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Synopsis 

We study the time-dependent compressible flow of a Newtonian fluid in slits using an arbitrary 
nonlinear slip law relating the shear stress to the velocity at the wall. This slip law exhibits a 
maximum and a minimum and so does the flow curve. According to one-dimensional stability 
analyses, the steady-state solutions are unstable if the slope of the flow curve is negative. The 
two-dimensional flow problem is solved using finite elements for the space discretization and a 
standard fully implicit scheme for the time discretization. When compressibility is taken into 
account and the volumetric flow rate at the inlet is in the unstable regime, we obtain self-sustained 
oscillations of the pressure drop and of the mass flow rate at the exit, similar to those observed with 
the stick-slip instability. The effects of compressibility and of the length of the slit on the amplitude 
and the frequency of the oscillations are also examined. 

I. INTRODUCTION 

Flow instabilities occurring during the extrusion of polymeric melts limit the output 
rates and are detrimental to the quality of the extrudate. They have thus received consid- 
erable attention in the past three decades [Petrie and Denn (1976); Piau et al. (1990); 
Denn (1992)]. The different surface defects can more easily be described by means of the 
flow curve (wall shear stress versus apparent wall shear rate or pressure drop versus 
volumetric flow rate). Kalika and Denn (1987) distinguish four flow regimes for low- 
density polyethylenes: (1) The stable regime below a certain critical throughput (or a 
critical stress of order 0.2 MPa), in which the extrudate surface is smooth. (2) The 
sharkskin regime above the critical throughput in which the extrudate surface shows a 
small-amplitude, high-frequency roughness (sharkskin or surfuce meEt fracture). Kurtz 
(1984) noticed the coincidence of a change of slope of the log shear stress-log shear rate 
curves and the visual onset of sharkskin (loss of gloss). (3) The stick-slip (or spurt) 
regime above a second critical throughput in which periodic pressure and flow-rate fluc- 
tuations are observed, and the extrudate surface is characterized by alternating relatively 
smooth and sharkskin regions (cyclic melt fracture). The average stress reaches a maxi- 
mum and then a minimum in this regime. (4) The wavy regime in which the extrudate 
exhibits wave-like distortions, usually of a helical kind (gross melt fracture). 
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The above classification may not be appropriate for other melts and is by no means 
universally accepted. Some investigators consider all the above instabilities not as distinct 
phenomena but as consecutive forms of melt fracture [Denn (1992)]. Piau and El Kissi 
(1992) found that at higher flow rates the stress reaches a second maximum and then a 
minimum. Also, at very high volumetric flow rates one would expect a rather chaotic 
regime with pronounced distortions of the extrudate surface, lack of periodicity, and 
eventually breakup of the extrudate [Pearson (1985); Piau et al. (1990)]. 

Agreement has yet to be reached as far as the origins and the mechanisms of the 
various types of melt fracture are concerned. Some investigators argue that the cyclic and 
gross melt fractures originate upstream in the die-entry region [Piau et al. (1990); Piau 
and El Kissi (1992)], whereas others believe that they only appear within the die (espe- 
cially near the exit), associated with macroscopic slip at the wall, and they ark most easily 
observed in extrusion through a long die [Denn (1990); Denn (1992)]. For the sharkskin 
defect, however, there appears to be a consensus, and it is considered as a purely exit 
phenomenon. 

The possible mechanisms of instability have been the subject of debate. Constitutive 
instabilities and slip at the wall constitute the most popular explanations. Constitutive 
instabilities are caused either by changes of type of the governing equations or by mul- 
tiplicities in the stress constitutive equation [Denn (1990)]. In examining the latter type of 
instability, some researchers considered constitutive models exhibiting a nonmonotonic 
(double-valued) steady shear response, like the Johnson-Segalman and the Doi-Edwards 
models, and carried out one-dimensional linear stability or numerical transient analyses 
showing that the steady-state solutions are unstable whenever the slope of the shear 
stress-shear rate curve is negative [McLeish and Ball (1986); Kolkka et al. (1988)]. 

The importance of constitutive instabilities, however, has been recently reconsidered 
by many rheologists [Pearson (1985); Denn (1990); Denn (1992)]. It is now more widely 
accepted that slip along the wall plays a crucial role in melt-flow instability. Extensive 
experimental results by Piau and his co-workers [Piau et al. (1990); Piau and El Kissi 
(1992)], and the recent findings of Hatzikiriakos and Dealy (1992a) from parallel plate 
and capillary experiments provide convincing evidence for the importance of slip. 

Hatzikiriakos and Dealy (1992a) determined the slip velocity as a function of the wall 
shear stress using a modified Mooney technique. Reviews of the various slip velocity 
equations proposed in the literature are given by Hatzikiriakos and Dealy (1992b) and 
Denn (1992). At constant temperature, most of the proposed equations predict a power- 
law relation between the wall shear stress and the slip velocity. The equation proposed by 
Leonov (1990) exhibits a maximum and a minimum for the wall shear stress (as a 
function of the slip velocity); it is based on molecular considerations and contains pa- 
rameters that are difficult to determine. Another empirical model exhibiting a maximum 
and a minimum was proposed by El Kissi and Piau (1989). 

As early as in the mid 196Os, Pearson and Petrie (1965) considered the incompressible 
flow of Newtonian and power-law fluids in slits and tubes and carried out the linear 
stability analysis allowing slip at the wall by means of a generic slip equation relating the 
shear stress at the wall to the slip velocity. The Newtonian flow is unstable when the 
slope of the shear stress/slip velocity curve is negative. Pearson (1985) also provided an 
elementary explanation of the pressure oscillations observed with melt-flow instabilities 
in terms of bulk compressibility. 

In this paper, we model the time-dependent compressible Newtonian flow in slits 
using an arbitrary slip equation relating the shear stress to the slip velocity and exhibiting 
a maximum and a minimum. This is the first step before attempting to simulate non- 
Newtonian flow instabilities, including the extrudate region and using a more realistic 
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slip equation. Of course, the idea is by no means new, but now available numerical 
techniques and computing power make such a simulation possible. The objective is to 
demonstrate the existence of a limit cycle due to the competition between compressibility 
and slip. 

In our simulations, we consider the flow domain near the exit and we use the finite 
element method for the space discretization and a standard fully implicit scheme for the 
time discretization. In Sec. II, we present the governing equations and the slip equation 
together with some standard analytical solutions for relevant special flows. The numerical 
method is discussed in Sec. III; it is tested on some steady-state problems in Sec. IV. In 
Sec. V, we analyze time-dependent compressible flows with slip. In all the time- 
dependent runs, the volumetric flow rate at the inlet plane is kept constant by means of 
appropriate boundary conditions. The numerical results verify the importance of com- 
pressibility: it does not considerably affect the steady-state solutions but dramatically 
changes the flow dynamics. It is found that, under appropriate conditions, it is possible to 
generate self-sustained oscillations of the mass flow rate and of the pressure, which are 
typical of the stick-slip regime. 

II. STATEMENT OF THE PROBLEM 

A. Field and constitutive equations 

Let p, p, v, and u be the density, the pressure, the velocity vector, and the stress tensor, 
respectively. The continuity and the momentum equations for time-dependent compress- 
ible viscous flow are as follows: 

JP 
-$ +v*pv = 0, 

pp +pv*Vv-V-a-f = 0, (2) 

where f is the body force. For a Newtonian fluid, the stress tensor is given by 

(T = -p(p)I+2~d+(c+q)IV-v, (3) 

where I is the unit tensor, 7 is the viscosity, K is the bulk viscosity, and d is the 
rate-of-deformation tensor, defined by 

d = ~(VV)+(VV)~], (4) 

where, as usual, (VV)~ is the transpose of (Vv). For the bulk viscosity K, we make the 
usual assumption that it is zero [Bird et al. (1960)]. 

The above equations are completed by a thermodynamic equation of state. Various 
essentially empirical equations of state can be found in the literature [Tadmor and Gogos 
(1979)]. Under the assumption of isothermal flow at low pressures, we resort to the 
first-order expansion: 

P = POE1 +HP-PO)], (5) 

where 

(6) 
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is the isothermal compressibility, assumed to be constant, po and V, are the density and 
the specific volume at the reference pressure po and 7’ is the temperature. (A typical value 
for melt compressibility is 1.5X 10 -9 m*/N [Tadmor and Gogos (1979)].) In most simu- 
lations of polymer flow, it is assumed that the fluid is incompressible. In our problem, 
however, compressibility is an essential ingredient of the flow dynamics as a mechanism 
for storing and releasing elastic energy in a limit cycle. 

As a matter of fact, small changes in fluid density are normally accompanied by 
order-of-magnitude greater changes in viscosity. The pressure dependence of the viscos- 
ity is typically given by an expression of the form 

77 = 70 exd$‘b-m)19 
where 770 is the viscosity at the (low) reference pressure po and p’ is a material param- 
eter. For polyethylenes, reported values of j3’ range from 0.5 to 5X low9 m*/N [Hatz- 
ikiriakos and Dealy (1992a)]. At the present stage of our work, we do not take into 
account the pressure dependence of the viscosity. 

B. The slip equation 

We assume at the outset that the fluid slips along solid walls. The amount of slip is 
governed by a slip law that relates the shear stress on the wall to the relative velocity of 
the fluid with respect to the wall. For our present purpose, we need a slip law that is able 
to exhibit an unstable behavior. More precisely, the shear stress should show a local 
maximum for finite values of the relative velocity. 

The form of the slip law used in our calculations is given as follows: 

(7) 

where a, is the shear stress exerted by the fluid on the wall, u, is the relative velocity 
of the fluid with respect to the wall, and “1, ~3, a3 are material parameters. We note that 
Eq. (7) is analogous to the expression relating the shear stress of a Phan-Thien-Tanner 
fluid (with an additional viscous component) to the shear rate in simple shear flow. The 
wall shear stress a,, as given by Eq. (7), exhibits a maximum if the dimensionless 
parameter q is greater than 8. In Fig. 1, we plot a,,, vs u, for different values of CQ, 
“1 = 1, and ‘~3 = 100 (arbitrary units). 

Let H and V denote a characteristic length and a characteristic velocity of the flow, 
respectively. To nondimensionalize the governing equations, we scale the lengths by H, 
the velocity by V, the pressure (P--PO) and the stress components by vV/H, the density 
by pu, and the time by HIV. This scaling leads to five dimensionless numbers, the 
Reynolds number, Re, a compressibility number, B, and three numbers associated with 
the material parameters of the slip equation: 

Re = -; B = E; A, GE 5; A2 E a*; A, ~ a3 v2 
POVH (*) 

77 H 17 

In the sequence, we will exclusively use the resulting nondimensional equations and 
neglect the body force in the momentum equation. 

It is known that, in extrusion of polymeric melts, Re e 1. If we multiply the typical 
value for melt compressibility (p = 1.5X 10 -9 m*/N) by the critical wall shear stress at 
the onset of instability (0.2 MPa), we find that a typical value of the compressibility 
number is B = 0.0003. 
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FIG. 1. Typical curves of tbe arbitrary slip law for different values of the dimensionless parameters of a*, with 
(z, = 1 and q = 100 (arbitrary units). 

C. Poiseuille flow 

For later use, it is useful to record particular solutions of compressible plane Poiseuille 
flow with or without slip at the wall. H is taken as the half-width of the channel while V 
is the average inlet velocity. 

We first consider the incompressible flow with the slip law given by Eq. (7). It is easy 
to show that the steady-state solution is given by 

v, = v,-$P( 1 -y2); (9) 

the fluid flows in the x direction, y is the lateral coordinate, and VP is the scalar pressure 
gradient. The force exerted by the fluid on the wall is precisely -VP and thus, in view 
of Eq. (7), we have 

(10) 

The volumetric flow rate for half of the channel (in nondimensional form) is given by 

Q = v,-$‘P. (11) 
We now consider the compressible flow with no slip at the wall. We can derive the 

analytical solution for Re = 0, with the assumption that the derivatives of the velocity 
across the slit (i.e., in the y direction) are much greater than in the direction of the flow 
(i.e., in the x direction). The flow domain is defined by - 00 < x S 0 and - 1 G y S 1. 
The pressure p is set to zero at x = 0. For a compressible fluid, the pressure gradient is 
a function of x and so is the volumetric flow rate; the mass flow rate k is independent of 
x. One finds that 
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FIG. 2. Boundary conditions for compressible flow in a slit with slip at the wall. 

P(X) = 
-I++ -6Btix 

B 

and 

u, = 2~(l-y2) = 3 if 

2.w 
(1 -y2). 

(12) 

(13) 

We note that u, is parabolic and its magnitude varies along x. 

Ill. NUMERICAL METHOD 

A. Galerkin formulation 

In the present paper, we are interested in slightly compressible flow at very low values 
of the Mach number. We wish to solve the problem in terms of the velocity, the pressure, 
and the density as independent variables. The density can be eliminated, but we prefer to 
keep it as an additional unknown in order to have an easy-to-modify code able to handle 
more sophisticated equations of state. 

The selection of the shape functions is an important issue in our formulation. Since we 
limit our investigation to low Mach and Reynolds numbers, we can use a straightforward 
extension of the standard velocity-pressure formulation for incompressible flow, i.e., 
biquadratic-velocity (P2-Co) and bilinear-pressure @‘-Co) elements. We use for the 
density the same low-order approximation as for the pressure. Fortin and Soulaimani 
(1988) have shown that such an element gives good results at low Mach and Reynolds 
numbers. 

For time-dependent flow, we use the standard fully implicit (Euler backward- 
difference) scheme. As initial condition, we consider the steady-state solution corre- 
sponding to a volumetric flow rate Q at the inlet that we perturb by AQ at f = 0. 

B. Boundary conditions 

The boundary conditions for compressible flow in a slit with slip at the wall are shown 
in Fig. 2. Along the centerline, we have the usual symmetry conditions. Along the wall, 
the vanishing normal velocity constitutes an essential boundary condition. The slip ve- 
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locity u, is unknown; however, we can assign a natural boundary condition in the 
tangential direction and express the tangential surface stress u, as a function of u, on 
the basis of Eq. (7). 

Since the flow is only slightly compressible, we assume that the velocity component 
tangent to the cross section vanishes at both the inlet and outlet planes. The numerical 
results show that this assumption is reasonable, at least for the relatively low compress- 
ibility numbers considered here. Moreover, we assume that at the outlet plane the total 
normal stress is zero, uxxx = 0. 

In order to calculate the inlet condition for U, , let us assume that the density is a weak 
function of y, and that U, is a parabolic function of y. The latter assumption is obviously 
true for the incompressible case. As shown in the previous section, it is also true for the 
compressible case, when inertia is neglected and the velocity gradients across the slit are 
much greater than in the direction of the flow. For planar flow, tbe velocity u, at the inlet 
should satisfy the following conditions: 

Q = 
I 

‘~,dy, 
0 

s = 0 at y = 0, Ux = U’, 
?Y 

at y = 1, 

where u’, is the unknown velocity at the wall. It turns out that 

ux = F(y,u;,Q) = ;(3y2- 1 )u;+;( 1 -y2)Q. (14) 

The additional equation required for the calculation of the inlet velocity at the wall, v’,, 
is provided by the fact that u; satisfies the slip law: 

Substituting from Eq. (14) gives 

We should point out that u, is a monotonic function of Q, provided that 
A 2 < 8 + 24/A* ; one can then easily calculate the velocity profile at the inlet for any 
value of Q. 

IV. STEADY-STAkE RESULTS 

To study the effect of the mesh length and to check the validity of our boundary 
condition at the inlet, we have constructed meshes of two different lengths: AL = 5 and 
10. Different mesh refinements have also been considered in order to verify the conver- 
gence of the numerical calculations. The meshes were uniform in the direction of the flow 
and graded in the y direction. The mesh used in most calculations with AL = 5 consisted 
of 25 X 7 elements. 

A. No slip at the wall 

We first check the validity of the boundary condition at the inlet by comparing the 
solutions obtained with meshes of different length. It turns out that up to B = 0.1, the 
calculated solution is practically independent of the mesh length. Note that for B = 0.1 

the flow is markedly compressible and density doubles just five half-widths upstream the 
exit. Such density variations are obviously unrealistic and the runs for this extreme case 
are just used as a check to the numerical scheme and the assumptions we have made. 
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FIG. 3. Flow curves for different values of B; AL = 5, no slip at the wall. 

The flow curves (AP vs !k) for different values of B are plotted in Fig. 3. The 
pressure drop decreases as compressibility increases. Here, A P is the pressure drop along 
the wall (the pressure drop along the plane of symmetry is slightly lower). We chose to 
plot AP versus the mass flow rate h (and not versus the volumetric flow rate Q), 
because Q is not constant in the direction of the flow. We note, however, that at the exit 
ti = Q. 

8. Slip at the wall 

We now examine the effect of using slip at the wall. The numerical results are iden- 
tical to their analytical counterparts given in Sec. II. In all the subsequent results we take 
A 1 = 1, A 2 = 20, and A3 = 100. Tbe flow curve for incompressible flow and AL = 5 
is given in Fig. 4. Due to the particular choice of A 2 , the flow curve exhibits a maximum 
and a minimum. In the same figure, we show the combined effect of slip and compress- 
ibility. Tbe maximum and the minimum of the flow curve move to the right, as com- 
pressibility increases. 

V. TIME-DEPENDENT RESULTS 

For tbe time-dependent results, we use as an initial condition the steady-state solution 
corresponding to the volumetric flow rate Q at the inlet that we perturb by AQ at t = 0. 
We wish to study the evolution of the mass flow rate and of the pressure drop. 

A. incompressible flow with slip and compressible flow without slip 

Our time-dependent results for incompressible flow with nonlinear slip at the wall, 
show that the flow field gradually readjusts itself to the new steady state, without the 
appearance of any instability, even when the imposed volumetric flow rate is in the 
unstable regime. 
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FIG. 4. Flow curves for flow with slip at the wall; AL = 5. 

Similarly, when the flow is compressible and no slip occurs at the wall, the perturba- 
tion of the volumetric flow rate in the entry section causes the readjustment of the flow 
field to the new steady state. The lack of unstable portions of the flow curve prevents the 
occurrence of oscillations. 

B. Compressible flow with slip 

First we examine the generation of self-sustained oscillations with the high value of 
the compressibility number B = 0.1, which is much larger than the values encountered 
in practice. Our purpose with this first example is to enhance the compressibility effects 
before using more realistic values of B. The Reynolds number is taken equal to 0.01. We 
start from a steady-state solution on the left stable branch and suddenly perturb Q to a 
value that corresponds to the right stable branch. The time-dependent solution is shown in 
Fig. 5. The trajectory of the time-dependent solution on the flow-curve plane is shown in 
Fig. 5(a). The initial state is located at point 1; the solution follows the path indicated by 
the arrow up to point 2 on the right stable branch. We observe simultaneous overshoot- 
ings of the mass flow rate at the outlet [Fig. 5(b)] and of the pressure drop [Fig. 5(c)] 
before they converge to the new steady state. Again, if we perturb the volumetric flow 
rate to the previous steady-state value, we observe that the trajectories from the left to the 
right stable branch, and vice versa, do not coincide, and thus a hysteresis loop is obtained 
[Fig. 5(a)]. 

We now proceed to examine the time-dependent solutions when the imposed volumet- 
ric flow rate is in the unstable regime. We again consider the flow in a slit with B = 0.1 
and Re = 0.01. The volumetric flow rate is in the unstable regime and is suddenly 
decreased by 0.01%. The results for this run are shown in Fig. 6. This time, plotting the 
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FIG. 5. Transient solution for compressible flow in a slit starting from a steady-state solution on the left stable. 
branch and perturbing the volumetric flow rate to a value that corresponds to $e right stable brvch; (a) 
Trajectory of the solution on the flow-curve plane; (b) mass flow rates at the inlet (Mi) and the outlet (M,); and 
(c) pressure drop; Re = 0.01, B = 0.1, and AL = 5. 
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pressure drop versus the mass flow rate at the outlet reveals the existence of a limit cycle 
[Fig. 6(a)]. The solution starts at point 1 and follows the arrow. As shown in Figs. 6(b) 
and 6(c), self-sustained oscillations of the mass flow rate and of the pressure drop, similar 
to those observed with the stick-slip instability, are obtained. 

The solution jumps from the low- to the high-flow-rate stable regime, and vice versa, 
when some upper and lower critical values of the pressure drop (i.e., the shear stress) are 
reached, respectively. At the upper critical shear stress, slip becomes significant, whereas 
at the lower critical shear stress, adhesion to the wall is reestablished and the slip velocity 
becomes minimal. Note that these critical values do not coincide with the steady-state 
maximum and minimum values of the flow curve, and the limit cycle does not follow 
exactly the stable branches of the flow curve. The above mechanism was used by Hatz- 
ikiriakos and Dealy (1992b), who developed a model to simulate their time-dependent 
experiments, Their upper and lower critical values of the pressure drop, however, coin- 
cide with the extreme values of their experimental flow curve. 

As mentioned earlier, the value B = 0.1 corresponds to highly compressible flow and 
thus to unusual conditions for polymer flows. Let us now consider the same flow condi- 
tions with values of B and of the same order as those encountered in practical applica- 
tions. In Figs. 7 and 8, we plot the results for B = 0.001 and 0.0001 (Re = 0.01 in all 
cases). We observe that as the fluid becomes less compressible, the frequency of the 
oscillations becomes higher and the amplitude of the mass flow-rate oscillations de- 
creases, in contrast to that of the pressure-drop oscillations. The higher frequency may be 
attributed to the higher stiffness of the fluid in compression. At this point, we note that the 
amplitude and the frequency of the oscillations are intrinsically linked to the shape of the 
flow curve and thus to the form of the slip equation. The use of a realistic slip equation 
would, therefore, be in order if more meaningful results are to be obtained. 

The dependence of the oscillations on the shape of the flow curve around the critical 
range is clearly seen when we increase the length of the mesh. In Fig. 9, we show the 
results obtained for B = 0.0001 and Re = 0.01 using the longer mesh (AL = 10). 
Comparing the numerical results with those with the shorter mesh in Fig. 8, we observe 
that the amplitudes of both the mass-flow-rate and the pressure-drop oscillations increase 
as AL increases. On the other hand, the frequency of the oscillations decreases. Here we 
should recall that our slip equation does not take into account any pressure effects. 

VI. CONCLUSIONS 

We have used the finite element method for the space discretization and a standard 
fully implicit scheme for the time discretization, in order to calculate time-dependent 
compressible Newtonian flow in slits with a nonlinear slip law at the walls. The slip law 
relates the shear stress to the relative fluid velocity at the wall and is of negative slope in 
some critical range of the slip velocity. Using this equation results in flow curves with 
two stable branches separated by an unstable negative-slope branch. 

In the present paper, we have limited our results to the flow through a slit; we have 
recently extended our calculations to flows through tubes, and our observations remain 
entirely valid. Our two-dimensional calculations confirm earlier expectations: the combi- 
nation of a nonlinear slip law with compressibility and inertia can generate self-sustained 
oscillations of the pressure drop and of the mass flow rate at the exit, similar to those 
observed with the stick-slip instability. 

Of course, this work constitutes only a preliminary step toward the simulation of 
cyclic melt fracture. We have already linked our present simulations with the calculation 
of extrudate swelling; in a forthcoming paper, we will show the generation of wavy free 
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FIG. 7. Transient solution for B = 0.001 and Re = 0.01. (a) Trajectory of the solution on the flow-curve 
plane; (b) Mass flow rates at the inlet (A?,) and the outlet (I%?,); (c) Pressure drop; AL = 5. 
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surfaces at the exit of capillary tubes. However, any realistic simulation will need to take 
into account actual properties of polymer melts: a realistic slip equation based on experi- 
mental measurements, shear thinning, and viscoelasticity. The latter property would gen- 
erate a second storage of elastic energy in the limit cycles and also guarantee a proper 
swelling ratio. 

ACKNOWLEDGMENTS 

The results presented in this paper have been obtained within the framework of Inter- 
university Attraction Poles initiated by the Belgian State, Prime Minister’s Office, Sci- 
ence Policy Programming. 

References 

Bird, R B., W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (Wiley, New York, 1960). 
Denn. M. M., “Issues in viscoelastic fluid mechanics.” Ann. Rev. Fluid Mech. 22, 13-34 (1990). 
Denn, M. M., “Surface-induced effects in polymer melt flow, ” in Theoretical and Applied Rheology, edited by 

P. Moldenaers and R. Keunings (Elsevier, New York, 1992). pp. 45-49. 
El Klssi, N. and J. M. Piau, “Ecoulement de fluides polym&es enchev&r&s clans un capillaire, Modilisation du 

glissement macroscopique i la paroi,” C. R. Acad. Sci. Paris 309, S&e II, 1989, pp. 7-9. 
Fortin, M. and A. Soulaimani, “Finite Element Approximation of Compressible Viscous Flows,” in Compuro- 

tionaf Methods in Flow Analysis, edited by H. Niki and M. Kawahara (Okayama Univ. of Science, 
Okayama, 1988). pp. 951-956. 

Hatzikiriakos, S. G. and J. M. Dealy, “Wall slip of molten high density polyethylenes II. Capillary rheometer 
studies,” I. Rheol. 36. 703-741 (1992a). 

Hatzikiriakos, S. G. and J. M. Dealy, “Role of slip and fracture in the oscillating flow of HDPE in a capillary,” 
J. Rheoi. 36, 845-884 (1992b). 

Kalika, D. S. and M. M. Denn, “Wall slip and extrudate distortion in linear low-density polyethylene,” J. Rheol. 
31, 815-834 (1987). 

Kolkka, R. W., D. S. Malkus, M. G. Hansen, G. R. Ierley, and R. A. Worthing, “Spurt phenomena of the 
Johnson-Segalman fluid and related models,” J. Non-Newt. Fluid Mech. 29, 303-335 (1988). 

Kurtz, S. J., “Die geometry solutions to sharkskin melt fracture, ” in Advances in Rheology, edited by B. Mena, 
A. Garcia-Rejon, and C. R. Nafaile (Univ. Nat. Aut. Mex., Mexico City, 1984), Vol. 3, pp. 399-407. 

Leonov, A. I., “On the dependence of friction force on sliding velocity in the theory of adhesive friction of 
elastomers,” Wear 141, 137-145 (1990). 

McLeish, T. C. B. and R. C. Ball, “A molecular approach to the spurt effect in polymer melt flow,” J. Polym. 
Sci. B 24, 1735-1745 (1986). 

Pearson, J. R. A. and C. J. S. Petrie, “On the melt-flow instability of extruded polymers,” Proceedings ofthe 4rh 
International Rheological Congress. 1965, Vol. 3, pp. 265-282. 

Pearson, J. R. A., Mechanics of Polymer Pmcessing (Elsevier, London, 1985). 
Petrie, C. I. S. and M. M. Denn, “lnstabilities in polymer processing,” AIChE J. 22, 209-236 (1976). 
Piau. I. M., N. El Kissi, and B. Tremblay, “Influence of upstream instabilities and wall slip on melt fracture and 

sharkskin phenomena during silicones extrusion through orifice dies,” J. Non-Newt. Fluid Mech. 34, 145- 
180 (1990). 

Piau, J. M. and N. El Klssi, “The influence of interface and volume properties of polymer melts on their die 
flow stability,” in Theoretical and Applied Rheology, edited by P. Moldenaers and R. Keunings (Elsevier. 
New York, 1992). pp. 70-74. 

Tadmor, Z. and C. G. Gogos, Principles of Polymer Processing (Wiley, New York, 1979). 


	I. INTRODUCTION
	II. STATEMENT OF THE PROBLEM
	Ill. NUMERICAL METHOD
	IV. STEADY-STATE RESULTS
	V. TIME-DEPENDENT RESULTS
	VI. CONCLUSIONS
	ACKNOWLEDGMENTS

