping method, e.g. a Runge-Kutta method [2]. In our DG discretization, we

usually employ the HLL flux as numerical flux.
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