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Abstract

Traditional video compression methods obtain a compact
representation for image frames by computing coarse motion
fields defined on patches of pixels called blocks, in order to
compensate for the motion in the scene across frames. This
piecewise constant approximation makes the motion field
efficiently encodable, but it introduces block artifacts in the
warped image frame.

In this paper, we address the problem of estimating dense

motion fields that, while accurately predicting one frame
from a given reference frame by warping it with the field, are
also compressible.

We introduce a representation for motion fields based on
wavelet bases, and approximate the compressibility of their
coefficients with a piecewise smooth surrogate function that
yields an objective function similar to classical optical flow
formulations. We then show how to quantize and encode
such coefficients with adaptive precision.

We demonstrate the effectiveness of our approach by com-
paring its performance with a state-of-the-art wavelet video
encoder. Experimental results on a number of standard flow
and video datasets reveal that our method significantly out-
performs both block-based and optical-flow-based motion
compensation algorithms.

1. Introduction
Most modern video compression algorithms fall into the

category of hybrid video encoders that work by using previ-

ously decoded frames and some side information (explicitly

added by the encoder) to make a prediction for the current

frame. The difference between the prediction and the frame,

called residual or prediction error, is then encoded separately

to correct the prediction. On one hand a better prediction

implies a more compact residual encoding; on the other hand,

the side information must be kept as compact as possible to

avoid its encoding cost outweighing the benefits of the more

accurate prediction.

∗Part of the work done while the author was an intern at Microsoft

Research Cambridge.

The largest part of such side information consists of a

motion field, which allows to compensate for the motion of

the camera and the objects in the scene across consecutive

frames, hence forming a motion compensated prediction.

Given a pair of images I0 and I1, a (dense) motion field u is

a field of per-pixel motion vectors describing how to warp

pixels from I1 to form a new image I1(u), which we refer

to as I1 warped with u. Such an image can be used directly

as a prediction of I0; the residual is then I0 − I1(u)

It should be noted that the side-information (motion field

in this case) does not need to be an estimate of the true

motion in the scene, as in optical flow problems; we just want

a motion field which results a residual that is small to encode.

Ideally, we would associate to each pixel in the image the

motion vector that minimizes the residual; however such a

field may contain more information than the image itself: a

field for n pixels has 2n degrees of freedom. Hence some

freedom in computing the field must be traded for efficient

encodability.

The traditional and most successful solution for the above

problem is the family of BlockMotion Compensation (BMC)

algorithms, originally introduced in [11] and adopted by vir-

tually every modern video coding algorithm. In its basic

version, a fixed block size (say 16 × 16) is chosen and a

motion vector is associated to each block. In the above def-

inition this is equivalent to requiring that the motion field

is constant within the blocks. This piecewise constant flow

approximation makes the motion field efficiently encodable,

but it introduces block artifacts in the decoded image frame.

In this paper we address the problem of estimating dense

motion fields which, while accurately predicting one frame

from a given reference frame by warping it with the field,

are also compressible. We introduce a new representation for

motion fields as linear combinations of a given basis. The

computation of the basis coefficients can be posed as a global

piecewise-smooth optimization problem which resembles

classical optical flow formulations, optimizing for both com-
pressibility and residual magnitude. The real-valued solution

is then quantized and encoded, with a quantization algorithm

that minimizes the error induced in the warping.
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The basis must be chosen to be able to represent sparsely

a wide variety of motions, and to allow efficient optimiza-

tion. We focus on wavelet bases, which loosely generalize

block-based algorithms, and whose orthogonality simpli-

fies the optimization. We perform a thorough experimental

evaluation of our method on the Middlebury optical flow

image pairs as well as a variety of video sequences. Our

results reveal that our wavelet motion fields outperform both

block-based and optical-flow-based motion compensation

techniques.

Our contributions We summarize here the contributions of

our work: (1) we introduce a new representation of motion

fields based on orthogonal wavelets; (2) we show how to

compute a motion field in this representation while optimiz-

ing for both residual quality and compressibility of the field;

(3) we show how to quantize and encode the coefficients min-

imizing the warping error introduced by the quantization.

2. Related Work
As mentioned before, block-based algorithms induce mo-

tion fields that are likely to be discontinuous at block bound-

aries, thus introducing in the predicted image, and in-turn

in the residual, discontinuities that are visually noticeable

and expensive to encode. To alleviate this problem, either a

de-blocking filter is used for post-processing the result (as in

H.264 [19]), or the blocks are allowed to overlap. The latter

approach averages the pixels from different blocks on the

overlapping area using a smooth window function. Such a

solution is called Overlapping Block Motion Compensation

(OBMC) [16, 18], and is used in Dirac [6] and other wavelet-

based codecs. Both solutions reduce the block artifacts but

introduce blurriness, thus losing detail.

Different block sizes in a block motion compensation

algorithm give different accuracy/compactness trade-offs.

To account for parts of the image where higher precision is

needed, e.g. across object boundaries, Variable Block Mo-

tion Compensation (VBMC) was proposed in [3]. In VBMC,

each block can be segmented into smaller sub-blocks, with

the segmentation encoded as side information, and a dif-

ferent motion vector is encoded for each sub-block. This

approach is used in most modern video coding algorithms,

including H.264 and Dirac. In both BMC and VBMC, the

computation of the field is a discrete optimization problem:

shorter motion vectors can be encoded with fewer bits, so

a trade-off between residual magnitude and encoding cost

must be decided; furthermore, the decisions on a block in-

fluence the decisions on other blocks, because the motion

vectors are encoded differentially. VBMC exacerbates the

problem by adding the decision of the segmentation, as more

refined segmentations require more bits. Given the intrinsi-

cally combinatorial nature of the problem, no efficient opti-

mal algorithms have been devised. Hence, greedy strategies

are used in practice.

A large amount of work has been done on exploring alter-

nate representations for dense motion, but the improvements

over block-based solutions have been so marginal that the

increase in complexity is not justified. Here we report the

papers that are closest to our work.

In [14] the authors present a mesh-based representation

(similar to the one used in [10]). However, the model is

not expressive enough to cover a wide range of motions. In

fact, the authors suggest to fall back to block-based methods

when the mesh-based approach fails. Compact representa-

tions of dense motion fields are explored in [12], where the

authors use a DCT-based encoder for the field, in [15] where

a multiscale approach similar to our wavelet decomposition

is used, and in [8], which uses a quad-tree-like hierarchical

representation.

The main difference between the aforementioned papers

and our work is in the estimation of the motion field: they

use either a quadratic penalty on the field derivatives (similar

to the Horn-Schunck model [9]) or MRF formulations, in

order to favor smooth solutions that approximate the actual

motion of the scene. This approach is based on the reasonable

assumption that smooth fields are easy to compress1. In

what follows, we show that by using a penalty modeled

after the actual entropy encoder of the field, it is possible to

obtain fields that can be encoded in significantly fewer bits,

compared to the fields obtained with the smoothness penalty,

without sacrificing prediction quality.

3. Problem statement

Notation We define a single-component2 (grayscale) image

I of width w and height h as a vector in R
w×h, and a mo-

tion field u as a vector in R
2×w×h, with u0 and u1 being

respectively the horizontal and vertical components. For a

motion field to be feasible we constrain its motion vectors

inside the image rectangle, i.e. 0 ≤ i + u0
i,j ≤ w − 1 and

0 ≤ j + u1
i,j ≤ h− 1. We call the set of feasible fields F .

By a slight abuse of notation we extend I to the con-

tinuous rectangle [0, w − 1] × [0, h − 1] by interpolation

(in our implementation we use bicubic) and define the im-

age I warped with the motion vector u as I(u), formally

I(u)i,j = Ii+u0
i,j ,j+u1

i,j
(for instance, I(0) = I). This nota-

tion allows us to write the residual of I0 and I1 under the

motion field u as I0 − I1(u).

3.1. Representation and coding cost

Field representation We represent a motion field u by its

coefficients α in a linear basis represented by a matrix W ,

so that u = Wα and α = W−1u. The coefficients α are

1In fact, modern optical flow algorithms favor fields with sharp edges at

object boundaries, which would be harder to compress.
2We focus on grayscale images for brevity, but everything can be easily

generalized to color images.
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lossily encoded using a quantizer and an entropy coder. This

is not dissimilar to lossy transform coding for images, used

for example in DCT coders such as JPEG and wavelet en-

coders such as JPEG2000. However we will use an ad-hoc

quantizer, as described in Section 5.

Coding cost Let F̃ be the set of feasible fields with integer
coefficients in the basis W , and let bits(W−1ũ) denote the

coding cost of ũ ∈ F̃ , i.e. the number of bits obtained by

coding the coefficients of W−1ũ with an entropy encoder.

Given a bit budget B for the field, we wish to minimize the

residual subject to the budget

min
ũ∈ ˜F

‖I0 − I1(ũ)‖ s.t. bits(W−1ũ) ≤ B (3.1)

where ‖ · ‖ is a distortion measure such as L1 or L2
2.

Following the approach of Rate-Distortion Optimization

[17] we can rewrite (3.1) as the Lagrangian

min
ũ∈ ˜F

‖I0 − I1(ũ)‖+ λ bits(W−1ũ) (3.2)

where λ is the Lagrangian multiplier, which trades off bits of

the field encoding for residual magnitude. This parameter can

be either set a priori (estimating it from the desired bitrate)

or optimized. The bits(·) function is in general a complex

algorithm, making the integer program (3.2) intractable. In

order to optimize it we will derive a tractable surrogate

function in Section 4.

3.2. Wavelet field representation

In the following we will assume that W is a block-

diagonal matrix diag(W ′,W ′), i.e. the horizontal and verti-

cal components of the field are transformed independently

with the same transform matrix, and that W ′ is an orthogo-

nal separable multilevel wavelet transform, so we can write

W−1 = WT . The coefficients of WTu can be divided into

� levels, which represent the detail at each level of the recur-

sive wavelet decomposition, and in the separable 2D case

each level (except the first) can be further divided into 3
subbands, which correspond to horizontal, vertical and diag-

onal detail. A comprehensive account of multilevel wavelet

decompositions can be found in [13]. We denote the b-th
subband as (WTu)b, and its i-th coefficient is (WTu)b,i.
VBMC and the Haar Wavelet Here we show that the mo-

tion fields obtained with Variable-Block Motion Compensa-

tion can be represented sparsely in the Haar wavelet basis,

suggesting that other wavelet bases may be good choice for

representing motion as well.

We assume that the blocks have all power-of-two sides;

virtually all implementations of VBMC have this property.

In the first approximation level of the Haar decomposition,

each coefficient corresponds to the average of the motion

field inside a macroblock (modulo normalization constants).

Each level of splitting of the blocks adds a constant number

of coefficients to the corresponding detail level in the Haar

decomposition, which correspond to the difference of the

vectors in the sub-blocks. As a consequence the total number

of non-zeros is linear in the number of sub-blocks.

Where VBMC and the Haar representation differ is in

the encoding of both the coefficients and the topology of

the segmentation. VBMC represents the segmentation ex-

plicitly, and encodes the difference of the vector with the

median of the neighboring motion vectors, to exploit the

local coherency of the field. In the wavelet representation the

segmentation is implicitly encoded in the set of non-zeros

of the coefficients, while the local coherency is exploited by

the recursive encoding of averages and differences: if neigh-

boring blocks have similar field, the difference coefficient

will be small. This is the same principle that makes wavelet

bases suitable to represent natural images.

Reference frame Current frame Absolute difference Detail

Haar motion field Haar prediction Haar residual Haar prediction detail

Sym5 motion field Sym5 prediction Sym5 residual Sym5 prediction detail

Figure 1. First row: first two frames of foreman and absolute

difference. Second and third row: motion fields, prediction and

residual obtained with Haar and Sym5 wavelets. One can observe

that the Sym5 field is free from blocking artifacts.

4. Objective function derivation

Surrogate coding cost In this section we derive a tractable

surrogate of bits(·). We first start by noting that to encode

the coefficients of WTu we need to encode both the posi-
tions of the non-zero coefficients (this term is significant

if the representation is sparse) and the sign and magnitude
of the quantized coefficients. Let ũ be a solution of (3.2)

with integer coefficients in the transformed basis, hence al-

ready quantized, and let nb be the number of coefficients in

the subband b and mb the number of non-zeros.The entropy

of the set of positions of the non-zeros in a given subband

can be upper bounded by mb(2 + log( nb

mb
)) by using a stan-

dard upper bound on the entropy [4]. Hence the contribu-

tion of each coefficient α̃b,i = (WT ũ)b,i can be written as

(log nb − logmb + 2)I[αb,i �= 0]. Since optimizing over the
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sparsity of a vector is a hard combinatorial problem, we make

two approximations: first, we fix mb to a small constant, as-

suming sparsity of the solution. Second, we approximate

the indicator function I[αb,i �= 0] with log(|αb,i| + 1). To
approximate the non-zero coefficients cost we assume that

the number of bits needed to encode a coefficient α can be

bounded by γ1 log(|α|+ 1) + γ2; this is true for many uni-

versal codes for integers, such as the Gamma codes [7] used

in our entropy encoder.

Putting together the two approximate costs, we approx-

imate the per-coefficient surrogate bit cost with (log nb +
cb,1) log(|αb,i|+ 1) + cb,2, with cb,1 and cb,2 constants. By

writing βb = log nb + cb,1 and ignoring cb,2 we can define

the surrogate coding cost

‖WTu‖log,β =
∑
b

βb

∑
i

log(|(WTu)b,i|+ 1). (4.1)

Substituting this in (3.2) we obtain our final objective

min
u∈F

‖I0 − I1(u)‖+ λ‖WTu‖log,β . (4.2)

Despite the somewhat involved derivation, equation (4.2)

is very simple, and reminiscent of the classical Horn-

Schunck model for optical flow [9]. Instead of using a regu-

larizer based on the derivative of the field, our formulation

adopts a weighted logarithmic penalty on the transformed
coefficients. Logarithmic (and in general concave) penalties

are known to encourage sparse solutions [2]; in fact the mo-

tion fields we obtain have very few non-zero coefficients.

This gives an intuitive explanation of why the resulting fields

are compressible.

Additional sparsity can be enforced by controlling the

parameters βb; for instance, βb can be set to∞ to constrain

the b-th subband to be zero. This can be useful if we want

to obtain a locally constant motion field, by discarding the

higher-resolution subbands. In the Haar case discarding the

last two levels of the wavelet decomposition is equivalent to

imposing a minimum block size of 4× 4.
Data term linearization To optimize the objective func-

tion we follow the same strategy used in most optical flow

algorithms: to handle the highly non-linear data term, we

linearize it and iteratively solve the problem by refining the

linearization at each iteration.

Given a field estimate u0 we perform a first-order Tay-

lor expansion of I1(u) at u0, giving a linearized data term

‖I0 − (I1(u0) +∇I1[u0](u − u0))‖ where ∇I1[u0] is the

image gradient of I1 evaluated at u0. Rewriting the term

as ‖∇I1[u0]u − ρ‖ with ρ a constant term, the linearized

objective is

‖∇I1[u0]u− ρ‖+ λ‖WTu‖log,β . (4.3)

This function is a good approximation only when u is very

close to u0. A common solution to account for large dis-

placements is embedding the linearized objective function

in a coarse-to-fine manner; however, in our experiments this

technique failed to find good solutions. The solution we

adopted is to bootstrap the algorithm with an optical flow

computed with Horn-Schunck (which is implemented in a

coarse-to-fine manner). We compute a small set of optical

flow solutions with different regularization parameters, and

choose the one that minimizes the objective function in (4.2).

Such flow is then used to initialize the iterative linearization.

Optimization of the linearized objective The function

(4.3) is non-convex and hard to solve in general. However

the two terms constituting it are easy to handle individually.

For this reason, we use a decomposition based approach

used in [21]. Specifically, we decompose the problem by

introducing an auxiliary variable v and a quadratic coupling

term that keeps u and v close as

‖∇I1[u0]v − ρ‖+ 1

2θ
‖v − u‖22 + λ‖WTu‖log,β . (4.4)

The objective (4.4) can be minimized by alternating opti-

mization, letting the coupling parameter θ decrease at each

iteration (we adopt an exponentially decreasing schedule).

We also project u to the rectangle F ∩ [u0 − 1, u0 + 1] at
each iteration, so that each step cannot update the field by

more than one pixel (after which the linearization becomes

inaccurate).

Keeping u fixed, ‖∇I1[u0]v − ρ‖+ 1
2θ‖v − u‖22 can be

optimized over v in closed form for both L1 and L2
2 norms,

in the first case by soft-thresholding the field as described in

[21], in the second case by solving a 2× 2 linear system for

each pixel.

Keeping v fixed, we show how to optimize 1
2θ‖v −

u‖22 + λ‖WTu‖log,β over u. Note that by the change of

variable z = WTu, the function becomes 1
2θ‖W (WT v −

z)‖22 + λ‖z‖log,β . Since W is orthogonal, this is equal to
1
2θ‖WT v− z‖22 +λ‖z‖log,β . The problem is now separable,

hence it can be reduced to component-wise optimization of

the one-dimensional problem (x− y)2 + t log(|x|+ 1) in x
for a fixed y. It can be easily seen that the minimum is either

0 or 1
2 sgn(y)(y − 1 +

√
(y + 1)2 − 4t) (when the latter

exists), so both points can be evaluated to find the global

minimum.

5. Quantization
The solution u to (4.2) is real-valued; we now need to

encode it lossily into a finite (possibly small) number of bits

while not degrading too much the quality of the residual.

To do this we follow the standard approach of dividing the

coefficients into small square blocks and assigning an uni-

form quantizer qk with dead-zone [4] to each block k, which

means that if a coefficient α is located in block k the integer

value sgn(α)	 α
qk

 is encoded. The full details of the encoder

will be given in Section 6. It remains to be decided what

quantizer qk to assign to each block k.
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Following again Rate-Distortion Optimization [17], a

widely adopted strategy is to fix a component-wise distor-

tion metric D on the coefficients to be encoded, for example

squared difference, and optimize over q = (q1, . . . , qk, . . . )
the objective

min
q

∑
i

D(αi, α̃i,q) + λquant bits(α̃i,q) (5.1)

where α̃i,q is the quantized value of αi under the choice

of quantizers q, and λquant is again a Lagrangian multiplier

that trades off distortion for bitrate. Since each block can

be optimized separately, the running time is linear in the

number of blocks and quantizer choices.

One common choice for the distortion metric D is be

the squared difference D(x, y) = (x − y)2; if α = WTu
is the vector of coefficients, the total distortion is equal to

‖α−α̃q‖22; by orthogonality ofW this is equal to ‖u−ũq‖22
where ũq = W α̃q, hence equal to the squared distortion of

the field. By setting a strict bound on the average distortion

(for example less than quarter-pixel precision) the quantized

field can be made close enough to the real-valued field.

It is easy to see however that this can be very wasteful,

as not all the motion vectors require the same precision.

For example, in smooth areas of the image an imprecise

motion vector should not induce a large error in the residual,

while around sharp edges the vectors must be as precise as

possible. This suggests that the precision required for the

vectors should be related to the image gradient. We now

formalize this intuition.

The ideal distortion we would like to optimize when quan-

tizing a motion field is the warping error ‖I(u) − I(ũq)‖
for some norm ‖ · ‖. This is not possible in the above frame-

work because such distortion metric is non-separable as a

function of the transformed coefficients. For this reason we

derive a coefficient-wise surrogate distortion metric that

approximates the warping error.

First, following again the approach in Section 4 we lin-
earize the warping error around u, obtaining ‖∇I[u](u −
ũq)‖. As the quantization error is expected to be small,

the linearization is a good approximation. Exploiting lin-

earity, we can now rewrite it as ‖∇I[u]W (α − α̃q)‖ =
‖∇I[u]Wẽ‖, where ẽ = α − α̃q is the quantization error.

The argument of the norm is now linear in α̃q, but W intro-

duces high-order dependencies between coefficients, hence

this function cannot be used as a coefficient-wise distortion

metric yet.

Let us now assume that the distortion ‖ · ‖ is L2
2. If we

can find a diagonal matrix Σ = diag(σ1, . . . , σ2n) such

that ‖Σẽ‖2 approximates ‖∇I[u]Wẽ‖2, then we can use as

distortion metric DΣ(αi, α̃i) = σ2
i (αi − α̃i)

2 in (5.1) and

obtain an approximation to the squared linearized warping

error.

The squared linearized warping error can then be written

as ẽTWT∇I[u]2Wẽ. We choose as Σ the square root of

the diagonal of WT∇I[u]2W ; if the contribution of the off-

diagonal elements is small, meaning that WT∇I[u]2W is

close to diagonal, the diagonal is a good approximation. We

give an intuitive explanation of why this is the case: most

vectors of the wavelet basis are localized in space, with most

of their energy concentrated in a small number of pixels;

hence in the matrix a large part of the energy is concentrated

around the diagonal.

To compute Σ, note that σi = ‖∇I[u]Wei‖2, where ei
is the vector with 1 in i-th position and zeros elsewhere; in

other words, σi is the norm of the i-th column of ∇I[u]W .

Since W is a multi-level wavelet transform, we do not have

the matrix in explicit form, but an algorithm that computes

the linear operator instead. However it is easy to see that if

the wavelet has constant support, and the number of levels

� is constant, the columns have constant support. Further-

more, it is sufficient to compute the columns of W only on a

2� × 2� square of the image domain, and the others can be

obtained by translation. Hence we can compute them sym-

bolically by modifying the inverse Fast Wavelet Transform

algorithm [13], and compute the norms explicitly. The total

time complexity is linear.

6. Implementation details
For our experiments we chose the family of least-

asymmetric (Symlet) wavelets [5], specifically the Sym5

wavelet, which gave the best results. The Symlet wavelets

are orthogonal, compactly supported, and almost symmetric;

moreover, as most wavelets used in signal processing, they

are continuous, hence any finite approximation of a signal

by Symlet wavelets is continuous, regardless of the number

of coefficients used. On the other hand, the Haar wavelet is

discontinuous, thus it produces significant discontinuities in

sparse approximations of continuous signals.

An example is shown in Figure 1: the Haar basis exhibits

the same artifacts as block-based methods, while field and

prediction obtained with Sym5 are smooth.

We use a decomposition with 5 detail levels (plus the

approximation level). To choose the weights βb in (4.1) the

log nb term suggests to use increments of 2 per level, because

at each level the number of coefficients increase by a factor

of 4; hence for the 6 levels we used (2, 4, 6, 8,∞,∞) in all

the experiments. We give infinite weight to the last two levels

both to control the sparsity, and also because we estimate the

field only on the luma component and use the same field on

the chroma components; constraining the field to be locally

smooth reduces the risk of overfitting to the luminance.

Field and residual encoder To evaluate experimentally the

effectiveness of the method in a video compression setting

we implemented a complete video encoder. This requires

implementing an encoder for the residual image; we use
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again a wavelet transform on the residual and then the same

quantizer/entropy coder to encode the coefficients of both

the field and the residual.

As quantizer/entropy coder we use a simplified version of

Dirac’s residual coder: the coefficients are split into blocks

(we use 16× 16 blocks) and each block is assigned an uni-

form quantizer q. When compressing the residual, each block

of coefficients to be encoded can be taken either from the

wavelet decomposition of the residual, or from the wavelet

decomposition of the original frame; this is done to account

for areas of the image where the residual is less compressible

than the image itself, for example where the image is oc-

cluded in the previous frame. The entropy coder is the same

context-based binary arithmetic coder used by Dirac, but we

use a smaller number of contexts for predicting zeros and

signs based on the neighboring coefficients already encoded.

Unlike Dirac, for simplicity no coefficient prediction or zero

prediction based on the parent subband are performed. Fi-

nally, the wavelet used in the decomposition is Sym5, instead

of the biorthogonal wavelets used in Dirac.

7. Experiments

Adaptive quantization We evaluated the quantization al-

gorithm described in Section 5 on the motion field of the first

pair of frames of four of the videos used in the experiments.

The curves in Figure 2 show the PSNR of the actual warp-

ing error, measured as PSNR(I1(u), I1(ũq)) at different bit
sizes (obtained by varying λquant), using the standard L2

2

distortion metric and the weighted distortion metric Σ-L2
2

described above. By optimizing for Σ-L2
2 instead of L2

2 the

field can be encoded in roughly half the bits at the same

quality . Furthermore, the rate-distortion curve obtained with

the weighted distortion is significantly closer to linear, show-

ing that the surrogate distortion is highly correlated with the

actual warping error.

Experiments on the Middlebury dataset As an early syn-

thetic benchmark, we used the grayscale image pairs of the

Middlebury dataset [1] and measured the quality of the pre-

diction against the compressed field size in bits, comparing

with Horn-Schunck, as reported in Figure 3. The curves are

obtained by finding the best quality/size trade-offs by a grid

search on λ and λquant. L1Log and L2Log refer to our algo-

rithm, with respectively L1 and L2
2 data terms, while HS is

the classic Horn-Schunck; WQ variants use adaptive field

quantization. On all pairs, our algorithm performs better

than HS, obtaining fields that are as small as one half or

one third than those obtained with HS, with the same predic-

tion quality. Also, on almost all pairs, adaptive quantization

significantly reduces the encoded field bitrate. Surprisingly,

L1Log performs better than L2Log despite the metric is

PSNR. We believe that this is caused by the robustness of

the L1 norm, that makes the optimization easier.
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Figure 2. Rate-distortion curves of the field between the first two

frames of the four video sequences used for evaluation. The y axis

shows the PSNR between the reference warped with the continuous

field and with the quantized field.

Video compression evaluation We compared our imple-

mentation against Dirac, a state-of-the-art wavelet video

codec; its simplicity allowed us to implement a very similar

encoder, so we can compare the contribution of the motion

compensation component. Since our model can only handle

pairs of frames, we configured Dirac to use a single reference

frame; we will return again on the issue of multiple reference

frames in Section 8. As in the Dirac encoder, no explicit rate

control is performed; instead λ for the motion estimation

and the λquant for field and residual quantization are fixed

in advance and remain constant across the frames. For each

sequence these parameters are searched on a grid to find the

best quality at a given rate. The first frame of the sequence is

encoded with no prediction, then each subsequent frame is

predicted from the previous decoded frame. Both PSNR and

bitrate are averaged over all the frames. We only compare

the PSNR of the luma component, as it takes most of the

bitrate; the chroma PSNR obtained is almost always greater

than that of the luma in all the sequences.

Test sequences We performed our experiments on eight

color (YUV420) sequences from a database of standard

video compression test sequences [20]. They combine a

variety of (camera and scene) motion types, and have dif-

ferent frame resolutions, 352 × 288 for foreman, news,
highway, bus, flower, and football, 832 × 352 for sintel,
and 704× 576 for soccer.

Results Figure 5 compares the rate-distortion curves ob-

tained with our implementations and Dirac on the first 25
frames of each test sequence. Despite the simplified residual

encoder and the high level of tuning of the Dirac encoder,
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Figure 3. Results on the frame pairs of the Middlebury dataset. The x axis measures the compressed field size in kbits, the y axis is the

PSNR between I0 and I1(ũ), i.e. the reference frame warped with the quantized field.

Reference frame Current frame Absolute difference

5024 bits

L1Log-WQ motion field

PSNR: 38.8

L1Log-WQ prediction L1Log-WQ residual

5048 bits

HS motion field

PSNR: 35.5

HS prediction HS residual

Figure 4. Fields obtained with our method (L1Log-WQ) and Horn-

Schunck (HS) on the first two frames of sintel.

both L1Log-WQ and HS outperform it on all the sequences

except bus at lower bitrates.

Compared to Dirac at the same PSNR, L1Log-WQ im-

proves average bitrate by 23% on foreman, 38% on news,
47% on highway, 49% on sintel, 13% on flower, 39% on

soccer, 5% on football, and 1% larger on bus.
L1Log-WQ also improves bitrate against HS on all the

sequences, significantly on some: 11% on foreman, 7% on

news, 8% on highway, 18% on sintel, 6% on bus, 5% on

flower, 5% on soccer, 3% on football.

8. Discussion and Future Work
The experiments in Section 7 show that our method pro-

duces promising compression results in the single reference

frame setting. It should be noted that the decoding com-

plexity is only marginally higher than block-based motion

compensation, as just a wavelet transform and a pixel-level

warping are needed. Efficient decodability is a desirable

property in many video compression applications, such as

broadcasting, where the decoder must be implemented on

low-power devices. With respect to encoding instead, our

unoptimized implementation takes approximately 8 seconds

for a 352× 288 frame on an Intel Core 2. However we be-

lieve that a tuned GPU-based implementation could run in

real-time. Whether our objective function can be efficiently

optimized is an interesting open question.

One of the limitations of our current model is that it does

not handle occlusions explicitly; instead it always tries to

match each pixel of the current frame with some pixel of

the reference frame. This may be a source of inefficiency in

sequences with large occlusions, because the coefficients of

the motion vectors in occluded areas are encoded anyway.

Another limitation is the single reference frame constraint:

multiple reference frames greatly improve the efficiency of

video encoders.

We believe that it is possible to extend our model to con-

sider both issues. Occlusions and lighting changes can be

handled by adding a multiplicative per-pixel term l (when

the term is 0, the pixel is considered occluded) and k refer-

ences can be supported with a field component t ranging in

the temporal dimension of the 3D image I1,...,k. Thus the

image prediction model becomes I1,...,k(u, t, l). Note that

when both t and l are identically 1 the model reduces to the

basic model I1(u) presented here. The terms t and l can be

again transformed in a wavelet basis and quantized/encoded.

The fields u, t and l should be optimized jointly, to find a

good trade-off between prediction accuracy and their com-

pressibility. However it not trivial to extend the optimization

algorithm presented in Section 4 to this model. Another

interesting question is how to generalize the algorithm to

non-orthogonal bases, such as the biorthogonal wavelets

widely used in image compression.
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Figure 5. Rate-distortion curves on the test sequences, showing the average PSNR against the average bitrate per frame.
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