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ABSTRACT
We attempt to explain the non-thermal emission arising from galaxy clusters as a result of

the re-acceleration of electrons by compressible turbulence induced by cluster mergers. On

the basis of the available observational facts we put forward a simplified model of turbulence

in clusters of galaxies focusing our attention on the compressible motions. In our model

intracluster medium (ICM) is represented by a high-beta plasma in which turbulent motions

are driven at large scales. The corresponding injection velocities are higher than the Alfvén

velocity. As a result, the turbulence is approximately isotropic up to the scale at which the

turbulent velocity gets comparable with the Alfvén velocity. These motions are most important

for the energetic particle acceleration, but at the same time they are subjected to most of the

plasma damping. Under the hypothesis that turbulence in the ICM is highly super-Alfvénic

the magnetic field is passively advected and the field lines are bended on scales smaller than

that of the classical, unmagnetized, ion–ion mean free path. This affects ion diffusion and

the strength of the effective viscosity. Under these conditions the bulk of turbulence in hot

(5–10 keV temperature) galaxy clusters is likely to be dissipated at collisionless scales via

resonant coupling with thermal and fast particles. We use collisionless physics to derive the

amplitude of the different components of the energy of the compressible modes, and review

and extend the treatment of plasma damping in the ICM. We calculate the acceleration of

both protons and electrons taking into account both transit time damping acceleration and

non-resonant acceleration by large-scale compressions. We find that relativistic electrons can

be re-accelerated in the ICM up to energies of several GeV provided that the rms velocity of

the compressible turbulent-eddies is (VL/cs)
2 ≈ 0.15–0.3; cs is the sound speed in the ICM.

We find that under typical conditions ≈2–5 per cent of the energy flux of the cascading of

compressible motions injected at large scales goes into the acceleration of fast particles and

that this may explain the observed non-thermal emission from merging galaxy clusters.

Key words: acceleration of particles – radiation mechanisms: non-thermal – turbulence –

galaxies: clusters: general – radio continuum: general – X-rays: general.

1 I N T RO D U C T I O N

In the last years observations of galaxy clusters have shown that non-thermal components are mixed together with the thermal component

of the intracluster medium (ICM). A fraction of massive galaxy clusters hosts diffuse radio emission in the form of radio haloes, Mpc-sized

diffuse synchrotron radio sources at the cluster centre, and radio relics, elongated diffuse synchrotron radio sources at the cluster periphery.

This directly proves the presence of GeV relativistic electrons (and/or positrons) and of μG magnetic fields diffused on Mpc scales through

the cluster volume (e.g. Feretti 2005, for a review). A related issue is the discovery of non-thermal emission in the hard X-ray band detected

in a few galaxy clusters (e.g. Fusco-Femiano et al. 2004; Rephaeli, Gruber & Arieli 2006).

The most spectacular example of non-thermal emission from galaxy clusters is that of giant radio haloes. These are very extended (Mpc)

synchrotron radio emissions, not connected with cluster radio sources, at the centre of clusters, with a steep spectrum and a typical synchrotron
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luminosity in the range ≈1040–1042 erg s−1. A remarkable point is that the emitting particles have a lifetime considerably shorter than that

necessary to diffuse over the scales of these radio haloes, and this poses a theoretical problem on their origin (e.g. Jaffe 1977). In principle if

the content of cosmic ray hadrons in the ICM is sufficiently large, fast electrons and positrons may be continuously injected in the ICM via

hadronic collisions between cosmic rays and thermal protons (Dennison 1980; Blasi & Colafrancesco 1999), alternatively different forms of

in situ stochastic acceleration and re-acceleration operating for a small fraction of the cluster life may provide a viable source for high-energy

emitting particles (Schlickeiser, Sievers & Thiemann 1987; Brunetti et al. 2001; Petrosian 2001). Future gamma ray observations (GLAST,

Cerenkov telescopes) will constrain the content of cosmic ray hadrons in galaxy clusters and provide an important tool to better understand

the origin of the relativistic particles in the ICM (e.g. Reimer 2004; Blasi, Gabici & Brunetti 2007, for recent reviews).

It is believed by several authors that the re-acceleration scenario may provide a promising picture to explain the bulk of present-day radio

data (e.g. reviews by Brunetti 2003; Petrosian 2003; Brunetti 2004; Blasi 2004; Hwang 2004; Feretti 2005). This model essentially relies on

the hypothesis that a fraction of the kinetic energy associated with cluster–cluster mergers is channelled into turbulence and re-acceleration

of relativistic particles in the ICM.

MHD turbulence is known to be an important agent for particle acceleration since Fermi (1949) first pointed this out. Second-order Fermi

acceleration by MHD turbulence was appealed for acceleration of particles in many astrophysical environments, for example, solar wind,

solar flares, ICM, gamma-ray bursts (see Schlickeiser & Miller 1998; Chandran 2003; Brunetti et al. 2004; Petrosian & Liu 2004; Becker,

Le & Dermer 2006; Cho & Lazarian 2006; Petrosian, Yan & Lazarian 2006; Dogiel et al. 2007). Naturally, properties of compressible MHD

turbulence (see Shebalin, Matthaeus & Montgomery 1983; Higdon 1984; Montgomery, Brown & Matthaeus 1987; Shebalin & Montgomery

1988; Zank & Matthaeus 1992; Cho & Lazarian 2003, and references therein) are essential for understanding the acceleration mechanisms.

Among the advances in understanding MHD turbulence, we would like to mention the Goldreich & Sridhar (1995, hereafter GS95)

model of turbulence. GS95 dealt with incompressible MHD turbulence and showed that Alfvén and pseudo-Alfvén modes follow the scale-

dependent anisotropy of l‖ ∼ l2/3
⊥ , where l‖ is the size of the eddy along the local mean magnetic field and l⊥ that of the eddy perpendicular to

it. Lithwick & Goldreich (2001) conjectured that this scaling of incompressible modes is also true for Alfvén modes and slow modes in the

presence of compressibility. In Cho & Lazarian (2002, 2003, hereafter CL03) the rational for considering separately the evolution of slow,

fast and Alfvén mode cascades was justified. The numerical simulations in CL03 and Kowal & Lazarian (2006) verified that Alfvén and

slow mode velocity fluctuations are indeed consistent with the GS95 scaling, while fast modes exhibit isotropy in both gas-pressure (high

βpl) and magnetic-pressure (low βpl) dominated plasmas. The former case is the most appropriate for clusters of galaxies that we deal in this

paper.

A single most important change in the paradigm that has become obvious recently is that if the turbulent-energy injection happens at large

scales, the cascading Alfvénic mode is presented at sufficiently small scales by very elongated eddies. Thus the interactions of these modes

with cosmic rays differ considerably from that of the isotropic eddies that earlier researchers dealt with. Under these conditions nearly isotropic

fast modes were identified as the dominant agent for scattering and resonance acceleration (Yan & Lazarian 2002). As a consequence of this,

our understanding of energetic particle–turbulence interactions via gyroresonance and the transit time damping (TTD) (Chandran 2000; Yan

& Lazarian 2002; Farmer & Goldreich 2004; Yan & Lazarian 2004; Cassano & Brunetti 2005) as well as the non-resonance acceleration of

cosmic rays by large-scale compressible motions (see Ptuskin 1988; Chandran 2003; Cho & Lazarian 2006) has been altered. This calls for

the corresponding advances in the treatment of cosmic ray acceleration in the environment of clusters of galaxies (see e.g. Brunetti 2006;

Lazarian 2006a).

2 O U T L I N E O F T H E PA P E R

In this paper we proceed in three main steps.

(I) As a first point we discuss the problem of turbulence in the ICM and work up a simplified but physical picture of the properties and

relevant scales of turbulence in galaxy clusters. As we discuss below (see Section 3.1) the plasma in clusters of galaxies is expected to be

both magnetized and turbulent. Its Reynolds numbers are expected to vary as the magnetic field grow (Section 3.2), but they are expected

to be high enough to allow turbulence to be excited. Finally, turbulence in hot galaxy clusters is expected to be dissipated via collisionless

dampings and this makes the particle acceleration process a natural consequence (Section 3.4). This part of the paper is mainly designed to

provide a reference picture for observers and a viable astrophysical starting point for theoretical developments.

(II) As a second point we discuss the physics of compressible motions in the collisionless regime. This part of the paper is a necessary

extension of previous seminal studies of collisionless turbulence and is aimed at the presentation of necessary general equations to use in

the paper. In particular to characterize the plasma–cosmic rays interactions we characterize the compressible motions using dielectric tensor

(Section 4.1), give the expression for the energy spectrum of the fast modes in Section 4.2 and describe the TTD-damping in intracluster

plasma in Section 4.3; complex expressions and calculations are reported in Appendices A–C.

(III) Finally, we discuss the issue of stochastic particle acceleration in galaxy clusters by compressible turbulence. The resonant TTD-

acceleration is discussed in Section 5.1, while the effect of non-resonant acceleration is discussed in Section 5.2. In Section 6 we discuss

the results in the framework of the particle re-acceleration model in galaxy clusters: in Section 6.1 we briefly review the basic physics of

cosmic rays in galaxy clusters, and in Section 6.2 we present detailed calculations on particle re-acceleration in the ICM. Here we claim

that compressible turbulence may drive efficient particle acceleration in the ICM. This is an extension of recent studies on the argument and

provides a view of the process of particle re-acceleration in the ICM which is additional (or alternative) to that of Alfvénic acceleration.
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In Section 7 we discuss the most relevant findings and simplifications, and in Section 8 we provide a short summary.

3 T U R BU L E N C E I N T H E I C M

3.1 Injection of turbulence in the ICM

Cluster mergers and accretion of matter at the virial radius may induce large-scale motions with VL ∼ 1000 km s−1 in massive clusters.

Numerical simulations suggest that turbulent motions may store an appreciable fraction, 5–30 per cent, of the thermal energy of the ICM

(e.g. Sunyaev, Norman & Bryan 2003; Dolag et al. 2005; Vazza et al. 2006). Simulations of merging clusters provide an insight into the gas

dynamics during a merger event (e.g. Roettiger, Burns & Loken 1996; Roettiger, Loken & Burns 1997; Ricker & Sarazin 2001): subclusters

generate laminar bulk flows through the sweeped volume of the main clusters which inject turbulence via, for example, Kelvin–Helmholtz

instabilities at the interface of the bulk flows and the primary cluster gas. The largest turbulent eddies decay into smaller and turbulent velocity

fields developing a turbulent cascade.

A simple, but well motivated by physical arguments, semi-analytical approach allows to follow the cosmological injection of merger-

turbulence. Calculations from Cassano & Brunetti (2005) suggest that turbulence in the ICM is transient being mostly injected during the

most massive mergers. However, since more frequent minor mergers may also contribute to the injection of such turbulence, some minimum

level of turbulence should be rather ubiquitous in the ICM. In these calculations turbulence is assumed to be injected in the cluster volume

swept by the subclusters, which is bound by the effect of the ram-pressure stripping, and the turbulent energy is calculated as a fraction of the

P dV work done by the subclusters falling in to the main cluster. Essentially merger-driven turbulence is powered by the gravitational potential

well and thus the energy of this turbulence should approximately scale with the cluster thermal energy (Cassano & Brunetti 2005). Support

to this scaling comes from a recent analysis of a sample of galaxy clusters from cosmological numerical simulations (Vazza et al. 2006).

Turbulence is an important ingredient in the physics of the ICM as it is necessary to understand the amplification of magnetic fields in

clusters (Dolag, Bartelmann & Lesch 2002; Schekochihin et al. 2005; Subramanian, Shukurov & Haugen 2006), an issue closely related to

the non-thermal emission from clusters but that we will not address in this paper. Turbulence might provide a source of heating to balance

the cooling of cluster cores (Fujita, Matsumoto & Wada 2004), and the knowledge of the basic aspects of turbulence in galaxy clusters is also

crucial to model the transport of heat and metals in the ICM (Narayan & Medvedev 2001; Cho et al. 2003; Voigt & Fabian 2004; Lazarian

2006b).

In spite of obvious observational challenges, indications of some level (at least 10–20 per cent of the thermal energy) of turbulence in the

ICM comes from gas-pressure maps in the X-rays (Schuecker et al. 2004), and also from the lack of resonant scattering from X-ray spectra

(Churazov et al. 2004; Gastaldello & Molendi 2004).

Interestingly enough, also upper limits to the turbulent-energy content in the ICM were obtained in a few nearby galaxy clusters from

kinematical arguments related to the properties of Hα and X-ray filaments (e.g. Fabian et al. 2003; Crawford et al. 2005; Sun et al. 2006).

Assuming that turbulence is driven at hundred-kpc scales the above upper limits actually can be used to place upper limits on the intensity of

strong turbulence in the ICM (supersonic or trans-sonic turbulence).

3.2 Reynolds number and developing of turbulence in the ICM

In this section we discuss the important issue of the Reynolds number of the fluid in the ICM, and derive its value by assuming a simple, but

physically motivated, scenario.

A fluid becomes turbulent when the rate of viscous dissipation at the injection scale, Lo, is much smaller than the energy transfer rate,

that is, when the Reynolds number is Re = VLLo/νK � 1, where VL is the injection velocity and νK is the kinetic fluid viscosity. The main

source of uncertainty here comes from our ignorance of νK in the ICM.

If the ICM were not magnetized νK ∼ lmfpvi/3, were vi is the velocity of thermal ions, and lmfp is the ion–ion mean free path in case of
pure Coulomb interactions (e.g. Braginskii 1965):

lmfp ∼ 15 000

(
ne

10−3 cm−3

)−1(
T

8 keV

)2(
40

ln �

)
(pc), (1)

where ln � is the Coulomb logarithm.

Thus the corresponding Reynolds number would be

Re ∼ 52

(
VL

1000 km s−1

)(
Lo

300 kpc

)(
nth

10−3 cm−3

)(
T

8 keV

)−5/2(
ln �

40

)
(2)

which is formally just sufficient for initiating the developing of turbulence.

However, in the presence of (even a small) stationary magnetic field the Reynolds number for motions in the direction perpendicular to

the magnetic field gets extremely high essentially because the perpendicular mean free path of particles is limited to the Larmor gyroradius-

scale (e.g. Braginskii 1965). Potentially, diffusion along the wandering turbulent-magnetic field lines could significantly increase the particle

diffusivity and the plasma viscosity. For instance, estimates in Narayan & Medvedev (2001) suggest that electron diffusivity in a turbulent
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medium can be of the order of 1/5 of the classical Spitzer value for unmagnetized medium, provided that the injection velocity, VL, is equal

to the Alvén velocity.

More general calculations (Lazarian 2006a, and references therein) show that things could be more complicated and that the effective

viscosity depends on the super- or sub-Alfvénic nature of the turbulence.1 Turbulence in the ICM is super-Alfvénic, that is, turbulence with

the injection velocity larger than the Alfvén one. In this case the turbulent hydrodynamic motions can easily bend the magnetic field lines.

The trajectory of the particle that follows such a field line gets diffusive even in the absence of collisions. The effective mean free path of a

particle is determined by the scale at which magnetic tension can withstand the hydrodynamic forces, that is, the scale at which the turbulent

velocity, VlA , gets equal to the Alfvén one, vA = B/
√

4πρ, where B ∼ (B2
o + B2

rms)
1/2, (Lazarian 2006b). This scale, at which turbulence

becomes MHD, is2 lA ∼ Lo(vA/VL)3 and assuming typical conditions in Mpc regions at the centre of massive (and hot) galaxy clusters where

radio haloes are found, it is

lA ∼ 100

(
B

μG

)3(
Lo

300 kpc

)(
VL

103 km s−1

)−3(
nth

10−3 cm−3

)−3/2

(pc) (3)

which is < lmfp. This implies the important point that, even for motions along the magnetic field, the Reynolds number in a turbulent ICM

is larger than that estimated with the classical formula (equation 2). Actually one finds Re > few times 103 which ensures that the ICM gets

turbulent.

The main uncertainty in the evaluation of the Reynolds number comes from the value of the effective mean free path of particles.

Equation (3) accounts for the effect of the turbulent magnetic field, however additional mechanisms may affect the value of the particle mean

free path in the ICM, for example, plasma instabilities. Plasma instabilities could be at work in the ICM, for example, turbulent compressions

themselves may drive instabilities. These instabilities in the ICM may induce scatterings of thermal ions which reduce the effective mean free
path and further increase the value of the Reynolds number (e.g. Lazarian & Beresnyak 2006; Schekochihin & Cowley 2006). In what follows

to be conservative and with the aim to simplify the overall picture, we disregard this effect, so that our estimates of the Reynolds number in

the ICM would be considered as a lower limit.

3.3 Turbulent modes

3.3.1 Basic properties of the turbulent modes

Turbulence discussed in the previous sections is a complex mixture of several turbulent modes. The ICM is a compressible high-beta plasma.

At large scales, where magnetic fields are not dynamically important (VL � vA), the turbulence is essentially in the hydro-regime, and we

shall assume that turbulence in the ICM is done by solenoidal and compressible (essentially sound waves) motions. At smaller scales, in the

MHD regime, it is Vl � vA and three types of modes should exist in a compressible magnetized plasma: Alfvén, slow and fast modes. Slow

and fast modes may be roughly thought as the MHD counterpart of the compressible modes, while Alfvén modes may be thought as the MHD

counterpart of solenoidal Kolmogorov eddies (a more extended discussion can be found in Cho, Lazarian & Vishniac 2002, and references

therein). Sound modes at large scales have propagation properties similar to that of the fast modes in the MHD regime. For this reason in this

paper we shall use the properties of these modes for describing compressible turbulence, that is, hydro-modes (sound waves) at large scales

and fast modes themselves at small scales. Fast modes are compressive waves which propagate across or at an angle to the local magnetic

field. The fast-mode branch in a plasma extends from low frequencies up to the electron cyclotron frequency. At frequencies below the ion

cyclotron frequency, and in the weak damping limit, the dispersion relation of these modes is given by ω = Vphk, where the phase velocity is

given by (e.g. Krall & Trivelpiece 1973)

V 2
ph = c2

s + v2
A

2

⎡⎣1 +

√√√√1 − 4

(
k‖
k

)2
c2

s v
2
A(

c2
s + v2

A

)2

⎤⎦ = c2
s

βpl

(
βpl

2
+ 1

)⎡⎣1 +
√

1 − 4

(
k‖
k

)2
βpl/2

(1 + βpl/2)2

⎤⎦ βpl�1−→ c2
s (4)

and where the parameter beta of the plasma is defined by βpl = 2c2
s /v

2
A.

Alfvén modes propagate along or at an angle to the local magnetic field. The Alfvén branch extends from low frequencies up to the ion

cyclotron frequency. In this frequency range the Alfvénic dispersion relation is given by ω = vA|k‖|, where vA = Bo/
√

4πnthm i is the Alfvén

velocity.

Alfvén and fast modes differ also for the direction of the displacement vectors: the displacement of Alfvén modes is always perpendicular

to Bo, while that of fast modes makes an angle to the local magnetic field and in the case βpl → 0 it is perpendicular to Bo, while for βpl → ∞
it becomes radial (along k); a detailed discussion on the decomposition of MHD modes can be found in Cho & Lazarian (2002, 2003) and in

Kowal & Lazarian (2006).

Slow modes has ‘−’ before the square root in equation (4) and for βpl � 1 they have the dispersion relation of Alfvén modes. We will

not include slow modes in our calculations in the in the particle acceleration process by large-scale modes (Section 5) as they have a phase

velocity in the ICM much smaller than that of the fast modes and thus are less important.

1 The super- and sub-Alfvénic are determined in terms of the total magnetic field.
2 In deriving equation (3) we use the hydro-scaling Vl ∝ l1/3.
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At MHD scales Alfvén and slow modes might be of some relevance in discussing the particle acceleration process either because they

can accelerate particles, or because in principle they may provide a particle pitch-angle scattering process3 which is required by acceleration

processes driven by other modes (Sections 4 and 5).

3.3.2 Coupling between turbulent modes in the ICM

Although the complex dynamics of galaxy clusters and the relatively large value of the Reynolds number of the ICM are likely to make the

ICM itself a turbulent medium, it is somewhat difficult to have a clear idea of the relative importance of the different turbulent modes in the

ICM. Indeed this depends on the nature of the turbulent forcing and on the mode coupling between different modes in the ICM.

We shall assume that a sizeable part of turbulence at large scales (viz. at scales where the magnetic tension does not affect the turbulent

motions) is in the form of compressible motions. This is reasonable as these modes are expected to be easily generated in a high-beta

medium even in the unfavourable case of solenoidal turbulent forcing. This is proved by closure calculations carried out in the case of

βpl � 1. Indeed when motions are hydro in nature the coupling between solenoidal and compressible motions is efficient and the excitation of

compressible modes by the solenoidal modes is driven by the incompressible pressure arising from non-linear interaction between solenoidal

modes themselves (Bertoglio, Bataille & Marion 2001). These studies have shown that the fraction of energy in the form of compressible

modes is found to scale with ∝ M2
s × Re for M2

s × Re < 10 (Ms < 1 is the turbulent Mach number), while for M2
s × Re � 10 the scaling

is expected to flatten (Zank & Matthaeus 1993; Bertoglio et al. 2001). Obviously a solenoidal turbulent forcing, which limits the energy of

compressible modes to be smaller than that of solenoidal modes (even in the super-Alfvénic case), is probably not appropriate for galaxy

clusters where turbulence is likely to be excited by compressible forcings, and this might result in a larger ratio between compressive and

solenoidal modes (at least for super-Alfvénic motions).

Situation may be radically different at smaller scales where the magnetic field tension affects turbulent motions, that is, in the MHD

regime, l � lA. In this case, MHD numerical simulations have shown that a solenoidal turbulent forcing gets the ratio between the amplitude

of Alfvén and fast modes in the form CL03:

(δV )2
c

(δV )2
s

∼ (δV )svA

c2
s + v2

A

(5)

which essentially means that coupling between these two modes may be important only at l ≈ lA (in the MHD regime it should be (δV)s �
vA) since the drain of energy from Alfvénic cascade is marginal when the amplitudes of perturbations become weaker. Most importantly in

galaxy clusters it is c2
s � v2

A and thus the ratio between the amplitude of Alfvén and fast modes at scales l < lA is expected to be small,

(δV)2
c /(δ V)2

s � (vA/cs)
2 ∼ 10−2 (this for solenoidal forcing at l ≈ lA).

3.4 Dissipation of turbulence in the ICM

3.4.1 Collisional regime and viscous dissipation

Viscosity is important in the dissipation of turbulent eddies in the collisional regime. In this regime the cascade of hydro-motions is maintained

down to a scale ldiss ∼ Lo(Re)−3/4 at which the viscous dissipation rate equals the wave energy transfer rate. The damping rate of hydro-motions

at scale l due to the viscosity is


ν
k ∼ νK

l2
. (6)

Here νK is a reference value of the kinetic viscosity which gives the main uncertainty in the calculations.

As a simplified and conservative approach we can assume that Bo is initially ordered and that the first super-Alfvénic turbulent eddies,

injected at large Lo � lmfp scales, initiate a cascading and thus that the bending of the field lines follows this cascading. Turbulent motions

along Bo experience the strongest viscous dissipation which can be grossly estimated by using the classical formulation of (unmagnetized)

viscosity. By taking physical conditions appropriate for the central Mpc of hot galaxy clusters, the dissipation scale of these parallel motions

reads

ldiss � lmfp

(
vi

3VL

)3/4(
Lo

lmfp

)1/4

≈ lmfp

(
VL

103 km s−1

)−3/4
[(

Lo

300 kpc

)(
nth

10−3

)(
8 keV

T

)1/2(
ln �

40

)]1/4

(7)

while turbulent motions transverse to Bo experience a much smaller viscosity and shall cascade at scales lmfp. The cascading of these

transverse (quasi-perpendicular) motions at a given scale takes a time of the order of the bending time-scale of the magnetic field on the same

scale and these motions become the responsible for the bending of the field lines on scales lmfp, potentially down to scales ≈lA. We note

that indeed recent Bayesian analysis of rotation measures show that magnetic fields in galaxy clusters could be tangled at least on scales ≈kpc

(Vogt & Ensslin 2005), smaller scales being inaccessible to observations, thus suggesting that the bending of the field lines happens on scales

lmfp.

3 The Alfvénic mode as well as the slow mode gets anisotropic for scales less than lA, which makes the scattering inefficient, however (Chandran 2000; Yan &

Lazarian 2002).
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As discussed in Section 3.2 the bending of the field lines on scales <lmfp reduces the effective particle mean free path yielding a reduction

of the viscosity. Viscosity indeed depends on the flux of the momentum which is transported by particles and this is determined by the diffusion

of the particles that carry this momentum from the layers moving with different velocities. By limiting this diffusion the turbulent-bending of

the field lines decreases the viscosity and thus the dissipation of turbulence itself.

Thus the turbulent eddies which cascade afterwards evolve in a very tangled magnetic field and experience an effective viscosity which

we shall adopt in the form νK ≈ 1/3 vilA, and the effective dissipation scale, lb
diss, we would encounter in the case of super-Alfvénic turbulent

ICM becomes

lb
diss ≈ ldiss

(
lA

lmfp

)3/4

≈ 1

45
lmfp

(
VL

103 km s−1

)−3(
Lo

300 kpc

)(
B

μG

)9/4(
nth

10−3cm−3

)−1/8(
T

8 keV

)−13/8(
ln �

40

)
. (8)

Also in this case the effect driven by plasma instabilities in the ICM may affect our estimates. In particular, the scattering of thermal ions

induced by these instabilities may additionally decrease the effective viscosity in the ICM, and this might reinforce our conclusions that, even

assuming collisional physics, the bulk of compressible turbulent motions in the ICM is expected to be dissipated only at small scales, � kpc.

3.4.2 Collisionless regime

The viscous damping is not important in the collisionless regime, that is, when the scales of interest are smaller than the particle’s mean free

path or when the time-scales of interest are shorter than the particle’s collision time. When the diffusive-trajectory of particles is not driven

only by collisions (as indeed in the super-Alfvénic turbulent-magnetized case, Sections 3.2 and 3.4.1) the most appropriate way to define the

collisionless regime is in terms of collision frequency, and we shall use collisionless physics for the turbulent modes when the frequency of

these modes is larger than the ion–ion collision frequency ν ii (e.g. Eilek 1979):

νi i � 4

3

√
π

e4nth ln(�)

m1/2
p (kBT )3/2

. (9)

Magnetosonic modes dissipate energy in the collisionless regime in accelerating charged particles especially via TTD (e.g. Schlickeiser &

Miller 1998) which is particularly severe in high-beta plasma conditions like those in the ICM. In terms of scales, from equation (9) and

ω = Vphk, the collisionless regime for magnetosonic waves in the ICM starts approximately at the scale of the ion mean free path lC ∼ lmfp

(equation 1). Thus from a general point of view, in order to understand the way compressible modes dissipate in the ICM it is necessary to

compare the viscous dissipation scale, lb
diss, with the collisionless scale lC: if lbdiss < lC the cascading process of these turbulent modes would

reach collisionless scales before being significantly affected by viscosity and energy will be dissipated via collisionless dampings, while in

the opposite case turbulence will be dissipated by viscosity.

From equations (7) and (8) we immediately have that the bulk of compressive turbulence in the hot ICM is likely to be dissipated via

collisionless dampings. Indeed in hot (and massive) galaxy clusters it is found that viscosity is not efficient enough to dissipate the turbulent

motions, unless the large-scale velocity of these motions is relatively small, VL < 300 km s−1, namely, in case of very low turbulence. At

the same time, however, an efficient dissipation of turbulent motions may happen in strongly magnetized (B � 5 μG), lower temperature and

high density regions which are conditions appropriate at the centre of clusters with cooling flows (cool cores). Here viscosity may potentially

become an important source of dissipation of the turbulent eddies.

It should be mentioned that plasma instabilities might complicate the picture. On one hand, their straightforward effect is to decrease the

effective viscosity in the ICM, however, on the other hand they introduce a new relevant scattering frequency of ions which could be larger

than the ion–ion scattering frequency (equation 9) and the net result might be that the collisionless regime gets into play at smaller scales. As

in the previous sections we discard this possible effect which would deserve detailed investigation.

The nature (collisional or collisionless) of the turbulent dissipation in astrophysical plasma is a crucial point. In Table 1 we report the

case for several astrophysical situations undertaking different physical conditions, processes and scales of interest. A collisionless dissipation

Table 1. The reference parameters of astrophysical plasma and relevant damping. The dominant damping mechanism for turbulence is given

in the last line. GC = hot galaxy clusters, CC = cool-cluster cores, HIM = hot ionized ISM, WIM = warm ionized ISM, SUN = solar flare

plasma.

GC CC Galactic halo HIM WIM Sun

T (K) 108 3 × 107 2 × 106 106 8 × 103 107

cs (km s−1) 1650 900 130 90 8 360

nth (cm−3) 10−3 5 × 10−2 10−3 4 × 10−3 0.1 1010

lmfp (cm) 5 × 1022 1020 4 × 1019 2 × 1018 6 × 1012 108

Lo (pc) 1–5 × 105 1–5 × 105 100 100 50 3 × 10−10

B (μG) 1 10 5 2 5 108

c2
s /v

2
A 500 100 0.3 3.5 0.1 0.03

Damping Collisionlessa Collisionless? Collisionless Collisional Collisional Collisionlessb

a VL > 300 kms−1. bAlfvénic turbulent-Mach number MA � 0.3 is assumed.
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of compressive turbulence is believed to be eventually operating in a few other astrophysical regions such as in solar flare plasma and in the

Galactic halo. It is important to note here that stochastic particle acceleration is indeed suggested to power the hard X-ray flares observed in

the Sun (e.g. Miller, La Rosa & Moore 1996; Petrosian, Yan & Lazarian 2006). We note that the beta of plasma in these filaments is extremely

small and thus even in the case of strong turbulence the collisionless dissipation of compressive modes should happen at scales, l � lA, at

which turbulent motions are MHD in nature. On the other hand turbulence in the ICM is super-Alfvénic (essentially due to the high beta of

plasma) and the collisionless regime in the hot ICM starts at scale l > lA were compressive motions are still hydro in nature.

3.5 Conclusion I: turbulent scenario in the ICM

Given the above discussions it is possible to set up a simplified and operative scenario of turbulence in the ICM to adopt in this paper.

Within a simplified picture of turbulence that we consider here, super-Alfvénic turbulence is made by a mix of magnetosonic modes

(essentially similar to sound modes) and incompressible-Kolmogorov turbulent eddies (which roughly correspond to the Alfvén modes in the

MHD regime).

We shall assume that turbulence is injected at large scales Lo ∼ 300–500 kpc most likely by a complex mixture of compressive and

solenoidal forcing. The typical velocity of the turbulent eddies at the injection scale is expected to be around VL ∼ 500–1000 km s−1 which

makes turbulence subsonic, with Ms = VL/cs ≈ 0.3–0.8, but strongly super-Alfvénic, with MA = VL/vA � 10. Turbulent motions at large

scales are thus essentially hydrodynamics and the cascading of compressive (magnetosonic) modes may couple with that of solenoidal motions

(Kolmogorov eddies).

Assuming typical conditions in hot (and massive) galaxy clusters we find that even in the unmagnetized case viscosity would still allow

hydro-motions to cascade down to scales of the order of ≈ lmfp. In the magnetized case viscosity is believed to be partially suppressed. In

addition, when turbulence is super-Alfvénic hydro-motions can easily bend the magnetic field lines affecting the effective mean free path of

ions which happens to become limited approximately to the MHD scale, lA.4 The value of the effective viscosity, even for motions along

the magnetic field lines, is thus expected to be considerably reduced with respect to the classical unmagnetized value and one may adopt a

reasonable value of the Reynolds number Re � 103.

The important consequence of this picture is that both solenoidal and compressive modes in hot galaxy clusters would not be strongly

affected by viscosity at large scales and an inertial range is established, provided that the velocity of the eddies at large scales exceeds

≈300 km s−1. We shall assume that a sizeable part of the large-scale turbulence is done by magnetosonic (essentially sound) modes. At

collisionless scales, l < 10–50 kpc, these modes are affected by strong collisionless dampings with both thermal and relativistic particles

(Section 4.3) and thus they are expected to be the modes which dominate the particle acceleration process. Our claim about the existence of

this well developed turbulent cascade which establishes an inertial range from large scales to the collisionless scales would be even reinforced

when the possible effect of plasma instabilities is considered.

Although in this paper we focus on the particle acceleration by hydro-magnetosonic modes, it is worth mentioning that the mode

composition at smaller scales, l  lA, in the ICM should becomes much complex. We shall assume that Alfvén modes are present at these

MHD scales in the ICM since in principle the cascading of solenoidal modes might reach very small scales, due to the lack of large-scale

collisionless dampings for these modes, and also because several mechanisms can convert a fraction of the energy flux of large-scale turbulent

cascade in the injection of Alfvén modes at smaller scales (e.g. Kato 1968; Eilek & Henriksen 1984; Lazarian & Beresnyak 2006). At scales

l � lA, the coupling between Alfvén and compressible modes gets changed and only slow modes are cascaded by Alfvénic modes (GS95,

Lithwick & Goldreich 2001; Cho & Lazarian 2002), while the cascading of fast modes is not particularly sensitive to the presence of the

other modes. Given that, and since magnetosonic modes are expected to be damped at scales larger than (or similar to) lA (Sections 4 and 5),

the spectrum of the ICM-turbulence at l  lA is expected to be populated only by Alfvén and slow modes. These modes however would get

anisotropic at these scales (unless injected at these scales by some mechanism) and this should reduce their contribution to the scattering and

acceleration of fast particles via gyroresonance.

4 C O M P R E S S I B L E T U R BU L E N C E I N T H E C O L L I S I O N L E S S R E G I M E

Compressible turbulence in galaxy clusters is thus made of large-scale hydro-motions with frequencies essentially infinitely small with respect

to �i/βpl (�i being the Larmor frequency of ions). The basic physics of these low-frequency compressible modes in the collisionless regime

can be derived by mean of the quasi-linear theory and has been investigated in several seminal papers (e.g. Barnes 1968; Melrose 1968;

Baldwin, Bernstein & Weenink 1969; Barnes & Scargle 1973, hereafter BS73).5 This section extends previous studies as we derive specific

and operative expressions for the physical properties of these modes which are of interest for the present paper (e.g. energy decomposition of

the mode, TTD-damping rate) and discuss their dependence on the mode-propagation angle. We focus on the case of long-wavelength modes

in a magnetized plasma dominated by thermal particles as it should be the case of the ICM. Here we report the main formulae, while details

and derivation of the main equations are given in Appendices A–C.

4 This provided that turbulent eddies may reach the MHD scale without being dissipated (Sections 5.1.3 and 5).
5 For hydromagnetic waves with frequency of the order of �i/βpl see Foote & Kulsrud (1979).
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4.1 Geometry of the mode and dielectric tensor

We define the turbulent fluctuations associated with the electric and magnetic field as

E = R (Ek exp[i(k · r − ωt)]) (10)

and

B = R (Bk exp[i(k · r − ωt)]) , (11)

where R() stands for the real part. In the collisionless regime it is usual to start with fixing the geometry of the mode propagation and of the

electric field fluctuations. Without loss of generality we may chose the particular system where the y-component of the wavevector of the

modes vanishes, that is,

k = (k⊥, 0, k‖). (12)

For this choice the amplitude of the electric field (and spatial Fourier transform of the electric field of the mode) is given by (e.g. BS73)

Ek = (0, E⊥, E‖). (13)

The amplitude of the magnetic field of the mode comes from the Faraday law, Bk = c
ω

k × Ek :

Bk = c

ω
(−k‖ E⊥, −k⊥ E‖, k⊥ E⊥). (14)

As a starting point we assume the presence of several, α, species of particles with particle momentum given by

pα = (p⊥ cos φ, p⊥ sin φ, p‖) = mαγ (v⊥ cos φ, v⊥ sin φ, v‖) (15)

and indicate with f̂ α the normalized particle distribution in the momentum space of species α ( fα(p) = Nα f̂ α(p)).

The properties of a wave propagating in a magnetized plasma in the collisionless regime depend on the dielectric tensor of the plasma. In

the general case, the dielectric tensor of the magnetized plasma is given by (e.g. Melrose 1968; see also Tsytovich 1977 for the unmagnetized

case):

Ki j = δi j + 2π
∑

α

mα

(
ωp,α

ω

)2 ∫ ∫
dp⊥ p⊥dp‖

[
v‖
v⊥

(
v⊥

∂

∂p‖
− v‖

∂

∂p⊥

)
f̂ α(p)bi b j +

∞∑
n=−∞

(
Vi V ∗

j

)
α

ω − n�α − k‖v‖

×
(

ω − k‖v‖
v⊥

∂

∂p⊥
+ k‖

∂

∂p‖

)
f̂ α(p)

]
, (16)

where ωp,α =
√

4πNαe2
α/mα is the plasma frequency for the species α, bi = (Bo/|Bo|)i is the unit vector along the magnetic field, �α =

(eαBo/mαc)/γ is the Larmor frequency of particles α,

(
Vi V

∗
j

)
α

=

⎛⎜⎜⎝
(

v⊥n
z

)2
J 2

n (z) i
v2
⊥n

z Jn(z)J ′
n(z)

v⊥v‖n
z J 2

n (z)

−i
v2
⊥n

z Jn(z)J ′
n(z) v2

⊥(J ′
n(z))2 −iv⊥v‖ Jn(z)J ′

n(z)
v⊥v‖n

z J 2
n (z) iv⊥v‖ Jn(z)J ′

n(z) v2
‖ J 2

n (z)

⎞⎟⎟⎠
α

(17)

and zα = k⊥p⊥/mα�
α
o (�α

o = �γ is the classical Larmor frequency) is an adimensional parameter which scales with the ratio between the

frequency of the mode and the particle Larmor frequency, and with the ratio between the particle velocity and the phase velocity of the

mode, zα ≈ (ω/�α
o )(vα/Vph). We notice that magnetosonic modes with long wavelength, l � pc, always have zα  1. In this case a more

suitable expression for the dielectric tensor can be obtained by expanding the Bessel functions in equations (16) and (17) in the limit zα  1

(Appendix A).

4.2 Energy of the mode

The energy of a mode in a magnetized plasma is done by the sum of the energy associated with the fluctuations of the electric and magnetic

fields, WE and WB, and by the energy contributed by particles to the modes, WP. The total energy is then

W = WB + WE + WP . (18)

In the collisional regime (and adiabatic equation of state) WP is given by the contributions from the kinetic energy, WK, and from a potential

energy, W�, associated with pressure fluctuations, and a simple equipartition condition exists (e.g. Denisse & Delcroix 1963; Melrose 1968),

namely,

WB + W� ≈ WE + WK. (19)

In the collisionless regime the medium is described in terms of the dielectric tensor and it is not possible to define WP in a meaningful way.

Thus one has to use equation (18) as a definition for WP, with the total energy, W, defined independently. The total energy of the mode is given

by (e.g. Barnes 1968; see also Melrose 1968; Tsytovich 1972 for equivalent expressions)

W (k, ω) = 1

16π

[
B∗

k i Bk i + Ek
∗
i

∂

∂ω

(
ωK h

i j

)
Ek j

]
ωi=0

, (20)
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where Kh
ij stands for the Hermitian part of the dielectric tensor. In this case the first term in equation (20) accounts for magnetic field fluctuations,

while (from equation 18) the term

1

16π

[
Ek

∗
i

∂

∂ω

(
ωK h

i j

)
Ek j

]
= |Ek |2

16π
+
∑

α

[WP (k)]α (21)

accounts for the contribution to the mode energy from the electric field fluctuations and from particles (Barnes 1968).

In the quasi-linear regime the energy of the magnetic field fluctuations is related to that of electric field fluctuations by (e.g. Melrose

1968):

WB =
(

c

Vph

)2
(

1 −
∣∣∣∣kk · Ek

|Ek |

∣∣∣∣2
)

WE (22)

which can be taken WB � (c/Vph)2WE since under the physical conditions of interest for this paper magnetosonic modes have E⊥/E‖  1

(Appendix B). Thus combining equation (18) with equations (20)–(22) it is easy to get the ratio between the total energy in the mode and that

associated with the different components, WB, WE and WP.

Thermal particles in the ICM should provide the dominant contribution to the total energy of turbulent modes. Thus we make the

approximation that the dielectric tensor of the ICM is described by that of an electron–proton magnetized plasma in thermal equilibrium.

Assuming a Maxwellian distribution for the thermal electrons and protons in the ICM:

fα(p) = Nα f̂ α(p) = Nα

(2πmαkBT )3/2
exp

(
− p2

2mαkBT

)
(23)

in Appendix B, from equations (16), (17) and (20) we show that the total energy of a fast mode is

W (k, θ ) = |Bk |2
16π

{
1 + βpl

2

[(
Vph

cs

)2

+ 3

5

(
k⊥
k

)2

(2 − S(βpl, θ )) + 1

βpl

(
Vph

c

)2(
3

5
βpl + 2

)]}
, (24)

where the function S(βpl, θ ; { frel(p), T }) (Fig. 1) accounts for the terms of the dielectric tensor in the form∫
dp‖dp⊥ pm

⊥
∂ fα/∂p‖
k‖v‖ − ω

(25)

which all come from the collisionless resonance between particles and modes with n = 0 in equation (16) (see Section 5.1 and Appendix

B). Provided fα is an even function of p‖, only particles with velocity larger than the phase velocity of the mode can contribute to S, since

they should satisfy the condition k‖v‖ ∼ ω = Vphk. The velocity of the selected resonant particles scales as v ∼ Vph(βpl)/cos (θ ), thus with

increasing the angle between k and Bo, θ , particles with increasing velocities may contribute to this term. Formally particles with v → ∞
contribute to S for θ → π/2, and this gets S → 0 in this limit (Fig. 1). Two wave-like behaviour of S can be recognized in Fig. 1: the first

one, for θ � 1, marks the contribution from protons, while the second one, for larger θ , marks that from electrons, which are faster than

protons. The resonance condition, k‖v‖ ∼ ω, also drives the shift of these wave-like behaviour towards smaller values of θ with decreasing

βpl: when βpl decreases the resonance between the mode and a fixed portion of the particle distribution comes up at smaller values of θ .

In Fig. 2 we report the ratio between magnetic and total energy of a mode propagating at an angle θ as a function of βpl; this ratio is

independent of the wavenumber k of the mode. Two wave-like behaviours (due to the contribution from S-terms) are visible: the first one, for

Figure 1. (a) The expression S(βpl, θ ) is given as a function of θ . The behaviour around θ = π/2 is highlighted in the right-hand panel. kBT = 8.6 keV is

assumed. Calculations are reported for: c2
s /v

2
A = βpl/2 = 100 (solid line), 10 (dotted line), 1 (dashed line), 0.5 (long-dashed line) and 0.1 (dash–dotted line).
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254 G. Brunetti and A. Lazarian

Figure 2. The ratio between the magnetic energy density of the mode and the total energy density of the mode is given as a function of θ (for a better comparison

the quantity is multiplied by 16π βpl/2). The behaviour around θ = π/2 is highlighted in the right-hand panel. kBT = 8.6 keV is assumed. Calculations are

reported for: c2
s /v

2
A = βpl/2 = 100 (solid line), 10 (dotted line), 3 (dashed line), 1 (long-dashed line), 0.5 (short-dashed–dotted line) and 0.1 (long-dashed–dotted

line).

Figure 3. The ratio between particle energy and magnetic energy in the mode is reported as a function of θ ; kBT = 8.6 keV is assumed. Calculations are

reported for: c2
s /v

2
A = 0.1, 1, 3 and 100 (from the bottom to the top of the diagram). The behaviour at θ ∼ π/2 is highlighted in the right-hand panel for

c2
s /v

2
A = 100.

θ � 1, marks the contribution from protons, and the second one, for larger θ , from electrons. For small values of βpl it is WB ≈ W/2 and thus

the quantity βpl|Bk |2/2W ∝ βpl, on the other hand, for large values of βpl it is WB ∝ W/βpl and βpl|Bk |2/2W becomes independent of βpl.

Finally, in Fig. 3 we report the ratio between particle energy and magnetic energy in the mode for different values of βpl (see caption).

For βpl  1, WP reaches equipartition with WB similarly to the case of collisional and low βpl plasmas.

4.3 Turbulence damping: TTD resonance (n = 0)

A compressible mode in the collisionless regime experiences strong collisionless damping with thermal and relativistic particles and gets

modified. In this section we report relevant formulae for the collisionless damping rate via TTD resonance of magnetosonic waves which will

be used in the present paper (Section 5).

The damping coefficient of the mode can be obtained by the standard formula for the linear growth rate of the mode in the quasi-linear

theory (e.g. BS73)6:


 = −i

(
E∗

i K a
i j E j

16πW

)
ωi=0

ωr, (26)

6 With this formula it is ∂W/∂t = −
W.
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where Ka
ij stands for the anti-Hermitian part of the dielectric tensor, and ωr is the real part of ω. The general formula for the collisionless

damping rate (n = 0, ±1, . . .) is (Appendix C, and BS73):


(k, θ ) = − π

16ωrW (k, θ )

k‖
|k‖|
∑
α,n

ω2
p,α

∫ ∞

0

dp⊥

∫ ∞

−∞
dp‖ p2

⊥�α
n

[(
ω

k‖
− v‖

)
∂ f̂ α(p)

∂p⊥
+ v⊥

∂ f̂ α(p)

∂p‖

]
δ

(
p‖
mα

+ n�o,α − ωrγ

k‖

)
, (27)

where

�α
n = 2

∣∣∣∣iJ ′
n(zα)E⊥ + p‖

p⊥
Jn(zα)E‖

∣∣∣∣2. (28)

In this paper we focus on the case n = 0 (TTD, discussed in Section 5) which is the most important collisionless resonance between

magnetosonic waves and particles in the ICM. In the case of long-wavelength magnetosonic waves the damping rate due to TTD resonance

with thermal electrons and protons with number density Ne/p, is given by (Appendix C)


e/p(k, θ ) =
√

π

8

|Bk |2
W (k, θ )

H
(

1 − Vph

c

k

|k‖|

)
V 2

ph

B2
o

(
k

|k‖|

)(
k⊥
k

)2
(me/pkBT )1/2

1 − [Vphk/(ck‖)]2
Ne/p exp

{
− me/pV 2

ph

2kBT

(k/k‖)2

1−[Vphk/(ck‖)]2

}
k, (29)

where H(x) is the Heaviside step function (1 for x > 0, and 0 otherwise), and the ratio |Bk|2/W is given by equation (24).

Actually for a fixed value of βpl, the damping rate scales with
√

T and this makes the damping strong in the case of galaxy clusters (T ∼
107–108 K). For βpl � 1 the TTD-damping rate from thermal electrons is 
e/ωr ≈ √

3πx/20 exp(−5x/3) sin2 θ , where x = (me/mp)/cos2θ ,

which is sufficiently small7 to make the linear-theory approach adopted here still reasonable. Equation (29) is a general expression of the

damping rate due to TTD resonance with thermal particles from which well-known formulae can be readily re-obtained. For instance in the

case of low βpl it is Vph → vA and (|Bk |2/16πW ) → 1/2 and one gets the usual TTD-damping rate of fast modes with thermal electrons

(e.g. Akhiezer et al. 1975; Achterberg 1981; Miller 1991):


e/p(k, θ ) →
√

π

2

me

mp

vte

vA

sin2 θ

| cos θ | exp

(
− v2

A

2v2
te cos2 θ

)
vAk, (30)

where we define vte = √
kBT /me. A formula equal to equation (30) is also given for βpl  1 in Ginzburg (1961) and Shafranov (1967)

without adopting the simplified quasi-linear approach. These authors also report a non-quasi-linear formula for the damping rate of thermal

electrons and protons under the particular condition of cs  Vph  vte, in which case the plasma dielectric tensor can be largely simplified

by expanding the Z-function (Appendix B, equations B17–B18) of electrons and protons for large (protons) and small (electrons) arguments.

In this case the normalization of the formula for the damping rate of protons is five times larger than that in equation (30), while the formula

for the damping of electrons is equal to equation (30) (this asymmetry in the electron–proton contribution comes from the expansions of

the Z-function in the two opposite regimes for electrons and protons). Still since it is cs  Vph the damping from protons is negligible and

equation (30) is equivalent to the result reported by these authors.

The damping rate due to ultrarelativistic electrons and protons is given by (Appendix C, and BS73):


e/p(k, θ ) = −π2

8

|Bk |2
W (k, θ )

(
k⊥
k

)2(
k

|k‖|

)
H
(

1 − Vph

c

k

|k‖|

)
Ne±/p V 2

ph

B2
o

k

[
1 −
(

Vphk

ck‖

)2
]2 ∫ ∞

p4dp

[
∂ f̂ α(p)

∂p

]
e/p

, (31)

while the damping rate due to generic non-ultrarelativistic and non-thermal particles is given in Appendix C (equation C9).

In Fig. 4 we report the damping rate from both thermal and relativistic particles under conditions typical of massive and hot galaxy

clusters. The most important damping for a mode propagating at small angles (θ � 1) is that with thermal protons, on the other hand, a mode

propagating at larger angles is damped by thermal electrons. We find that under viable physical conditions the damping due to relativistic

particles is formally relevant only in a narrow range of the values of θ (close to θ ∼ π/2), and that it accounts for only a few per cent of the

total damping rate.

For a given temperature of the plasma, T, the strength of the damping rate decreases with decreasing βpl as the phase velocity of the

modes increases with respect to the thermal velocity and this makes the particle-mode resonance more difficult.

We notice that the overall damping rate is anisotropic with a relatively narrow peak at k/k‖ ∼ 30 (for high βpl) where the bulk of thermal

electrons resonates with the modes. On the other hand, as discussed in Section 3, the ICM turbulence is super-Alfvénic and thus the turbulent

modes can easily bend the magnetic field lines. The time-scale of the bending of lines from hydro-motions on a scale l is expected to be ≈ a

fraction of l/vl , where vl is the rms velocity of the turbulent eddies at the scale l. The bending of the lines by hydro-motions on the shortest

scales is thus the most efficient so that we can grossly estimate this bending time-scale, τ bb, as ≈ a fraction of lA/vA; eddies on scales below

lA cannot significantly bend the field lines.8 This value of τ bb should be compared with that of the damping time at collisionless scales which

is grossly (from equations 29 and 24) 
(k)−1(lmfp) ≈√mp/melmfp/cs. The relevant time-scale for isotropization of the pitch angle θ due to

7 
e/ωr has a maximum value ≈0.2.
8 The wandering of the magnetic field at scales l � lA is discussed in Yan & Lazarian (2004).
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256 G. Brunetti and A. Lazarian

Figure 4. The damping rates of magnetosonic modes due to TTD resonance with thermal electrons (upper curves in the right-hand end of the panel) and with

thermal protons (upper curves in the left-hand end of the panel), and the total damping rate (thick curves) are reported as a function of θ . The behaviour at

about θ = π/2 is highlighted in the right-hand panel. Calculations are reported for: c2
s /v

2
A = 100 (solid lines) and 1 (dashed lines), and taking k = 1 kpc−1

and kBT = 8.6 keV. The damping rate with relativistic protons is also reported in both panels (dotted lines): in this case we assume an energy distribution in

the form f (p) ∝ p−4.2 and an energy density ∼5 per cent of the thermal one.

Figure 5. (a) The average damping rates of magnetosonic modes (equation 33), due to TTD resonance with thermal electrons (solid line) and thermal protons

(dashed lines), and total damping rate (thick solid line) are reported as a function of c2
s /v

2
A(= βpl/2); k = 1 kpc−1 is taken. (b) The turbulent cut-off scale

(equation 45) is reported as a function of c2
s /v

2
A (= βpl/2). Calculations are obtained assuming Lo = 300 kpc, and (VL/cs)

2 = 0.15 (upper curve) and

(VL/cs)
2 = 0.3 (lower curve). In both panels we assume kBT = 8.6 keV.

line-bending is thus faster than the damping process, that is, τ bb < 1/
(lmfp), in the case9

βpl �
(

Lo

lmfp

)(
VL

cs

)−3(
me

mp

)1/2

. (32)

The condition in equation (32) is always satisfied in the ICM, at least under the hypothesis of this paper, and thus we shall use an effective

damping rate for the bulk of the spectrum of magnetosonic modes which comes from the contribution from different θs and is defined by

〈
e/p(k)〉 =
∫ π/2

0


e/p(k, θ ) sin θ dθ. (33)

This is reported in Fig. 5(a) as a function of c2
s /v

2
A (= βpl/2) (for a given temperature of the ICM, see caption). Damping of magnetosonic

modes is found to be always dominated by thermal electrons because they are faster than the phase velocity of these modes. The contribution

9 Here we assume that turbulent eddies reach scales � lA (Section 5.1.3, Fig. 6a), in case lcut � lA the bending time-scale gets grossly of the order of a fraction

of the damping time-scale at the cut-off scale, which would still be sufficient to have some isotropization.
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Compressible turbulence in galaxy clusters 257

from thermal protons drops for βpl � 20 since for smaller beta the phase velocity of the modes (equation 4) increases with respect to the

proton velocity and it is even more difficult for protons to satisfy the resonant condition.

Finally, let us comment that it is 〈
〉/ωr  1 and this further motivate the practical use of the quasi-linear theory in this paper.

5 S TO C H A S T I C PA RT I C L E AC C E L E R AT I O N I N G A L A X Y C L U S T E R S

In this section we discuss the particle acceleration process in the ICM via resonant and non-resonant mechanisms with compressible modes.

5.1 Resonant TTD-acceleration

5.1.1 Introduction

Compressible (and incompressible) low-frequency MHD waves can strongly affect particle motion through the action of the mode-electric

field via gyroresonant interaction (e.g. Melrose 1968), the condition for which is

ω − k‖v‖ − n
�

γ
= 0, (34)

where n = ±1, ±2, . . . gives the first (fundamental), second, . . . harmonics of the resonance, while v‖ = μv and k‖ = ηk are the parallel

(projected along Bo) speed of the particles and the wavenumber, respectively. In general gyroresonance is a process important only for modes

at very small scales, l  lA. However, as anticipated in Section 3.5, at these scales fast modes are probably absent in the ICM due to strong

resonant dampings (Section 5.1.3, Figs 4–6) and because they do not couple with the Alfvénic cascade (Sections 3.3.2 and 3.5).

Interestingly enough, the compressible component of the magnetic field of compressible modes (i.e. the component along Bo in the case

of oblique propagation) can interact with particles through

the n = 0 resonance. This interaction is called transit-time damping (e.g. Fisk 1976; Eilek 1979; Miller et al. 1996; Schlickeiser & Miller

1998). An important aspect of this interaction is the need of isotropization of particle momenta during acceleration (e.g. Schlickeiser & Miller

1998). This is because the n = 0 resonance changes only the component of the particle momentum parallel to the seed magnetic field. This

would cause an increasing degree of anisotropy of the particle distribution and thus the deriving acceleration would become less and less

efficient with time. Under our working picture, particle-pitch angle scattering in the ICM can be provided by several processes discussed in

the literature. Those include electron firehose instability which is indeed driven by pressure-anisotropies in high-beta plasma (Pilipp & Völk

1971; Paesold & Benz 1999), and gyroresonance by Alfvén (and slow) modes at small scales, provided that these modes are not too much

anisotropic (cf. Yan & Lazarian 2004). The latter condition means that the Alfvénic modes are considered for scales not much less than lA,

provided that the turbulence injection is isotropic. In addition, gyroresonance was discussed for the electrostatic lower hybrid modes generated

by anomalous Doppler resonance instability due to pitch angle anisotropies (e.g. Liu & Mok 1977; Moghaddam-Taaheri et al. 1985) and by

gyroresonant interaction with whistlers (e.g. Steinacker & Miller 1992). The latter process, however, is somewhat more problematic than the

Alfvénic mode scattering, as whistler turbulence is even more anisotropic than the Alfvénic one (Cho & Lazarian 2004). Finally, instabilities

within cosmic ray fluid look as a safer bet for isotropizing cosmic rays. For instance, Lazarian & Beresnyak (2006) proposed isotropization

of cosmic rays due to gyroresonance instability that arises as the distribution of cosmic rays gets anisotropic in phase space. This instability

that is customary discussed for plasma rather than for cosmic rays (see Gary et al. 1994) would guarantee that in the environments of galaxy

clusters the TTD will not be quenched.

5.1.2 Diffusion coefficient

The momentum-diffusion coefficient, Dpp, of particles can be calculated by deriving the first-order corrections due to small amplitude plasma

turbulence to the orbits of particles in a uniform magnetic field, and ensemble averaging over the statistical properties of the turbulence

(e.g. Jokipii 1966). The resulting analytic expressions for the pitch-angle and momentum-diffusion coefficients due to TTD resonance with

fast modes in a low-beta plasma can be found in Schlickeiser & Miller (1998).

An additional and self-consistent way to derive the momentum-diffusion coefficient from the quasi-linear theory is to use an argument

of detailed balancing. The diffusion coefficient of a α-species is indeed related to the damping rate of the modes themselves with the same

particles, and one has (e.g. Eilek 1979; Achterberg 1981):∫
d3 pEα

(
∂ fα(p)

∂t

)
=
∫

dk
α(k, θ )W(k), (35)

where Eα is the energy of a particle of species α, and W(k) is the total energy of the modes in the elemental range dk. This is given by

W(k) = WE (k)

(
W

WE

)
k

= WE (k)

4πk2

(
W

WE

)
k

, (36)

where (W/WE )k is the ratio between the total and the electric energy in a single mode propagating at k (Section 4.2), and WE (k) is the

electric-field energy of the modes in the elemental range dk. In equation (36) we have assumed an isotropic spectrum of the electric field

fluctuations which is an appropriate assumption for super-Alfvénic turbulence and fast modes (e.g. CL03).

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 378, 245–275

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/378/1/245/1156360 by guest on 21 August 2022



258 G. Brunetti and A. Lazarian

If isotropy of the particle momenta is maintained, the time evolution of the particle distribution function is related to the diffusion

coefficient by

∂ fα(p)

∂t
= 1

p2

∂

∂p

(
p2 Dpp

∂ fα(p)

∂p

)
(37)

and thus equation (35) reads∫
d3 p

Eα

p2

∂

∂p

[
p2 Dpp

∂ fα(p)

∂p

]
= 1

2

∫
dk

∫
dθ sin(θ )
α(k, θ )WE (k)

(
W

WE

)
(θ,k)

. (38)

Here we are interested in deriving the diffusion coefficient in the case of relativistic species in the ICM (Sections 5.1.3 and 5.5). The damping

with these particles (equation 31) can be expressed in the form


α(k, θ ) = −
α(θ ) k

∫
p4dp

∂ fα(p)

∂p
(39)

and from partial integration of equation (38) and from equations (39) and (31) taking WB(k) = (c/Vph)2WE (k), one gets

Dpp(p) = π2

2 c
p2 1

B2
o

∫ π/2

0

dθV 2
ph

sin3(θ )

| cos(θ )|H
(

1 − Vph/c

cos θ

)[
1 −
(

Vph/c

cos θ

)2]2 ∫
dkWB(k)k. (40)

This represents a self-consistent average (in terms of particle pitch-angle) momentum-diffusion coefficient of isotropic particles with momen-

tum p which couple with fast magnetosonic modes via TTD resonance. Equation (40) in its low-beta plasma limit (essentially Vph → vA and

Vph  c) is consistent with the expression (equation 29) given in Schlickeiser & Miller (1998) in its z = k⊥v⊥/�  1 limit and averaged

over the particle pitch-angle.10

5.1.3 Acceleration efficiency in the ICM

As summarized in Section 3.5 we focus on a picture in which compressible turbulence is injected at large scales by the action of cluster

mergers and accretion of matter. Provided that large-scale turbulence in the ICM is not significantly affected by the ion-viscosity (Section 3.4),

an inertial range is established due to the combination of turbulence injection and cascading. For isotropic turbulence the diffusion equation in

the k-space is given by

∂W(k, t)

∂t
= ∂

∂k

{
k2 Dkk

∂

∂k

[
W(k, t)

k2

]}
−
∑

i


i (k, t)W(k, t) + I (k, t), (41)

where Dkk is the diffusion coefficient in the k−space, 
i(k, t) are the different damping terms (Section 4.3), and I(k, t) accounts for the

turbulence injection term. The wave–wave diffusion coefficient of magnetosonic modes (Kraichnan treatment; see also Zhou & Matthaeus

1990; Miller et al. 1996 for low-beta plasma) is given by11

Dkk ≈ 〈Vph〉k4

[
W(k, t)

ρ〈Vph〉2

]
. (42)

We assume a constant (in time) injection spectrum of the modes in the simple form I(k) = Ioδ(k − ko) so that the stationary spectrum of

turbulence at the scales not significantly affected by dampings (
i ∼ 0) can be readily obtained from equation (41):

W(k) =
[

2

7
Ioρ〈Vph〉

]1/2

k−3/2 (43)

and the cascading time at a the scale l = 2π/k, is given by

τkk ≈ k3

(∂/∂k)(k2 Dkk)
= 2

9

(
7

2

〈Vph〉ρ
Io

)1/2

k−1/2. (44)

Provided that the dissipation of compressible turbulence in the ICM is collisionless (Section 3.4), the turbulence cascading gets suppressed

at a scale at which the resonant damping time-scale, 
−1, approach the cascading time. This scale is given by equation (44):

kcut ≈ 81

14

Io

ρ〈Vph〉

[ 〈
(k)〉
k

]−2

, (45)

where 〈
〉 is the average collisionless TTD-damping term given by equations (29), (31) and (33). The value of the cut-off scale is reported

in Fig. 5(b) as a function of the beta of the plasma for physical conditions in the ICM (see caption): we find that if turbulence is energetic

enough (actually for the values used in the Sections 5.3–5.5) compressible modes are dissipated at ≈ sub-kpc scales. The cut-off scale slightly

increases in the case of small βpl as the cascading of magnetosonic modes becomes less efficient (the cascading time-scale goes as τ kk ∝

10 It is sufficient to integrate (average) equation (29) in Schlickeiser & Miller (1998) over the particle pitch-angle using the properties of the δ function, to solve

this integration and to expand the Bessel function in equation (29) for small arguments.
11 Here 〈Vph〉 is essentially a representative, averaged (with respect to θ ) phase velocity.
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Figure 6. (a) The ratio lA/lcut is reported as a function of B. Calculations are reported for kBT = 6 keV (dashed lines), 9 keV (dotted lines) and 12 keV (solid

lines); (VL/cs)
2 = 0.3, nth = 10−3 cm−3 and Lo = 300 kpc were assumed in the calculations. (b) The acceleration time (equation 49) is reported as a function

of c2
s /v

2
A in the case of non-resonant compressive acceleration (equation 51) and resonant TTD-acceleration (equation 47). Calculations are reported for kBT =

7 keV (dashed lines) and kBT = 11 keV (solid lines); (VL/cs)
2 = 0.3, nth = 10−3 cm−3 and Lo = 300 kpc were assumed in the calculations. The acceleration

time from the combined effect of the two mechanisms is also shown (ticked lines). The box marks the relevant range of the values of c2
s /v

2
A(= βpl/2) in the hot

ICM, and the acceleration time necessary to boost relativistic electrons at several GeV (this accounts for both synchrotron and inverse Compton losses with

redshift ∼0–0.3).

〈Vph〉 and, fixed cs, increases for small βpl). Actually the cascading of compressible motions is likely to reach MHD scales before being

dissipated, lcut � lA (Fig. 6a), and in this case it is also worth to mention that an Alfvénic turbulence can be activated by the cascading of these

compressible motions.

Equation (41) is appropriate to describe the time evolution of the total spectrum of isotropic turbulent modes. On the other hand, formally

in the collisionless regime the ratio between the energy of the fields (E and B) and that associated with particles changes with the mode-

propagation angle (Figs 1 and 2, Appendix B). However, the induced anisotropy is within a factor of 2–3 for a stationary Bo, and it should be

efficiently smoothed out by the effect of the bending of the field lines (Section 4.3). Thus we shall adopt isotropy as a viable approximation,

and define the energy associated with the magnetic field fluctuations as

WB(k, t) ∼ 1

βpl

〈
βpl|Bk |2

16πW (k)

〉
W(k, t), (46)

where for consistency |Bk |2/W is taken from equation (24) and 〈〉 indicates the average over the propagation angle of the modes.

The TTD diffusion coefficient in the particle–momentum space is then obtained from equations (40), (43) and (46) in the form

Dpp(p, t) = π

8

p2

c

〈
βpl|Bk |2
16πW

〉
1

c2
s

(
2Io〈Vph〉

7ρ

)1/2

kcut(t)
1/2

∫ π/2

0

dθV 2
ph

sin3(θ )

| cos(θ )|H
(

1 − Vph/c

cos θ

)[
1 −
(

Vph/c

cos θ

)2
]2

. (47)

Equation (47) allows a prompt estimate of the acceleration efficiency via TTD resonance, once the injection rate per unit mass of the

compressible turbulence (Io/ρ) and the injection scale, ko (or Lo), are fixed:

Io

ρ
≈ CV 3

L ko

(
VL

〈Vph〉

)
, (48)

where C ≈ 5–6 is a numerical factor which can be readily obtained by taking Io/ρ ≈ V2
L/τLL and equation (44). The resulting systematic

acceleration rate, τ acc, is given by

tauacc = p3

{
∂

∂p

[
p2 Dpp(p)

]}−1

. (49)

The systematic acceleration time from TTD resonance does not depend on particle momentum (see also Fig. 7) and is reported in Fig. 6(b)

as a function of c2
s /v

2
A(= 2βpl): for a given temperature (and βpl > 1) the acceleration efficiency scales approximately with

√
T and is

found to be almost independent from the value of βpl. The important point here is that the strength of the TTD-acceleration efficiency,

powered by compressible turbulence with large-scale rms velocity V2
L/c2

s ≈ 0.3, is found to give a systematic acceleration time of the order of

∼108 yr which is sufficient to accelerate electrons up to energies of several GeV, and this may produce diffuse synchortron radio emission in

μG-magnetized media (Section 6).
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260 G. Brunetti and A. Lazarian

Figure 7. Left-hand panel: The lifetime of relativistic electrons in the ICM at z = 0.2 as a function of the Lorentz factor. Thick (blue) lines are for cluster cores

and thin (red) lines are for cluster periphery. We report the total lifetime (solid lines) and the lifetimes due to single processes: Coulomb losses (dashed lines),

synchrotron and IC losses (dotted lines) and bremsstrahlung losses (long dashed lines). Right-hand panel: The lifetime of cosmic ray protons in the ICM at

z = 0.2 as a function of the particle momentum. Thick (blue) lines are for cluster cores and thin (red) lines are for cluster periphery. We report the total lifetime

(solid lines) and the lifetimes due to single processes: Coulomb losses (dotted lines) and pp-collisions (dashed lines). In both panels calculations in the cores

(thick blue) are obtained for B = 3 μG and nth = 2 × 10−3 cm−3, and in the periphery (thin red) for B = 0.5 μG and nth = 10−4 cm−3. For comparison, the

dash–dotted lines in both panels give the acceleration time-scale which is used in Fig. 8; note that the increase of this time-scale in the case of subrelativistic

protons is due to the decrease of the efficiency of the non-resonant compression at subrelativistic energies.

5.2 Non-resonant acceleration

5.2.1 Introduction

Resonant TTD-acceleration is not the only process by which compressible turbulence may accelerate cosmic rays in the ICM. For instance,

fast particles can be accelerated also by large-scale compressible motions (e.g. Ptuskin 1988; Chandran 2003; Chandran & Maron 2004; Cho

& Lazarian 2006). Compression changes the particle momentum according to

∂p

∂t
= −1

3
p ∇ · V l . (50)

If the medium is neither expanding nor contracting it is 〈∇ ·Vl〉 = 0 and thus particles will not experience regular changes in energy. On the

other hand if Vl is a turbulent field a statistical acceleration effect (analogous to a classical second-order Fermi process) may exist. This is

essentially because particles would statistically experience more compression than expansion.

5.2.2 Diffusion coefficient

Limiting to the case V2
l  c2

s and provided that the turbulent velocity of the medium has correlation scales much longer than the effective

particle mean free path, the diffusion coefficient in the particle momentum space, Dpp, and the total (turbulent advection and diffusion) spatial

diffusion coefficient, D∗, can be obtained by standard procedure in plasma physics in the quasi-linear approximation. These are (Ptuskin 1988)

Dpp = 2

9
p2 D

∫
k

dyy2V(y)

c2
s + y2 D2

(51)

and

D∗ = D

[
1 + 4

3

∫
k

dyV(y)

c2
s + y2 D2

]
, (52)

where D is the spatial particle-diffusion coefficient (without considering the effects induced by the non-resonant compressible coupling itself,

equation 51), and V(y) is defined as∫
V(y) dy = V 2

L . (53)

In this regime slow and fast diffusion limit exist. In the slow limit the rate of particle diffusion out of compressible eddies is slower than the

wave period, τw ∼ l/cs, that is, τ diff ∼ l2/D � τw and c2
s � k2D2. Here the process is mainly contributed by the action of the smaller eddies in
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the spectrum of the modes and it becomes faster as this minimum scale gets smaller (e.g. Cho & Lazarian 2006). From equation (51) we find

Dpp ∼ 1

9
p2

(
VL

cs

)2

D

(
1

Lol2

)2/3

l∼lmin

. (54)

For small minimum-turbulent scales this process formally becomes extremely efficient, however the minimum scale of the bulk of compressible

turbulent eddies in the ICM cannot be very small as these modes are strongly damped (Section 5.1.3, Fig. 5).

In the opposite case, in the fast diffusion limit, particles leave the eddies before they turnover, that is, τ diff  τw and c2
s  k2D2. Here

the process is mainly contributed by the action of the largest eddies which contain the bulk of the turbulent energy, and from equations (51)

and (53) we find

Dpp ∼ 2

9
p2 V 2

L

D
. (55)

An important point discussed in Section 3.2 is that particle–spatial diffusion itself is likely to be affected by the turbulent bending of the

magnetic field lines which gets the effective ion mean free path ∼ lA. Compared to the Coulomb or gyroresonance scattering the diffusion

with the characteristic scale lA does not involve any changes of the particle energy via scattering. Therefore the particle may diffuse slowly,

but the only change in energy will be due to large-scale compressions (cf. Cho & Lazarian 2006). We thus shall adopt a very simplified form

of the spatial diffusion coefficient in equations (51)–(55):

D ∼ c

3
β max{lcut, min{lA, lmfp}}. (56)

The combination between equations (51) and a turbulent-driven spatial diffusion coefficient (e.g. equation 56) provides an important refinement

of the evaluation of the cosmic ray acceleration via compressible long wave turbulence, and may have important consequences in the case of

the particle acceleration in the ICM (Section 5.3).

Finally, we want to remind that equation (51) is obtained by neglecting the effect of possible additional scattering processes due to

resonant particle–wave interactions. The presence of instabilities in cosmic rays may create an additional slab-type Alfvénic component that

would produce additional gyroresonance acceleration and reduce the effective mean free path (Lazarian & Beresnyak 2006). Conservatively

we do not discuss this possibility in the present paper.

5.2.3 Acceleration efficiency in the ICM

In this section we calculate the efficiency of the particle acceleration from large-scale non-resonant compression in the ICM.

Taking a Kraichnan scaling for the super-Alfvénic compressible turbulence, V(k) ≈ V 2
L k−3/2/L1/2

o , from equation (51) we have

Dpp � 2

9
D p2 V 2

L

L1/2
o

∫ 1/lcut

1/Lo

dy y1/2

c2
s + D2 y2

, (57)

where the spatial-diffusion coefficient is given by equation (56).

The resulting systematic acceleration time is independent of particle momentum (at least in the ultrarelativistic case, see also Fig. 7)

and is reported in Fig. 6(b). For a given temperature of the plasma, T, in the case of small βpl the non-resonant compression is formally very

inefficient because for large values of the magnetic field the particle spatial-diffusion coefficient is large (essentially D ≈ 1/3 βc lmfp, lmfp

from equation 1). On the other hand, in the case of large βpl the acceleration efficiency increases because turbulence bends the magnetic field

lines at scales smaller than lmfp and the effective particle mean free path is ≈ lA (which scales as β
−3/2
pl ); saturation for large βpl is reached

when lcut � lA (Fig. 6).

The reference value of βpl in the ICM is in the range βpl ∼ 200–1000 (i.e. B ∼ 0.5–3 μG, with nth ∼ 10−4 to 10−3 cm−3 and kBT ∼ 7–

10 keV), and formally under these conditions we find that the acceleration efficiency from non-resonant compression driven by relatively

energetic turbulence (caption) is similar to that due to the TTD resonance.

As already pointed out in Section 5.2.2, in the derivation of equation (51) (or equation 57) it was assumed that the effective particle mean

free path is much smaller than the scale of the turbulent eddies. This condition is formally violated in the case of small βpl in Fig. 6(b) where

the smaller turbulent eddies are < lmfp (mean free path lmfp ≈ 10–50 kpc). On the other hand, this does not happen for larger βpl, since in this

case the particle effective mean free path, ≈ lA ≈ lcut, is actually comparable to (or smaller than) the smallest turbulent eddies.

5.3 Overall effect of compressible turbulence

As discussed in Section 5.1.1 the TTD resonance is expected to be an efficient mechanism in the ICM, provided that particle isotropy is

preserved. Yet the TTD alone might not be efficient enough in maintaining such isotropy because both Dpp(μ, p) and Dμμ(μ, p) are strongly

maximized for particles moving at small angles with the direction of the seed magnetic field. However, additional resonant processes acting

on small scales might easily maintain particle isotropy. If these mechanisms are really at work in the ICM they should also affect the spatial

diffusion, D, of the particles and thus the efficiency of the non-resonant compression mechanism. Formally with decreasing D the non-resonant

coupling with eddies in the fast diffusion limit becomes more efficient, and, at the same time, a larger range of scales of the eddies couples

with particles in the slow diffusion regime which is very efficient; actually this is what happens with increasing the beta of the plasma in

Fig. 6(b). However, if the spatial diffusion is strongly suppressed, namely, when D < cslcut in equations (51) and (57), one gets into the slow
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diffusion limit at any turbulent scale, and a decrease of D yields a corresponding decrease in the efficiency of the non-resonant compression

(equation 54). Thus future studies using self-consistent spatial diffusion coefficients will be of great importance.

The turbulent bending of the field lines which happens in the super-Alfvénic case cannot change the pitch angle of particles which

would preserve the adiabatic invariant, however in the high-beta ICM turbulent bending is associated with turbulent compressions which

indeed power the non-resonant acceleration mechanism and might provide a source of particle-pitch angle isotropization. The spatial diffusion

coefficient is related to that in the pitch angle as (order of magnitude) D ≈ c2/Dμμ, and the resulting time-scale of the pitch angle scattering,

≈ D−1
μμ, is indeed much shorter than the acceleration time of fast particles (which is ≈107–108 yr).

This is important since it implies that the action of large-scale compressible turbulence in the ICM is twofold. On one hand particles

diffusing through the compressible turbulent eddies experience substantial non-resonant stochastic acceleration. On the other hand, even

without requiring additional processes at small scales, this might contribute to help in maintaining particle–momentum isotropization, so

that the compressive component of the turbulent magnetic field (that along Bo) may also couple efficiently with particles via TTD resonance

without greatly change the particle spatial diffusion.

These two mechanisms, TTD resonance and non-resonant compression, are driven by the same turbulent modes and involve independent

particle-mode couplings and thus, as a first approximation, the acceleration process may be thought as the combination of the two effects; the

deriving particle acceleration time is also reported in Fig. 6(b).

6 C O M P R E S S I V E T U R BU L E N C E A N D PA RT I C L E R E - AC C E L E R AT I O N M O D E L I N G A L A X Y
C L U S T E R S

As already anticipated in Section 1 direct evidence for relativistic electrons diffused on Mpc scales in the ICM comes from radio haloes

and relics (e.g. Feretti 2005), while the hard X-ray tails detected in a few clusters may result from inverse Compton scattering of the cosmic

microwave background photons by the same electrons (e.g. Fusco-Femiano et al. 2004; Rephaeli et al. 2006).

The particle re-acceleration model is a promising possibility to explain the properties of the giant radio haloes and possibly also the

strength of the hard X-ray tails. This scenario assumes that turbulence is injected in a substantial fraction, Mpc3, of the cluster volume during

cluster–cluster mergers, and that relativistic electrons already present in the ICM and accumulated at γ ≈ 100 are re-accelerated for a typical

time-scale of � Gyr (e.g. Brunetti et al. 2001; Petrosian 2001; Fujita, Takizawa & Sarazin 2003; Brunetti et al. 2004). Alternatively these

seeds electrons to be re-accelerated could be secondary products of hadronic interactions (Brunetti & Blasi 2005).

In this section, after a brief review of the injection processes of cosmic rays in galaxy clusters and of the most relevant channels of energy

losses (Section 6.1), we provide calculations in the context of the particle re-acceleration model which include the effect of TTD resonance

and non-resonant acceleration due to compressible turbulent modes injected at large scales.

6.1 Cosmic ray injection in the ICM

There is a general consensus on the fact that several mechanisms of injection of cosmic rays may be at work in the ICM, and that once injected

the bulk of these cosmic rays does not escape the cluster (e.g. Berezinsky, Blasi & Ptuskin 1997; Ensslin et al. 1998; Völk & Atoyan 1999).

Collisionless shocks are generally recognized as efficient particle accelerators through the so-called diffusive shock acceleration process

(Drury 1983; Blandford & Eichler 1987). This mechanism has been invoked several times as an efficient acceleration process in clusters of

galaxies (Takizawa & Naito 2000; Blasi 2001; Fujita & Sarazin 2001; Miniati et al. 2001; Ryu et al. 2003). Present simulations confirm the

analytical claim that shocks with Mach number larger than 2–3 are rare (Gabici & Blasi 2003), and claim that the energy content in the form

of cosmic rays in massive clusters may be of the order of a few per cent of the thermal energy (Jubelgas et al. 2006; Pfrommer et al. 2006).

The bulk of the energy of these cosmic rays is injected in the cluster outskirts by shocks with a Mach number of the order of ∼3, the real

efficiency of these shocks is however uncertain and it is generally computed according to the so-called thermal leakage model (e.g. Kang &

Jones 2005).

A contribution to the injection of cosmic rays in clusters of galaxies may come from active galactic nuclei (AGNs) which indeed might

fill the ICM with relativistic particles and magnetic fields, extracted from the accretion power of their central black hole (Ensslin et al. 1997).

Similarly to AGNs, powerful Galactic winds may also inject relativistic particles and magnetic fields in the ICM (Völk & Atoyan 1999).

Although the present-day level of starburst activity is low, it is expected that these winds were more powerful during starburst activity in early

galaxies, as also suggested by the iron abundances in galaxy clusters (Völk, Aharonian & Breitschwerdt 1996).

6.2 Energy losses

6.2.1 Electrons and positrons

In the conditions typical of the ICM, ultrarelativistic electrons rapidly cool down through inverse Compton and synchrotron emission, and

accumulate at Lorentz factors γ ∼ 100–500 where they may survive for a few billion years before cooling further down in energy through

Coulomb scattering and eventually thermalize. Energy losses and relevant time-scales of relativistic electrons in the ICM are discussed in

several papers (e.g. Sarazin 1999; Petrosian 2001; Brunetti et al. 2004; Pfrommer & Ensslin 2004). In Fig. 7(a) we report the particle lifetime

as a function of the Lorentz factor: the lifetime has a peak at γ ≈ 102–103 where the cooling of electrons is slower and where particles
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may accumulate providing a seed populations to be re-accelerated in the context of the re-acceleration model. More specifically, Fig. 7(a) is

obtained for typical physical conditions in cluster cores and in the cluster outskirts: in the external regions of clusters electrons survive since

Coulomb losses are less severe and in principle these particles can be accumulated for cosmological time-scales at energies γ ∼ 100–1000.

On the other hand, in cluster cores the higher thermal density limits the maximum lifetime of electrons at less than 1 Gyr.

6.2.2 Protons

Once injected the relativistic cosmic ray protons do not suffer catastrophic radiative-energy losses. The only relevant channel of energy losses

for these particles in the ICM is given by hadronic collisions which however get a typical particle lifetime which is larger than a Hubble

time for ∼ GeV particles. This, together with the long time necessary to the bulk of these cosmic rays to diffuse out of clusters, makes

clusters themselves reservoir in which cosmic ray protons are confined and may accumulate over cosmological epochs (e.g. Völk et al. 1996;

Berezinsky et al. 1997).

On the other hand, mildly and subrelativistic protons may be significantly affected by Coulomb energy losses, which in turn change the

particle spectrum with respect to the injection spectrum. The rate of Coulomb losses is (e.g. Schlickeiser 2002)

dp

dt i
(βp) ≈ − 6√

π
× 10−29nth

{∫ βp/βe

0

dy exp(−y2) − βp

βe

(
1 + me

mp

)
exp

[
−
(

βp

βe

)2
]}

, (58)

where βp and βe ∼ 0.18 (T/108 K)1/2 are the velocity in units of the light speed of thermal electrons in the ICM and of the cosmic ray protons,

respectively.

As in the case of leptons, the details of the mechanisms of energy losses of cosmic ray hadrons in the ICM can be found in several papers

(e.g. Blasi & Colafrancesco 1999; Pfrommer & Ensslin 2004; Brunetti & Blasi 2005). In Fig. 7(b) we report the particle lifetime as a function

of the particle momentum. Fig. 7(b) is obtained for typical physical conditions in cluster cores and in the cluster outskirts: it is clear that even

in the cluster cores where losses are much severe the bulk of relativistic protons has a lifetime of the order of a Hubble time. Only protons

with kinetic energy larger than about 200 GeV and smaller than about 30 MeV in the cluster cores have lifetimes smaller than a couple of

Gyr, while just out of the core regions the lifetime of these particles grows (time ∝ n−1
th ) and all these particles are expected to survive for

cosmological time-scales.

6.3 Numerical calculations

In this section we calculate the time evolution of the spectrum of the relativistic particles stochastically re-accelerated by turbulent modes in

the ICM.

6.3.1 Formalism

As discussed in Section 5 we shall assume isotropy of the particle momenta and of the modes, and in this case the time evolution of the

spectrum of the turbulent modes and of the particles can be formally derived by a set of coupled kinetic equations. The time evolution of the

spectrum of the leptonic component is given by

∂N±(p, t)

∂t
= ∂

∂p

[
N±(p, t)

(
dp

dt rad
+ dp

dt i
− 2

p

{
Dr

pp + Dc
pp

})]+ ∂

∂p

[{
Dr

pp + Dc
pp

}∂N±(p, t)

∂p

]
+ Qe± (Np(p, t); p, t), (59)

where N− and N+ stands for electrons and positrons (N = 4πp2f , f is used in Section 4), respectively, and where the terms dp/dtrad and dp/dti
account for radiative (synchrotron and IC) and Coulomb losses, while Dr

pp and Dc
pp are the resonant (TTD, equation 47) and the non-resonant

(from turbulent-compression, equation 57) particle momentum-diffusion coefficients. In equation (59) we also formally include an injection

term, Qe± (Np(p, t); p, t), which depends on the spectrum of cosmic ray protons, and is necessary in the case that the re-accelerated electrons

and positrons are injected by hadronic collisions in the ICM (see Brunetti & Blasi 2005).

The time evolution of the spectrum of cosmic ray protons is given by

∂Np(p, t)

∂t
= ∂

∂p

[
Np(p, t)

(
dp

dt i
− 2

p

{
Dr

pp + Dc
pp

})]+ ∂

∂p

[{
Dr

pp + Dc
pp

}∂Np(p, t)

∂p

]
, (60)

where the term dp/dti accounts for Coulomb losses (equation 58), while the particle depletion due to proton–proton collisions can be neglected.

Because the population of cosmic ray protons in the ICM essentially comes from the accumulation of these particles during cosmological

time-scales, we do not consider the source term in equation (60) which would account for the contribution from freshly injected protons.

The evolution of the spectrum of the compressible turbulent modes is given by equation (41) described in Section 5.1.3, where all the

dampings are formally derived in combination with equations (59) and (60). The effect of the non-resonant damping on the spectrum of the

modes can be neglected since turbulent-compression acts efficiently only on relativistic particles in the ICM (Section 5.2), and this gets a net

damping rate which is much smaller than that via TTD resonance with the thermal ICM.
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264 G. Brunetti and A. Lazarian

6.3.2 Assumptions

In this paper we adopt the particle re-acceleration model assuming that a seed population of relativistic electrons and protons in the ICM is

re-accelerated by turbulence injected at large scales during a merger event. For simplicity we do not study the more complex issue of the

re-acceleration of secondary electrons and positrons injected by proton collisions in the ICM (Brunetti & Blasi 2005).

The originality of this paper is that compressible turbulence is used as the driving of particle re-acceleration, and accordingly the detailed

diffusion coefficients obtained in Section 5 and the scenario and properties of turbulence discussed in Sections 3 and 4 are used in the

calculations. For seek of clarity the main assumptions and physical parameters used in the calculations are listed below.

(i) We consider physical parameters appropriate for massive galaxy clusters: T ≈ 108 K, nth ≈ 10−3 cm−3, B ≈ 0.5–3 μG.

(ii) Turbulence is assumed to be subsonic, with V2
L  c2

s , and injected at large scales L0 ≈ 300–500 kpc for a typical cluster–cluster

crossing time.

(iii) The initial spectrum of electrons, Ne(p, t = 0), is derived by assuming that electrons are injected in the ICM in a single event and then

evolve passively for ≈1–3 Gyr before being re-accelerated (see Brunetti et al. 2004).

(iv) The initial spectrum of protons, Np(p, t = 0), is derived by assuming that protons are continuously injected in the ICM for a long

period, ≈3–5 Gyr, with a constant injection spectral rate Q ∝ p−2.2 before being re-accelerated (see Brunetti et al. 2004).

(v) Damping terms from relativistic species in equation (41) are neglected in the calculations as they become important only if the relativistic

component gets a relevant fraction of the thermal energy of the ICM (Section 4.3).

(vi) The damping term due to thermal particles is taken stationary because, under the assumption (ii), the thermal properties of the ICM

are not significantly modified with time.

Under conditions (ii), (v) and (vi) the spectrum of the modes is also stationary and this is given by equation (43).

6.3.3 Main results

Once large-scale turbulence is injected in the ICM, magnetosonic modes take a relatively long time to cascade at collisionless scales:

τkk (Gyr) ≈ 0.6

(
Lo

300 kpc

)(
VL

103 km s−1

)−1(
Ms

0.5

)−1

. (61)

In the re-acceleration scenario this is an unavoidable temporal gap, of a fraction of a Gyr, between the injection of the first turbulent eddies and

the beginning of the particle re-acceleration process. When turbulence reaches collisionless scales the acceleration process starts and particles

take a time, of the order of the re-acceleration time, to be significantly boosted in energy. A relevant example of the time evolution of the

electron and proton spectrum during the re-acceleration period is reported in Fig. 8 assuming V2
L ∼ 0.18 c2

s (see caption): the seed electrons

initially accumulated at γ ∼ 102–103 are efficiently re-accelerated up to γ ≈ 104–105.

Radio (and hard X-rays) observations can be well explained in terms of a high-energy tail of emitting relativistic electrons at energies

of several GeV (e.g. Schlickeiser et al. 1987; Brunetti et al. 2001; Petrosian 2001). We calculate the evolution of the re-accelerated particles

under the conditions given in Section 6.3.2 and find that, quite independently from the initial electron and proton spectrum, an appreciable

Figure 8. Left-hand panel: Time evolution of the spectrum of relativistic electrons as a function of the Lorentz factor. Right-hand panel: Time evolution of

the spectrum of cosmic ray protons as a function of the particle momentum. In both panels calculations are reported for: t = 0, 4 × 1015, 8 × 1015, 1016, 1.2

× 1016 s from the start of the re-acceleration phase. Calculations are performed assuming (VL/cs)
2 = 0.18, Lo = 300 kpc, nth = 10−3, kBT = 9 keV, B =

1 μG and redshift z = 0.1 (for IC losses).
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high-energy tail of relativistic electrons at these energies is produced approximately for (VL/cs)
2 � 0.15 (1 + z/0.1)2.12 In this case compressible

turbulence injected at large scales in galaxy clusters may actually trigger efficient particle re-acceleration, and potentially explain the diffuse

Mpc radio sources observed in massive galaxy clusters and the hard X-rays in excess to the thermal X-ray emission.

A spectral break, at ≈ GHz frequencies, is observed in the synchrotron spectrum of a few radio haloes and this is interpreted in favour of

the re-acceleration scenario (e.g. Brunetti 2004; Feretti 2005). Under the condition (i) in Section 6.3.2, such a break requires the presence of a

corresponding break in the spectrum of the emitting electrons at energies ≈5–10 GeV, and we find that this is reproduced by our re-acceleration

model in the case of moderate turbulence, typically (VL/cs)
2 ∼ 0.15–0.25, while in the case of more energetic turbulence electrons can be

re-accelerated at larger energies and the corresponding synchrotron break is shifted at several GHz.

Also protons are efficiently re-accelerated. Relativistic protons are not subject to radiative losses and since the re-acceleration efficiency

scales with the energy of the particles (Sections 5.1 and 5.2) the spectrum is simply shifted at higher energies and the slope of the injection

spectrum is essentially preserved during the re-acceleration (Fig. 8).

Under our assumption (v), Section 6.3.2), it is 
th � 
rel and the spectrum of the turbulent fluctuations in terms of magnetic field, WB,

does not depend on the presence of cosmic rays, thus protons cannot significantly affect the acceleration process of relativistic electrons. This

marks an important difference with Alfvénic re-acceleration, in which case the dominant damping of the modes comes from the resonance

with relativistic protons and thus these protons affect the electron acceleration (Wave–proton Boiler, Brunetti et al. 2004).

An additional point to stress here is that, because 
th � 
rel, the fraction of the turbulent energy which goes into the cosmic rays via

TTD resonance is simply ≈ 
rel/
th and is fixed by the fraction of the energy in the ICM which is in the form of cosmic rays. An additional

contribution to the energy of the re-accelerated particles comes from the non-resonant compression. In our calculations (assuming that cosmic

rays store a few per cent of the thermal energy in the ICM) the total fraction of the turbulent energy which goes into non-thermal particles is

of the order of ≈2–5 per cent.

In case of long re-acceleration periods, actually �3–4 times the re-acceleration time (equation 49), a non negligible fraction of the electron

number is boosted towards the maximum energy. Here an equilibrium between acceleration and losses is reached and most of the energy flux

from the damping of the turbulence with these particles is radiated away via synchrotron and IC by the same re-accelerated particles. Thus

in principle for very long re-acceleration periods the total energy of the electron population should saturate and the spectrum is expected to

slowly approach stationary conditions. On the other hand, since cosmic ray protons are free from energy losses, the energy flux from the

damping of the turbulence is totally stored in the form of particle energy and this gives an unbalance between electron and proton acceleration.

In the re-acceleration scenario this unbalance is not expected to be large, indeed turbulence is injected during cluster mergers and the

duration of a re-acceleration period is constrained by the cluster–cluster crossing time and by the turbulence cascading time, and these cannot

significantly exceed about 1 Gyr (see equation 61). In addition, present studies of the number counts of giant radio haloes in galaxy clusters

limit the lifetime of these sources at about ≈1 Gyr (e.g. Hwang 2004) and this additionally constraints the duration of stochastic particle re-

acceleration periods in galaxy clusters. Actually, given these limits, we find that assuming (VL/cs)
2 ∼ 0.15–0.25 (which is required to provide

the necessary electron re-acceleration up to ≈5–10 GeV) and a duration of the re-acceleration phase in the range 0.4–1 Gyr, the total energy

of the cosmic ray protons and that of the relativistic electrons are both boosted by a factor of 1.5–4, and the unbalance is not substantial.

7 D I S C U S S I O N

7.1 Major results

The problem of proton and electron stochastic re-acceleration by compressible motions is a complex one. The efficiency of acceleration

depends on the spectrum of compressible turbulent motions. The extent and the shape of this spectrum, in its turn depend on the processes of

plasma damping. In the case of the hot ICM the corresponding issues have not yet been clarified sufficiently in the literature.

As a result, we had to address those issues one by one. Namely, we started with the problem of describing turbulence in ICM in Section 3.

First of all, we provided arguments suggesting that turbulence is expected to be present in the medium in hot (and massive) galaxy clusters.

This is also because the ICM is magnetized and this implies a partial suppression of the plasma viscosity. The suppression of the viscosity

in a magnetized medium is a well-known effect and has been addressed at least for laminar flows (e.g. Simon 1955). In the case of the

strongly super-Alfvénic turbulence in the ICM an additional effect comes due to the bending of the field lines. Field lines are bended on scales

< lmfp and this affects the ion diffusion process and thus viscosity. An additional suppression of the viscosity might come from the effect

of plasma instabilities which affect the ion–ion mean free path, but that are not considered in this paper. Then, as we are interested in the

compressible motions we discussed their generation in super-Alfvénic and MHD turbulence along with providing the estimates for collisional

and collisionless damping of such motions. The outcome of Section 3 is a validation of a basic features of scenario according to which the

energy can be injected due to cluster mergers on large scales and energize the particles in the ICM.

The quantitative treatment of the particle re-acceleration requires a much more rigorous treatment of mode spectrum and damping which

was non trivial. In Section 4 we make use of collisionless physics and quasi-linear theory and derive general formulae for the spectrum of the

compressible modes, basically the ratio between the energy in magnetic fluctuations and the total energy in the mode, and for the damping

rate in magnetized plasma, and re-obtained expressions known in the literature, as a particular cases of our approach. The importance of the

12 The term (1 + z/0.1) comes from IC losses (as for B ≈ μG synchrotron losses are subdominant).

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 378, 245–275

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/378/1/245/1156360 by guest on 21 August 2022



266 G. Brunetti and A. Lazarian

derived formulae goes beyond our particular case of study, as a rigorous description of damping is important for many other astrophysical

important situations, for example, in galactic environments (see Yan & Lazarian 2004).

Having at hand a description of compressible super-Alfvénic and MHD turbulence with specified injection and damping scales we studied

in Section 5 proton and electron stochastic re-acceleration by compressible modes. We focus on particle acceleration from magnetosonic

modes and neglect the contribution from slow modes and Alfvén modes. Slow modes are subdominant for particle re-acceleration as they have

a phase velocity  than that of fast modes and sound waves, in addition both slow modes and Alfvén modes get anisotropic at small scales

(if injected at large scales) and this reduces the efficiency of gyroresonance acceleration. We showed that because of efficient damping of

fast modes at small scales the acceleration by gyroresonance is suppressed, that is, only extremely high-energy protons with large gyroradius

can find magnetic perturbations to resonate with. Thus we study stochastic re-acceleration by both non-resonant large-scale compressions

and resonant TTD, and clarified the regimes when the non-resonant large-scale compressions is important. The acceleration picture that is

drawn from this paper is complex. In the case of super-Alfvénic turbulence in the ICM the turbulent bending of magnetic field lines limits

particle spatial diffusion. Because line bending is associated with turbulent compression fast particles diffusing through the compressible

turbulent eddies may experience efficient stochastic acceleration via Fermi II non-resonant-turbulent compression. The same particles can

also experience coupling with these compressible eddies via TTD resonance which is found to be efficient in the ICM provided that particle

pitch-angle isotropization is maintained.

Finally, in Section 7, we apply our results to the case of the particle re-acceleration scenario which is proposed to explain radio haloes

(and hard X-ray tails) in galaxy clusters. Our calculations showed that the acceleration of energetic particles in galaxy clusters may be efficient.

Relativistic electrons in the ICM can be re-accelerated against radiative and Coulomb losses up to energies of several GeV (or more) assuming

that compressible turbulence at large scales stores a non-negligible fraction of the thermal energy, namely, (VL/cs)
2 � 0.15. These electrons

would emit Mpc-scale synchrotron radiation up to GHz frequencies (or more) provided that the magnetic field in the ICM is at ≈ μG level on

these scales. In addition, it also comes out that the re-acceleration of these electrons happens without transferring too much energy to protons,

which might alleviate possible problems of earlier re-acceleration models that appealed to Alfvén modes.

7.2 Simplifying assumptions

In other words, the proposed re-acceleration scenario, which makes use of compressible modes, is a plausible one and deserves further studies.

At the moment it includes several simplifications. In particular, plasma instabilities can decrease further mean free path of protons, which

would decrease damping of turbulence. As a result, compressible modes could cascade to smaller scales, making, for instance, gyroresonance

acceleration by fast modes more efficient. An effect related to the gyrokinetic instability in accelerated particles (Lazarian & Beresnyak

2006) may act in a different direction suppressing compressible motions at small scales, however on the other hand the Alfvénic component

generated by this instability may also accelerate particles. Plasma instabilities might also affect the diffusion of fast particles and this might

be important in the calculation of the efficiency of the acceleration from non-resonant compression.

In addition, reconnection processes taking place in the magnetized plasma should be able to accelerate particles on their own. Within

small volume current sheets, the percentage of accelerated particles is small. However, stochastic reconnection model in Lazarian & Vishniac

(1999) allows acceleration of a substantial part of particles at the expense of the magnetic energy in the turbulent plasmas (De Gouveia dal

Pino & Lazarian 2005). Therefore we believe that our treatment would underestimate the actual acceleration; further research should clarify

the actual picture.

Our derivations of the damping rates are valid when the ratio of the imaginary to the real part of the mode-frequency is much less than

unity. This is generally true in the ICM and is a natural assumption for dealing with turbulence cascade, as in the opposite regime, no cascading

is possible and the energy dissipates at the injection scale.

7.3 Relation to earlier works

Stochastic particle acceleration in galaxy clusters has been addressed by several papers (e.g. Schlickeiser et al. 1987; Brunetti et al. 2001;

Petrosian 2001; Fujita et al. 2003). This work appeals to compressible motions to re-accelerate particles in the ICM. Earlier detailed time-

dependent calculations of the problem of re-acceleration was addressed in Brunetti et al. (2004) and Brunetti & Blasi (2005), where Alfvén

modes were used for the purpose. Such an approach is adequate if, for instance, Alfvén modes are injected by some mechanism at small

scales. One possibility is that this might happen in the gyrokinetic instability scenario (Lazarian & Beresnyak 2006), and this provides an

interesting possibility that we consider elsewhere. If, however, Alfvén modes are injected at large scales the Alfvénic component at the scale

of energetic particle gyroradius gets very anisotropic and interacts very inefficiently with the particles (Chandran 2000; Yan & Lazarian 2002).

Thus fast compressible modes should be considered. These modes are isotropic and may scatter particles efficiently as we have demonstrated

above.

In some aspects the scenario suggested in the present paper for the ICM is similar to that adopted to calculate the scattering of galactic

cosmic rays in Yan & Lazarian (2004), and to that adopted in the ICM by Cassano & Brunetti (2005).

The present paper is a theoretical extension of the work of Cassano & Brunetti (2005) where a more simplified treatment of the resonant

TTD re-acceleration of electrons by fast modes was used to derive the statistical properties of non-thermal emission in galaxy clusters.

Yan & Lazarian (2004) discuss cosmic rays propagation in Milky Way thus focusing on MHD turbulence at scales l < lA and mostly

low-beta plasma. On the other hand, here we concentrated on the acceleration by motions at scales larger than lA and high-beta plasma, the
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conditions which are relevant to the clusters of galaxies. This made our calculations of the particle-mode damping rates and of the particle-

diffusion coefficients different from those in Yan & Lazarian (2004). In particular, we had to re-adopt many of the plasma results for high-beta

plasma and to treat differently magnetic field wandering.

Finally, an additional new of this paper is that we not only considered acceleration of electrons by the TTD resonance, but acceleration

of fast protons and electrons subjected to both the TTD resonance and the large-scale compressions.

8 S H O RT S U M M A RY

The paper above explains the non-thermal emission observed in galaxy clusters as a consequence of electron re-acceleration by compressible

turbulence. In this scenario turbulence is injected at the scale of galaxy mergers and cascades to small scales where the bulk of energetic

particle acceleration happens. The turbulence is described by using the recent advances in understanding of MHD turbulence. The paper

incorporates the following.

(I) A model of compressible turbulence in galaxy clusters. In this model the energy is injected at the scale of galaxy mergers and cascades

to small scales where the bulk of energetic particle acceleration happens.

(II) Calculations of the plasma damping and energy of the mode for an arbitrary angle of wave propagation to magnetic field and a rather

general model of plasma.

(III) Calculations of acceleration of protons and electrons by compressible motions in ICM plasma and a detailed application to the particle

re-acceleration scenario to explain radio haloes and possibly hard X-ray tails.

Our results show that electrons obtain a substantial part of the energy transferred to the energetic particles, which fits well to the existing

observational constraints.
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A P P E N D I X A : D I E L E C T R I C T E N S O R I N T H E L O N G WAV E L E N G T H L I M I T

A relevant case for many astrophysical situations is that of long-wavelength modes for which it is |zα| ∼ kp/mα�
α
o  1. This is also the case

of the turbulent modes in the ICM of interest in the present paper. The dielectric tensor (equation 16) is in the form

Ki j = δi j − ω−2
∑

α

Rα
i j (A1)

BS73 calculated the tensor Rij from equations (16)–(17) and under the conditions zα = k⊥p⊥/mα�
α
o  1 and Xα

1 ≡ (k‖p‖/mα − ωγ )/�α
o 

1. In this case, by taking into account that Jn(zα) = (zα/2)n
∑

m(−z2
α/4)m/m!
(n + m + 1), one finds (BS73)

Ri j � −2π
∑

α

ω2
p,α

∫ ∞

o

dp⊥

∫ ∞

−∞
dp‖

{
p2

⊥�α
i j

[
(ω − k‖v‖)

∂ f̂ α(p)

∂p⊥
+ k‖v⊥

∂ f̂ α(p)

∂p‖

]
+ mα p‖

(
v⊥

∂ f̂ α(p)

∂p‖
− v‖

∂ f̂ α(p)

∂p⊥

)
δi3δ j3

}
, (A2)

where

�α
i j = 1

2�α
o

⎛⎜⎜⎜⎝
Xα

1 −i −( p‖
p⊥

)
zα

i Xα
1 − z2

α

2Xα
1

−i
( p‖

p⊥

)
zα

Xα
1

−( p‖
p⊥

)
zα i

( p‖
p⊥

)
zα

Xα
1

z2
α−2

Xα
1

( p‖
p⊥

)2

⎞⎟⎟⎟⎠+ O
(

z2
α

)
(A3)

and where the term O(z2
α) comes from the contribution from the n � 2 resonances in equation (16).

In an isotropic plasma, equations (A2)–(A3) can be further simplified by introducing the total energy of species α:

Eα = 2πNα

∫ ∫
dp⊥ p⊥dp‖ f̂ α(p)mαc2γ, (A4)

and the pressure of species α:

Pα = Pα
⊥ = πNα

∫ ∫
dp⊥ p⊥dp‖ f̂ α(p)p⊥v⊥ = Pα

‖ = 2πNα

∫ ∫
dp⊥ p⊥dp‖ f̂ α(p)p‖v‖ (A5)

which is Pα = NαkBT for a Maxwellian distribution of α particles.

By integrating equations (A2) and (A3), introducing equations (A4) and (A5), and requiring no net charge in the plasma (i.e.
∑

α
Nαeα =

0), the components of the tensor are given by

R11 = −4πk2
‖c2

B2
o

(
ω

k‖c

)2∑
α

(Eα + Pα) , (A6)

R12 = R21 = 0, (A7)
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R13 = R31 = 0, (A8)

R22 = R11 + 8πk2
⊥c2

B2
o

∑
α

Pα −
∑

α

πk2
⊥ Nα

B2
o

〈
p⊥v3

⊥
〉

α
− 2π2k‖k2

⊥c2

B2
o

∑
α

Nα

∫ ∫
p⊥dp⊥dp‖

p2
⊥v2

⊥
ω − k‖v‖

∂ f̂ α(p)

∂p‖
, (A9)

R23 = −R32 = −4π2ik⊥c

Bo

∑
α

Nαeαω

∫ ∫
p⊥dp⊥dp‖

p⊥v⊥
ω − k‖v‖

∂ f̂ α(p)

∂p‖
, (A10)

R33 = −8π2ω2

k‖

∑
α

Nαe2
α

∫ ∫
p⊥dp⊥dp‖

1

ω − k‖v‖

∂ f̂ α(p)

∂p‖
, (A11)

which give all the components of the dielectric tensor when inserted in equation (A1).

As usual, the integrals in equations (A9)–(A11) can be calculated using the Sokhotskii–Plamelj formula by taking into account the causal

condition (e.g. Melrose 1968):

1

ω − k‖v‖ + i0
= P 1

ω − k‖v‖
− iπδ(ω − k‖v‖), (A12)

where P is the Cauchy principal value, and i0 is an infinitesimal imaginary term.

A P P E N D I X B : E N E R G Y O F T H E M O D E

The energy of the mode in a collisionless plasma is given by (e.g. Barnes 1968; Melrose 1968)

W (k, ω) = 1

16π

[
B∗

k i Bk i + Ek
∗
i

∂

∂ω

(
ωK h

i j

)
Ek j

]
ωi=0

, (B1)

where Kh
i j stands for the Hermitian part of the dielectric tensor (A1). In the weak damping limit (i.e. Im(ω)  1) the Hermitian part of the

dielectric tensor (equation A1) can be expressed as

K h
i j � δi j −

∑
α

[
Mh

i j,α(ωr) + Im(ω)
∂Mh

i j,α(ωr)

∂ω

]
, (B2)

where the components of the tensor

Mi j,α = (Rα
i j + Rα

j i )/2ω2 are given by equations (A6)–(A11). We note that the x-component of the electric field associated with the

mode (and its spatial Fourier transform) is 0 (equation 13), and thus only the components Kh
22, Kh

23, Kh
32 and Kh

33 contribute to equation (B1).

The Hermitian part of the relevant components of the tensor Mi j are obtained from equations (A9)–(A12) and equation (B2):

Mh
22,α = −4π

B2
o

(Eα + Pα) +
(

k⊥c

ωr

)2
(

8πPα

B2
o

− πNα〈p⊥v3
⊥〉

B2
o c2

)
− 2π2 k‖k2

⊥ Nαc2

B2
o ω2

r

∫ ∞

0

dp⊥ p3
⊥v2

⊥

(
P
∫

dp‖
ωr − k‖v‖

∂ f̂ (p)

∂p‖

)
α

, (B3)

Mh
23,α = −Mh

32,α = −4π2 k⊥ Nαceα

Boωr

i

∫ ∞

0

dp⊥ p2
⊥v⊥

(
P
∫

dp‖
ωr − k‖v‖

∂ f̂ (p)

∂p‖

)
α

, (B4)

Mh
33,α = −8π2 Nαe2

α

k‖

∫ ∞

0

dp⊥ p⊥

(
P
∫

dp‖
ωr − k‖v‖

∂ f̂ (p)

∂p‖

)
α

. (B5)

The energy spectrum of the mode (equation B1) is thus given by

W (k, ω) = 1

16π

{
|Bk |2 + |Ek |2 − |E⊥|2 ∂

∂ω

(
ω
∑

α

Mh
22,α

)
− |E‖|2 ∂

∂ω

(
ω
∑

α

Mh
33,α

)
− [E∗

⊥ E‖ − E⊥ E∗
‖
] ∂

∂ω

(
ω
∑

α

Mh
23,α

)}
.(B6)

Here, it is necessary to evaluate the ratio between the parallel and perpendicular fluctuations of the electric field in equation (B6). In the low

amplitude regime the Fourier–Laplace transform of the mode electric field satisfies � ·E (k, ω) = 0, where �i j = Ri j + c2ki k j − (k2c2 −
ω2)δi j is the Maxwell operator (e.g. Melrose 1968; BS73; Schlickeiser 2002). Thus since it is Ek 1 = 0, one has

E‖
E⊥

= −�12 + �22 + �32

�13 + �23 + �33

. (B7)

A dimensional analysis of Maxwell operator in case of the long-wavelength modes gets �32 � �22 � �12 and �33 � �23 � �13 (BS73),

and thus the ratio between the perpendicular and parallel component of the mode electric field is

E⊥ � −E‖
R33

R32

(B8)

which can be used in equation (B6) in combination with equations (A10) and (A11). Here, it should be noticed that it is |E⊥|2/|E‖|2 ≈
|R33|2/|R32|2 � 1 and thus that the fluctuations of the electric field are perpendicular to Bo, and to the fluctuations of the magnetic field (see

equations 12–14). On the other hand, this does not immediately imply that the contribution from |E⊥|2 in equation (B6) dominate on that from

|E‖|2: a dimensional analysis of the elements of the tensor Ri j indeed shows that |E⊥|2M22 is of the same order of |E‖|2M33.
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The most important contribution of particles to the spectrum of the mode in the ICM (as in many other astrophysical cases) is provided

by thermal electrons and protons which dominates the energy budget of the plasma. In this case the particle distribution function of electrons

and protons is Maxwellian:

fα(p) = Nα f̂ α(p) = Nα

(2π)3/2

exp
{− p2/(2mαkBT )

}
(mαkBT )3/2

(B9)

and, from equations (B3)–(B5), the components of the Hermitian part of the dielectric tensor become

Mh
22,α = −4π

B2
o

(E + P)α +
(

k⊥c

ωr

)2(
8πPα

B2
o

− πNα

〈
p⊥v3

⊥
〉

B2
o c2

)
+ Aα

22

ω2
Iα Mα

22 + Aα
22

ω2
r

Iα, (B10)

Mh
23,α = Aα

23

ω
iIα, (B11)

Mh
33,α = Aα

33Iα, (B12)

where Iα stands for the Cauchy principal value in equations (B3)–(B5), and we put

Aα
22 = 16π2

(2π)3/2

k‖k2
⊥c2 Nα

B2
o m2

α

√
mαkBT , (B13)

Aα
23 = 8π2

(2π)3/2

Nαeαk⊥c

Bom3/2
α k1/2

B T 1/2
(B14)

and

Aα
33 = 8π2

(2π)3/2

Nαe2
α

(mαkBT )3/2k‖
. (B15)

In the case of Maxwellian distributions the Cauchy principal value in equations (B10)–(B12) reads

Iα =
[
P
∫ ∞

−∞

dp‖ p‖
ωr − k‖v‖

exp

(
− p2

‖
2mαkBT

)]
α

= −
√

2π(mαkBT )1/2 mα

k‖
[1 − ω̃α F(ω̃α)], (B16)

where we define

F(ω̃) ≡ 2 exp
{− ω̃2

α

}∫ ω̃α

0

dx exp{x2} →

⎧⎨⎩
2ω̃α − 4

3
ω̃3

α + 8
15

ω̃5
α for ω̃ � 1

1
ω̃α

+ 1

2ω̃3
α

+ 3

4ω̃5
α

for ω̃  1

⎫⎬⎭ (B17)

which for real argument is F(x) = −RZ (x), and

Z (x) = 1√
π

∫ ∞

−∞

dt exp{−t2}
t − x

(B18)

is the well-known plasma dispersion function (Fried & Conte 1961; Melrose 1968; Percival & Robinson 1998). The adimensional frequency,

ω̃, in equation (B17) is defined (from equation 4) as

ω̃α(βpl, θ ) = ω
mα

k‖

1√
2mα KBT

=
√

5

3

(
k

k‖

)(
mα

mp

)1/2(
βpl/2 + 1

βpl

)1/2

⎧⎨⎩1 +
√

1 − 4

(
k

k‖

)2
βpl/2

(1 + βpl/2)2

⎫⎬⎭
1/2

. (B19)

For ω̃α ∼ 1 the bulk of thermal particles of species α undergoes n = 0 resonance with the mode. The value of ω̃α increases with increasing θ

and goes to infinity with θ → π/2. For a given (θ , βpl) the value of the adimensional frequency of electrons is about 40 times smaller than that

of protons, thus electrons experience n = 0 resonance with the mode at larger angles than protons. The value of the adimensional frequency

also depends on the βpl: ω̃α increases with decreasing βpl, while ω̃α → √
5/3
√

mα/mp/ cos(θ ) for large βpl.

The behaviour of the Cauchy principal value (equation B16) and of F(ω̃α) is driven by the value of ω̃α . In Fig. B1 we report F(ω̃) for

electrons and protons for different values of βpl. F peaks at ω̃ ∼ 1 and for electrons this happens at larger θ than for protons. With decreasing

βpl the phase velocity of the mode increases and becomes significantly larger than the sound speed. This causes a shift of the peak of F towards

smaller θ in Fig. B1, and also prevents the n = 0 resonance of the bulk of the protons in the case of small βpl. In Fig. B2 we report the Cauchy

principal value (equation B16) of thermal electrons and protons. The principal value goes to zero for θ → π/2 which essentially means that

in this limit there is no particle–mode coupling via the n = 0 resonance, and this is because formally infinite particle’s velocity is requested

to resonate at these angles. Also in this case the features of the curves are shifted at smaller angles with decreasing βpl.
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Figure B1. The function F is reported, as a function of the mode-propagation angle θ , for electrons (left-hand panel) and for protons (right-hand panel).

Results are shown for different values of c2
s /v

2
A (=βpl/2): 100 (solid lines), 3 (dotted lines), 1 (dashed lines), 0.1 (long–dashed lines). In the calculations

kBT = 8.6 keV is assumed.

Figure B2. The function P(· · ·)/k‖ is reported, as a function of the mode-propagation angle θ , for electrons (left-hand panel) and protons (right-hand panel).

Assumptions and line styles are the same as in Fig. B1.

Given these results, the spectrum of the mode (equation B6) in a magnetized-collisionless plasma can thus be obtained in explicit form.

After some tedious algebra, from equation (B6), equations (B10)–(B17) and equation (B8) we find

W (k, ω) = |Bk |2
16π

{
1 + (ω/kc)2

1 − (k‖/k
)2 1
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〈
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〉
1 + ω2

〈
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23〉
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α
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o /4π
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B2
o /8π

(
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ω

)2

×
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α
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)
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〈
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⊥
〉

α

8Pαc2

]}]}
,

(B20)

where we put
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(
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)2
exp
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) [
1 − ( me

mp
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V 2
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, (B21)
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where �ω̃2
p−e = ω̃2

p − ω̃2
e , and〈

A2
33

A2
23

〉
= e2

p B2
o

(k⊥c)2(kBT )2k2
‖
A2(βpl, θ ), (B22)

and where

�L
α (βpl, θ ) = 1 − ω̃α Fω̃α

(1 − aα) + 2aαω̃
2
α(1 − ω̃α Fω̃α

)

Lα(βpl, θ )
, (B23)

with aα defined as

ae = −1 − 2A1 (B24)

and

ap = −1 + 2A1 (B25)

in the case of electrons and protons, respectively,
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(B26)

and where

Lα(βpl, θ ) = 1 + 2ω̃2
α[1 − ω̃α F(ω̃α)]. (B27)

The terms A1,A2 and Lα are reported in Fig. B3 for different values of βpl.

From equation (B20) with (ω2〈A2
33/A2

22〉) � 1, and ω = Vphk, one gets the expression for the ratio between energy density in the magnetic

field fluctuations and total energy density of the mode which is used in this paper:

|Bk |2
W (k, θ )

� 16π

{
1 + βpl

2

[(
Vph

cs

)2

+ 3

5

(
k⊥
k

)2

(2 − S(βpl, θ )) + 1

βpl

(
Vph

c

)2(
3

5
βpl + 2

)]}−1

, (B28)

where

S(βpl, θ ; { frel(p), T }) =
∑
α=e,p

Lα(βpl, θ )

(
1 − �L

α

2A2(βpl, θ )

)
− Nα

〈
p⊥v3

⊥
〉

α

8Pαc2
(B29)

is reported in Fig. B4 for different values of βpl; the expression for |Bk |2/W (equations B28 and B29) is important in our calculations since it

allows to obtain the value of the TTD-damping rate and of the TTD-acceleration efficiency (Sections 4.3–5.1).

Both L and S goes to zero for θ → π/2 (Figs B3 and B4) which means that there is no contribution to the energy of the mode via

n = 0 resonance. Also at small θ the contribution to the energy of the mode due to particle-mode coupling via n = 0 resonance goes to zero

(Fig. B4), and this is because in case of parallel propagation of the mode the compressible part (parallel) of the magnetic field fluctuations

which drives the n = 0 resonance goes to zero, B3 = ck⊥E⊥/ω (equation 14). Finally, the same arguments used to comment Figs B1 and B2

can be used here to explain the evolution of the behaviour of L and S with βpl.

Figure B3. Left-hand panel: The expressions A1/ (bottom) and A2 (top) are reported as a function of the mode-propagation angle θ . Right-hand panel: The

function L is reported, as a function of the mode-propagation angle θ , for electrons (thin lines) and for protons (thick lines). In both panels, assumptions and

line styles are the same as in Fig. B1.
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Figure B4. Left-hand panel: The expression k2
⊥S(· · ·) is reported as a function of the mode-propagation angle θ , for electrons (thin lines) and for protons

(thick lines). Right-hand panel: The expression k2
⊥(2 − S) is reported as a function of the mode-propagation angle θ , for electrons (thin lines) and for protons

(thick lines). In both panels, assumptions and line styles are the same as in Fig. B1.

A P P E N D I X C : DA M P I N G C O E F F I C I E N T S

The damping coefficient of the modes can be obtained by the standard formula for the linear growth rate of the modes in the weak damping

approximation (e.g. Melrose 1968; BS73):


 = −i

(
E∗

i K a
i j E j

16πW

)
ωi=0

ωr, (C1)

where Ka
ij stands for the anti-Hermitian part of the dielectric tensor which can be directly obtained from equations (16) and (17); here we

closely follow the approach in BS73. From the Sokhotskii–Plamelj formula (equation A12), from equation (17) one has (e.g. BS73):
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∣∣∣∣2 . (C2)

By making use of the properties of the δ functions, from equations (C1), (16) and (C2) one has


 = − π

16ωrW

k‖
|k‖|
∑
α,n

ω2
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∫ ∞

0

dp⊥

∫ ∞

−∞
dp‖ p2

⊥�α
n

[(
ω

k‖
− v‖

)
∂ f̂ α(p)

∂p⊥
+ v⊥

∂ f̂ α(p)

∂p‖

]
δ

(
p‖
mα

+ n�o,α − ωrγ

k‖

)
, (C3)

where we define

�α
n = 2

∣∣∣∣iJ ′
n(zα)E⊥ + p‖

p⊥
Jn(zα)E‖

∣∣∣∣2. (C4)

Here we focus on the TTD case, n = 0, which is the most important resonance of long wavelength (zα  1) fast modes and magnetosonic

waves. In this case it is

�α
o

zα1−→ 2

∣∣∣∣ p‖
p⊥

E‖ − i
k⊥v⊥γ

2�o

E⊥

∣∣∣∣2 (C5)

and by using the properties of the δ functions in equation (C3) we obtained a general formula for the damping rate (TTD) with particles of

α-species:


α(k) = − π

32
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, (C6)

where H(x) is the Heaviside step function (1 for x > 0, and 0 otherwise), the derivative of the particle distribution function should be evaluated

at

p‖(res) = mαc

(
ωr

k‖c

)⎡⎣1 + ( p⊥
mαc

)2

1 − ( ω

k‖c

)2
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(C7)
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and σα is given by

σα = 2i

(
ω

k‖c

)(
�o

k⊥c

)
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. (C8)

Since the fluctuations of the electric field are essentially perpendicular to Bo (Appendix B), it is E‖ → 0 and σα → 0 and thus from the

Faraday law (equation 14) the expression for the damping rate gets simplified:
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Thus from equation (C9) one obtains formulae appropriate for the case of the ICM:
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in the case of thermal particles, and


e/p(k, θ ) = −π2
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in the case of relativistic particles (see also BS73), where in obtaining equation (C11) from equation (C9), one takes

p‖(res) →
(

ω

k‖c

)
p⊥√
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(C12)

which implies p⊥ = p
√

1 − [ω/(k‖c)]2, and the derivative of the distribution function is taken:[
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