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Abstract

One of the main challenges when working with modern climate model ensembles is the in-

creasingly larger size of the data produced, and the consequent difficulty in storing large amounts

of spatio-temporally resolved information. Many compression algorithms can be used to mitigate

this problem, but since they are designed to compress generic scientific data sets, they do not ac-

count for the nature of climate model output and they compress only individual simulations. In this

work, we propose a different, statistics-based approach that explicitly accounts for the space-time

dependence of the data for annual global three-dimensional temperature fields in an initial condi-

tion ensemble. The set of estimated parameters is small (compared to the data size) and can be

regarded as a summary of the essential structure of the ensemble output; therefore, it can be used to

instantaneously reproduce the temperature fields in an ensemble with a substantial saving in stor-

age and time. The statistical model exploits the gridded geometry of the data and parallelization

across processors. It is therefore computationally convenient and allows to fit a non-trivial model

to a data set of one billion data points with a covariance matrix comprising of 1018 entries.
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1 Introduction

One of the main contemporary scientific problems is how climate is changing, what the patterns

of local change are and what the social and economic costs of such changes will be (Meehl et al.,

2007). Although weather observations from multiple sources and appropriate statistical analyses

can be used to answer some of these questions, it is not possible to separate anthropogenic from

natural contributions to global warming since they are confounded in observational data. A popu-

lar approach is to use climate models, systems of partial differential equations (PDEs) that seek to

reproduce the main physical processes of the Earth’s climate. Modern climate models are solved

on fine spatio-temporal grids in land, ocean, atmosphere, sea-ice and land-ice for tens of physical

variables, and an output for a single simulation can require many Tera bytes of space. A collec-

tion (ensemble) of multiple runs and climate models such as the Coupled Model Intercomparison

Phase 5 (CMIP5) ensemble requires a large effort from multiple institutions (the Earth System

Grid Federation) to store, control and coordinate the data access. It is therefore of paramount im-

portance to develop methods for efficiently compressing available climate model output without

substantially reducing the geophysical information. Data compression for climate data has been

discussed (Woodring et al., 2011; Hübbe et al., 2013; Bicer et al., 2013), as an application of loss-

less (Lindstrom and Isenburg, 2006; Burtscher and Ratanaworabhan, 2007; Schendel et al., 2012;

Gomez and Cappello, 2013) and lossy algorithms (Lakshminarasimhan et al., 2011; Laney et al.,

2013) to scientific data. Recently Baker et al. (2014) reviewed some well-known lossless and lossy

compression algorithms for climate data and introduced some diagnostics to understand if and to

what extent the compressed data set differs from the original climate model output. The diagnostic

was performed on aggregating pointwise discrepancy measures over the spatial domain, to assess

if the compressed data set was reproducing the actual value of the computer model.
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In this work we propose a new approach on data compression. We focus on an initial condition

ensemble and we define a statistical model that explicitly accounts for the spatio-temporal depen-

dence of the data and uses its parameters as summary of the geophysical characteristics of the

climate models. We further propose some validation criteria from space-time statistics literature

to prove that the statistical model can reproduce the spatio-temporal dependence of the original

climate model. This approach allows for compressing an entire ensemble and not a single climate

model run at much higher rate than traditional algorithms (here we achieve a 50:1 ratio compared

to the best performance of 5:1 in Baker et al. (2014)). The proposed approach, however, hinges on

the validity of the assumption of the statistical model, so data diagnostics are important to validate

the efficiency of the compression and they are thoroughly discussed. Once fitted, the statistical

model allows to conditionally simulate climate model runs with different initial conditions. In this

regard, the statistical model can be regarded as an emulator of an initial condition ensemble, under

the assumption that runs are independent for different initial conditions. This is, to our knowledge,

the first time an emulator is used in this context, as it is traditionally used for calibration and sensi-

tivity analysis (Sansó et al., 2008; Sansó and Forest, 2009; Bhat et al., 2012; Drignei et al., 2008;

Chang et al., 2015) or scenario extrapolation (Holden and Edwards, 2010; Castruccio and Stein,

2013; Holden et al., 2013; Castruccio et al., 2014). The key difference with traditional emulators

is that we do not assume correlation among inputs, as different initial conditions sensibly sampled

from the spin-up run generate effectively independent runs.

The model we propose focuses on annual three dimensional global spatio-temporal tempera-

ture fields with more than 1 billion data points and fitting a statistical model on such a large data

set is a challenging task. In the case of Gaussian processes, the analysis of a space/time data set

of size n with a full dependence structure implies storing matrices with O(n2) elements, which is a

daunting task for data sets that are larger than 50,000 data points with current RAM capabilities.

3
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In addition, the likelihood requires O(n3) flops for Cholesky decomposition and determinant eval-

uation. Many approaches have been proposed in recent years to overcome these problems (see Sun

et al. (2012) and references therein for a complete review). Among the most popular are reducing

the matrix size via a low rank approximation, kernel convolution (Higdon, 1998), fixed rank krig-

ing (Cressie and Johannesson, 2008) and predictive processes (Banerjee et al., 2008). The latter

approach is computationally efficient but can lead to loss of information when the spatial correla-

tion is moderate or strong (Stein, 2014). Another approach involves sparse approximation of the

covariance matrix via tapering (Furrer et al., 2006) or its inverse via Gaussian Markov Random

Field approximation (Rue and Held, 2005; Lindgren et al., 2011; Simpson et al., 2012; Xu et al.,

2015), but both these methods still imply a loss of information which depends on the taper size or

on the degree of Markovian approximation. Another possibility is using composite likelihoods by

assuming independence across blocks (Vecchia, 1988; Stein et al., 2004; Eidsvik et al., 2014), but

this approach implies a subjective choice of the blocks and does not allow to model dependence at

the boundaries of the blocks (therefore still implying loss of information about the data structure).

A recent direction of investigation involves finding the maximum likelihood estimator by finding

the zeros of an approximation of the score functions, via the Hutchinson estimator of the matrix

trace (Anitescu et al., 2012; Stein et al., 2012).

In this work, we circumvent some of the challenges of fitting unstructured spatio-temporal

data by exploiting the gridded geometry of the data and proposing an algorithm for likelihood

evaluation that balances memory storage, distributed access to memory and synchronization among

processors. These features are strongly dependent on the computer’s specifics and will be discussed

in detail throughout this work. The multi-stage algorithm we propose in this work captures well

the patterns in the data both in time and in space, requires less than 48 hours to run and has

approximately 27 million parameters, a small amount (≈ 2%) compared to the data size.

4
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The remainder of the paper is organized as follows: Section 2 introduces the dataset, Section

3 describes how multiple runs in an ensemble allows the estimation of the stochastic part with-

out a model for the mean, Section 4 describes the statistical model, presents the diagnostics, and

discusses computational challenges, Section 5 shows how the model can be used to simulate runs

from the initial condition ensemble, and Section 6 draws some conclusions.

2 The temperature data set

In this work, we focus on CMIP5 (Taylor et al., 2012), a multi-model ensemble that aims to pro-

vide a uniform and comparable assessment of climate response under different climate models for

the fifth Intergovernmental Panel on Climate Change (IPCC) Assessment Report. In particular,

we focus on the National Center for Atmospheric Research (NCAR) Community Climate System

Model 4 (CCSM4; Gent et al. (2011)), under a Representative Concentration Pathway 85 scenario

(Van Vuuren et al., 2011). Our choice of model and scenario was based on data availability: this

ensemble consists of six realizations (runs with different initial conditions), although the analysis

we present can be extended to multiple scenarios. The data set consists of projections of yearly

temperature between 1850 and 2100, on a regular 3D grid over the global domain with 192 latitu-

dinal bands, 288 longitudinal bands and 17 pressure levels. The latitude×longitude grid consists of

equally spaced data, while the vertical pressure levels are of 1000, 925, 850, 700, 600, 500, 400,

300, 250, 200, 150, 100, 70, 50, 30, 20, and 10 hPa (Taylor et al., 2012), which span from the

Earth’s surface to the upper stratosphere. The model is solved in sigma coordinates (Pielke, 2002)

and then mapped into gridded coordinates, implying that, near the Earth’s surface, some temper-

ature values are not defined since over land, especially in mountainous regions, some pressure

levels are not present. Therefore, the grid is incomplete for high pressure levels. In Section 4.1,

5
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we discuss how we account for the missing values and other preprocessing aspects of this work.

Figure 1 shows an example of realization of the temperature field for 2014.

Since a preliminary analysis has shown that the statistical characteristics of the narrow bands

near the poles (especially Antarctica) are very different, we removed the data for the Antarctic

continent (South of −62◦ latitude) and the data North of 82◦ latitude, at all heights. The total

number of latitude bands considered in this analysis is therefore 155, and the data set consists of

1.1 × 109 points.

3 Statistical models for a climate ensemble

In this work, we operate under the assumption that since the runs in the ensemble have different

initial conditions, they are statistically independent. This assumption relies on the deterministi-

cally chaotic nature of climate models (Lorenz, 1963), although the literature about testing for this

assumption is not fully developed (see Collins and Allen (2002); Collins (2002); Branstator and

Teng (2010) for some exceptions).

Denote by Tr the temperature process for realization r = 1, . . . ,R, by µ its mean across re-

alizations and by εr the stochastic component of the statistical model. We assume the following

model:

Tr = µ + εr εr
iid
∼ N(0,Σ). (1)

If we further denote by h j the pressure level, by Lm the latitude, by ℓn the longitude and by tk the

time, where j = 1, . . . , J, m = 1, . . . ,M, n = 1, . . . ,N, and k = 1, . . . ,K then we have

Tr = {Tr(h1, L1, ℓ1, t1), . . . ,Tr(h1, LM, ℓ1, t1),Tr(h1, L1, ℓ2, t1), . . . ,

Tr(h2, L1, ℓ1, t1), . . . ,Tr(hJ, LM, ℓN , tK)}.

6
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The independence assumption in (1) can be assessed pixelwise by first detrending the data, and

then computing the R × R sample correlation matrix to test if the off-diagonal elements are zero.

Similarly, a normality test can be performed.

If the independence assumption across the R realizations is valid, then it is possible to have

an estimate of Σ that does not depend on µ using a restricted loglikelihood. The heuristic behind

this approach is that from (1) we know that Tr − Tr′ ∼ N(0, 2Σ), and therefore there is no need

to parametrize the mean of the model if the only purpose is to estimate Σ. It is possible to derive

an explicit restricted likelihood form for Dr = Tr −
1
R

∑R
r=1 Tr. This idea was first introduced

by Castruccio and Stein (2013) for temperatures at the Earth’s surface under a single scenario.

Suppose that Σ = Σ(θ) where θ is a vector of unknown covariance parameters. Then

Result 1 Let D = (D⊤
1
, . . . ,D⊤R )⊤. The restricted loglikelihood for (1) is

l(θ; D) = −
KJMN(R−1)

2
log(2π) − 1

2
(R − 1)log[det{Σ(θ)}]

− 1
2
KJMNlog(R) − 1

2

∑R
r=1 D⊤r Σ(θ)−1Dr.

(2)

Also, the corresponding estimator for µ obtained by generalized least squares is µ̂ = 1
R

∑R
r=1 Tr.

We do not report the proof since it is a straightforward generalization of that in Castruccio and

Stein (2013). In this work, all the four steps of the model we present in the next section estimate

the parameters by maximizing (2).

4 The statistical model

In this section, we describe the full model for the 3D spatio-temporal temperature field. The model

is spectral in space, thereby automatically generating positive definite matrices, and consists of

four distinct stages, each one estimating parameters along a new dimension conditional on the

7
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previous stage, and each step consisting of fewer independent fits to a larger subset of the data.

This procedure allows a noticeable degree of flexibility as different statistical features of the data

can be estimated independently by multiple processors and merged subsequently. In Section 4.1

we discuss some preprocessing aspects before the introduction of the model, while in Sections 4.2,

4.3, 4.4 and 4.5, we present the different stages of the model.

4.1 Preliminaries: missing values, asymptotic standard deviations and com-

puter specifics

As mentioned in Section 2, remapping from sigma coordinates (Pielke, 2002) to gridded coordi-

nates implies that some temperatures are physically inconsistent for high pressure levels, or equiv-

alently for low altitudes. An extreme example is in the Himalaya regions (see Figure 1) where

the pressure cannot be 1000 hPa, thus no physical value can be assigned. In this case, the data

are assigned the value of 0, since this would be the expected value of Dr at each location. How-

ever, some regions at low altitudes have too many missing values to deliver meaningful results in

a statistical analysis. We therefore assign the value of 0 only to latitude bands with at least 20/280

defined temperatures, otherwise we discard the entire band.

Given the considerably large size of the data set, many of the parameters’ asymptotic standard

deviations are orders of magnitude smaller than the point estimates. Further, since the statistical

model comprises of millions of parameters, we decide not to report the uncertainty of the estimates

throughout this paper. Nevertheless, the computational time reported comprises of the Hessian

calculation at the optimum and the storage of the asymptotic standard deviations. Without the

evaluation of the Fisher information, approximately a day of computation can be saved.

In terms of computational requirements, for this analysis the number of processors and the

RAM size are the most important features. We use a workstation with two twelve-cores Intel Xeon

8

ACCEPTED MANUSCRIPT

D
o
w

n
lo

ad
ed

 b
y
 [

K
in

g
 A

b
d
u
ll

ah
 U

n
iv

er
si

ty
 o

f 
S

ci
en

ce
 &

 T
ec

h
n
o
lo

g
y
 K

A
U

S
T

] 
at

 0
5
:5

8
 0

7
 A

p
ri

l 
2
0
1
5
 



ACCEPTED MANUSCRIPT

E5-2697 v2 (at nominal frequency 2.7Ghz) and 200 Gb of RAM memory, and all the steps were

executed in MATLAB with the NelderMead minimization algorithm.

4.2 Step 1: temporal part

Denote by ε(t; r) the JMN × 1 vector of the stochastic component for realization r and time t. We

assume an autoregressive AR(2) structure with separate parameters for every location:

ε(t; r) = ϕ1ε(t − 1; r) + ϕ2ε(t − 2; r) + η(t; r),

η(t; r)
iid
∼ N(0,SCS),

(3)

where ϕ1 and ϕ2 are JMN × JMN diagonal matrices with the autoregressive coefficients, S is a di-

agonal matrix with the standard deviations for each grid point, and C is the correlation matrix. The

estimation of ϕ1,ϕ2 and S is performed independently across the D1, . . . ,DR and then averaged.

This procedure requires approximately 7.6 × 105 independent fits of 6 time series of 251 year.

It does not require storage of large matrices and can be performed in approximately 4.6 hours on

the workstation. By allowing different locations to have different parameters, the model is able to

capture different temporal patterns. Equation (3) assumes that an AR(2) structure is sufficient to

capture the temporal features of the data (see supplements for diagnostic and discussion). More-

over, (3) assumes no temporal cross-correlation between neighboring points (see the supplements)

and stationarity across time, discussed in a similar context in Castruccio and Stein (2013). If the as-

sumption of the temporal structure (3) is not adequate, the parameter estimates are not informative

and therefore the statistical model would not be able to compress effectively the data.

In Figure 2, the results of the fit for 925hPa are reported. The white areas correspond to the

mountainous regions where temperature is not defined. Values of ϕ̂1 for this height are mostly pos-

itive with the noticeable exception of the Indonesian region, while the values of ϕ̂2 show significant

9
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patterns especially in the Equatorial Pacific region (see supplements for a plot of the p-values). Ŝ2

shows higher variance at high latitudes, a well-established feature of climate model projections.

We also plot the marginal variance Ŝ2/(I − ϕ̂2
1 − ϕ̂

2
2) (where the division sign is componentwise),

which shows qualitatively similar patterns to Ŝ2, but differs significantly in magnitude.

We define H(t; r) =
{

D(t; r) − ϕ1D(t − 1; r) − ϕ2D(t − 2; r)
}

S−1, where D(t; r) is the 3D field for

realization r and time t. We also define Ĥ(t; r) as the same expression as above with the estimated

AR(2) parameters. The next sections describe a model for C that can be estimated by Ĥ(t; r).

4.3 Step 2: single band

Conditional on the previous step, we describe a model for the spatial correlation of η(t; r) at dif-

ferent longitudes but at the same latitude and height. The points are equally spaced on a circle:

assuming stationarity across longitudes results in an exactly circulant covariance matrix (Davis,

1979) and therefore independence across wavenumbers in the spectral domain (see Castruccio and

Genton (2014) for a full discussion on the stationarity assumption). It is thus natural to model the

spectral density of η j,m = {η(h j, Lm, ℓ1), . . . , η(h j, Lm, ℓN)}⊤ for fixed j and m (temporal and realiza-

tion indices are omitted since from (3) we are assuming the same distribution). Denote by η̃ j,m the

band-wise Fourier transform; we propose the following model for var(η̃ j,m) at wavenumber c:

f j,m(c; θ j,m) =























































v0; j,m if c = 0,

vn; j,m if c = n or c = N − n + 1, n ≤ V j,m,

φ j,m
{

α2
j,m
+4 sin2( c

N
π)
}ν j,m+1/2 otherwise,

(4)

for θ j,m = (V j,m, v0; j,m, . . . , vV j,m; j,m, φ j,m, ν j,m, α j,m)⊤ and c = 0, . . . ,N − 1. The choice of the polyno-

mial decay in (4) describes a Matérn-like correlation, modified to allow a smooth transition at high

wavenumbers (Castruccio and Stein, 2013).

10
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The latitudes exhibit an increasing smoothness as the height increases. This feature makes the

inference of the spatial correlation challenging (Stein, 1999) especially at the last height levels for

the equatorial regions. To improve the fit, we allow the first V j,m + 1 wavenumbers to have separate

values. We choose V j,m = 6 for all j if 1 ≤ j < 14 and if Lm ≤ −23◦ or Lm ≥ 23◦, and j = 15, 16, 17

while we choose V j,m = 13 if −23◦ < Lm < 23◦ and j > 14. A preliminary study has shown

how the v̂0; j,m, . . . , v̂V j,m
are always very close to the empirical periodogram estimates. Therefore,

to improve efficiency, we estimate only (φ j,m, ν j,m, α j,m) via restricted likelihood (1), conditional on

estimating the low wavenumbers via an empirical periodogram.

This step requires approximately 3200 independent fits using (2) for a data set of size 288 ×

251×6 representing the band×time across realizations. Each likelihood evaluation requires around

0.25 seconds, and the workstation performs the fit in approximately 4.4 hours.

Figure 3 shows the results of the fit for some of the heights and latitude bands. Figures 3(a) and

3(b) show the comparison of the fitted periodogram of Ĥ(t; r) for two latitudes with the empirical

nonparametric estimate, averaged over realizations and times. The low wavenumbers are identical

by construction, but model (4) is flexible enough to capture the high wavenumbers as well. In Fig-

ures 3(c) and 3(d), the corresponding correlation functions are shown. For both altitudes, the fitted

and empirical correlations look almost indistinguishable, mostly because the large-scale feature of

the curve is determined by the low wavenumbers, which are the same. In Figures 3(e) and 3(f), we

see a comparison of the fitted and empirical squared difference of Ĥ(t; r) between two neighboring

points at the same latitude and height, averaged over longitude, times, and realization (details can

be found in the supplements). Different pressure levels show similar results. We therefore con-

clude that the model is able to capture this high wavenumber feature of the data. It is noticeable

how, for high altitudes, the averaged squared contrast is significantly smaller than for the lower

altitudes, as the temperature field at high latitudes is noticeably smoother.
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The plots of φ̂ j,m, α̂ j,m and ν̂ j,m for p = 850hPa ( j = 3) and p = 20hPa ( j = 16) are reported in

the supplement.

4.4 Step 3: multiple latitudes

Once the single band parameters have been estimated, a model for (η̃ j,1, . . . , η̃ j,M)⊤ is defined. We

assume that

cov{η̃ j,m(c), η̃ j,m′(c
′)} = 0, for all m , m′, c , c′. (5)

This allows for some degree of sparsity in the spectral domain as only the coherence across pro-

cesses sharing the same wavenumber needs to be defined. When c = c′ in (5) we assume that

∣

∣

∣corr(η̃ j,m, η̃ j,m′)(c; ξ j, τ j)
∣

∣

∣ = Re
{

V̂ j(c)
}

I(c ≤ 7) +

[

ξ j

{1+4 sin2( c
N
π)}

ν j+1/2

]k

I(c > 7),

arg
{

corr(η̃ j,m, η̃ j,m′)(c)
}

= 0,

(6)

where k is the number of bands separating m and m′, Re{} is the real part and V̂ j(c) is the M × M

empirical coherence at wavenumber c and height j of the process averaged over time and realiza-

tions. As in the previous step, this choice of nonparametric estimation stems from the fact that the

process is very regular and low wavenumbers are difficult to estimate. The first equation assumes

an exponential decay of the coherence across latitude modulated by ξ j and an exponential decay

across wavenumbers modulated by ν j. The second equation has been shown to be reasonable for

data at this time scale (Castruccio and Stein, 2013).

Distributed computing can be used in several ways in this step. The fit for the 17 heights can be

done independently, but it is more efficient to distribute the computation of a likelihood for a single

height and fit the heights sequentially. We call Σc the M×M coherence matrix for wavenumbers c,

˜̂H(t; r, c) the band-wise Fourier transform of Ĥ(t; r) evaluated at c = 0, . . . ,N − 1, and C a generic
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constant. (1) can be written as

l(θ; D) = C − T (R − 1)
∑⌊N/2⌋−1

c=1
log{det(Σc)} −

1
2
T (R − 1)log{det(Σ0)}

− 1
2
T (R − 1)log{det(Σ⌊N/2⌋)} −

∑R
r=1

∑K
t=1

∑N−1
c=0

˜̂H⊤(t; r, c)Σ−1
c

˜̂H(t; r, c).

(7)

This allows to compute the logdeterminant by distributing the computations across c for one real-

ization, and then the quadratic form for every r by distributing across t. Every likelihood evaluation

requires approximately 12 seconds and the fit for all heights requires 16.7 hours.

In Figure 4, we see the results of the fit for the same two pressure levels as in Figure 3. Panels

(a) and (b) show the fit of the cross-periodogram of Ĥ(t; r) for neighboring bands at the same

height. As in the previous step, the decay is sharper at higher altitudes but the model is able to

capture these different behaviors. Panels (c) and (d) show the corresponding cross-correlation and,

as in Section 4, the two lines are indistinguishable since the overall shape is mostly determined

by the low wavenumbers, which are the same. Panels (e) and (f) show the north-south contrasts

(see details in the supplements) and, as before, the values at higher altitudes are smaller since the

process is smoother. Overall, the model is able to capture this local variation, but there is some

misfit in some parts of the southern hemisphere for low altitudes and in the equatorial region at

high altitudes. In the latter case, this is an artifact of the logscale, as the correlation function is

essentially constant across the band, as it is evident from panel (d). The values of ξ̂ j and τ̂ j are

reported in the supplements.

4.5 Step 4: multiple heights

Conditional on the previous steps, a model for describing the coherence across multiple heights is

then defined. We assume that
∣

∣

∣corr(η̃ j,m, η̃ j′,m′)(c; ξ j, τ j)
∣

∣

∣ = Re
{

V̂(c)
}

I(c ≤ 7) + ζk′ I({m = m′} ∩ {c > 7}),

arg
{

corr(η̂ j, η̂ j′)(c)
}

= 0,

(8)
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where k′ represents the number of altitude bands separating the two fields. The model as-

sumes a coherence that is exponentially decaying across heights for the same latitude, but

not across wavenumbers, since preliminary analyses have shown that a parameter similar to

ν j in Section 4.4 was not needed. The resulting model in the spatial domain assumes that

cov{η(h j, Lm, ℓn), η(h j′ , Lm′ , ℓn′)} = f (h j, h j′ , Lm, Lm′ , ℓn − ℓn′), which is a generalization of the axi-

ally symmetric process (Jones, 1963; Jun and Stein, 2007, 2008; Castruccio and Stein, 2013) with

the further constraint of being longitudinally reversible (Stein, 2007).

The likelihood evaluation at this stage is extremely demanding both in terms of flops and stor-

age space. The algorithm we present is not suitable for computers with less than 100 Gb of RAM

and could be modified for diminishing the storage space at the expense of more on-the-fly compu-

tations, although this would result in an increase in the already long computational time.

We denote by1
Σc the MJ × MJ coherence matrices for wavenumbers c, by ˜̂H(t; r, c) the band-

wise Fourier transform of Ĥ(t; r) evaluated at c = 0, . . . ,N −1 and by C a generic constant. (1) can

be written as

l(θ; D) = C − 1
2
T (R − 1)

∑N−1
c=0 log{det(Σc)} −

1
2

∑N−1
c=0

∑R
r=1

∑K
t=1

˜̂H⊤(t; r, c)Σ−1
c

˜̂H(t; r, c)

= C − 1
2

∑N−1
c=0

[

T (R − 1)log{det(Σc)} −
∑R

r=1

∑K
t=1

˜̂H⊤t,r;cΣ
−1
c

˜̂Ht,r;c

]

= C − 1
2
T (R − 1)

∑⌊N/2⌋

c=0

[

2log{det(Σc)}I0<c<⌊N/2⌋

−
∑R

r=1

∑K
t=1

(

˜̂H⊤(t; r, c)Σ−1
c

˜̂H(t; r, c) + ˜̂H⊤(t; r,N − c + 1)Σ−1
c

˜̂H(t; r,N − c + 1)

)]

−T (R − 1)1
2
log{det(Σ0)} − T (R − 1) 1

2
log{det(Σ⌊N/2⌋)},

(9)

where the last step follows from the circular symmetry, since Σc = ΣN−c+1. Stationarity across lon-

gitude allows for noticeable saving in storage space, as Σc for c = 0, . . . ,N−1 is a (155×17)2×145

array, which requires only ≈ 10Gb of RAM. Moreover, since every evaluation for c is independent

1although the notation is similar to Section 4.4, the matrix size is different since now the covariance comprises of

the height component
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on the others, (9) can be distributed across at most 145 processors. A single likelihood evaluation

requires approximately 15 minutes and the maximization with Hessian evaluation requires approx-

imately 16.4 hours. It is in principle possible to compute the loglikelihood in the form (7), but

in order to do that, independent copies of Σc should be made, and this would not fit in the RAM

memory in this step.

The algorithm estimates ζ̂ = 0.999 and in Figure 5 we see the fit for the same altitudes as

in Figures 3 and 4. Panels (a) and (b) show the cross-periodogram for two bands at the same

latitude and neighboring altitudes. The fit is good and the empirical and fitted periodograms are

almost indistinguishable. The corresponding cross-correlations plotted in panels (c) and (d) are

also visually indistinguishable because of the nonparametric estimation of Re
{

V̂(c)
}

. The contrasts

in panels (e) and (f) (details in the supplements) show some misfit in the northern hemisphere for

low altitudes, but for high altitudes the two curves are almost indistinguishable.

In Table 1, a summary of the algorithm is presented. The first step requires six time series to

be subsampled, so storage is negligible, but requires millions of fits. Subsequent steps of the algo-

rithm require an increasingly large subsample, thus increasing the storage demand, but with fewer

independent fits. The large number of parameters in the last two steps is due to the nonparametric

estimation of Re
{

V̂ j(c)
}

and Re
{

V̂(c)
}

in (6) and (8). In total, this model requires approximately

27 million parameters, a negligible number compared to the data size (≈ 2%) and less than two

days on the dedicated workstation.

5 Simulating the initial condition ensemble

Once the space-time structure has been estimated, a model to reproduce the mean must be defined.

In Section 3, we showed how the best estimate for the mean is the average across realizations, so
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we compute it and, since the climate is expected to be slowly varying, we fit a smoothing spline

to every time series with a mild penalty term of 0.01. We then simulate the model described in

Section 4.3, add the fitted spline and compare it with the climate model data; the results are shown

in Figure 6.

In Figure 6(a) we see the comparison of six realizations of the climate model output and the

statistical model at the nearest point to Jeddah, Saudi Arabia, at approximately 3km above ground

level. The two groups of time series exhibit very similar behavior, thus demonstrating how the

statistical model can act as an efficient surrogate of the climate model. In the years between

1850 and 2006 the climate model shows sharp drops in three cases, corresponding to the years

following major volcanic events in the equatorial area (Krakatoa, 1883; Santa Marı́a, 1902 and

Mount Pinatubo, 1991). This feature is not captured in the statistical model, although the spline

could be adjusted to account for the sharp drop in the year of interest. In Figure 6(b), we see the

histogram for the annual temperature of 2014 in the case of the model (left) and for 105 realizations

(extracted at the specified location and time from full simulations) of the statistical model. In the

case of the model, only six realizations are available and a histogram that could give an idea of

the uncertainty would not be possible with current computational facilities. The statistical model

instead is able to generate a much more informative histogram with orders of magnitudes more

realizations in less than 4 hours. Figure 6(c) shows the comparison between latitudinal bands in

the same setting as in Figure 6(a). The overall pattern is captured by the statistical model, as it is

difficult to distinguish the gray and red curves. This is even more evident in Figure 6(d), where

the vertical profile of temperature is shown for the year 2014 for the grid point near Jeddah. By

allowing correlation across altitudes, the statistical model is able to capture the main features of

the vertical profile: a drop in the troposphere, the temperature inversion in the tropopause and a

further drop in the lower stratosphere.
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6 Discussion

In this work, we have shown how a statistical model can be used as an efficient tool for reproducing

global annual 3D temperature fields for an initial condition ensemble and therefore compress the

data size. Many extensions can be considered. Finer temporal scales such as monthly aggregated

data could be modeled by allowing fixed seasonal effects, or by allowing a cyclostationary process

(Gardner et al., 2006) as random effect. Besides the foreseen increase in model complexity and

computational time due to the twelve-fold increase of the data size, the cross-correlation among

sites could be non-negligible, thus requiring a very different modeling strategy. Multiple scenarios

could be also accounted for: it has been shown in previous work (Castruccio and Stein, 2013) that

different forcings have a similar space-time structure for surface temperature, and we speculate a

similar outcome for 3D temperatures, although the diagnostic would be challenging due to the high

dimensionality of the parameter space. It is also possible to extend the proposed methodology to

cross-correlation for multiple physical variables, or even multiple climate models. Visualization of

such a complex data structure has recently been explored using a virtual reality environment and

visuanimation in Genton et al. (2015).

Further, different statistical models can also be developed depending on the scientific questions

that needs to be addressed by climate scientists. If the goal is to understand the correlation of

longitudinal profiles of temperatures, a model that assumes longitudinal stationarity such as the

one we propose is likely not optimal. The validation procedure proposed here focuses on the

spatio-temporal structure of the data, and other more data-specific criteria can (and should) be

proposed, such as reproduction of the patterns in the El Niño Southern Oscillation. However, the

state-of-the-art in validating compressed climate data (Baker et al., 2014) has been so far limited to

aggregating pointwise discrepancy measures over the spatial domain, and we propose a validation
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criteria that is more suitable for spatio-temporally resolved data.

Any statistical model proposed for a large amount of data needs to be always carefully designed

to make use of distributed computing and will necessarily entail some degrees of approximation.

In this work, the key assumption is that the estimated parameters in the conditional multi-step

algorithm are close to the ones obtained with a full likelihood, and that their estimation uncer-

tainty does not propagate significantly throughout the stages. There is partial evidence that the

global and conditional optima do not significantly differ in a similar model in Castruccio and Stein

(2013), but a similar investigation in this work would require optimizing all 27 million parameters

simultaneously, which is not feasible.

This work also shows how powerful computers can be used as an efficient tool by statisticians

to provide results of interest to the climate community. Our direction of investigation is not focused

on reducing the space/time information to a feasible problem on a laptop, but rather to use more

sophisticated hardware and to explore how the “big data” challenge in statistics can be tackled from

a different perspective. This perspective has the advantage of not requiring any ad hoc method-

ologies such as the choice of the basis in a low rank approximation or the choice of blocks in a

composite likelihood approach, but it presents different and equally interesting challenges, such

as modulating the fitting procedure to be parallelizable (the multi-stage conditional approach we

proposed is ideal for gridded data that are stationary in time, but similar strategies can be devised

for more complex geometries) and formulating the likelihood allowing efficient matrix storage, a

procedure clearly dependent on the computational resources available.

Since the ultimate goal of this work is not inference on the real climate, but rather an efficient

reproduction of some features of the climate model, our statistical model makes no attempt to

characterize and understand the temperature process and compare it to observational data. Our

statistical model reproduces features of the state of the climate only to the extent that the original
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climate model does, and we believe a discussion about “structural error” of the climate model from

the real state of the climate (Rougier, 2007) is beyond the scope of this work.

We think that the use of distributed computing for space/time analysis is a promising and un-

explored direction and more effort should be devoted to understanding how current computational

facilities can change our approach to big data problems and to serve areas of science where the

amount of data has exponentially increased in the last decade. Our future research will include

adapting scalable algorithms to satellite retrievals but also the use of hybrid codes with different

languages at different stages of the analysis, and the use of Graphical Processing Units to further

distribute the computational load.
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Table 1: Synopsis of the algorithm steps.

step #fits subsample size #parameters comput. time

time 7.6×105 1.5×103 2.2×106 ≈ 4.6h

longitude 2.6×103 1.2×106 2.7×104 ≈ 4.4h

latitude 17 6.7×107 1.4×106 ≈ 16.7h

altitude 1 1.1×109 2.4×107 ≈ 16.4h

total 7.6×105 1.1×109 2.7×107 ≈ 42.2h
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Figure 1: An example of one realization in the ensemble. The temperature field is plotted for 2014

at 925hPa and the vertical profile of temperature for a latitude band is also shown (pressure levels

are on a log scale to magnify the effects on the troposphere). The white areas represent points

where temperatures are not defined for that pressure level (in this case, the Himalaya region).

Some of the main features of 3D global temperature fields are evident, such as colder temperatures

for higher latitudes and temperature inversion in the tropopause.
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Figure 2: Plots of the estimated autoregressive parameters in (3) for j = 2, the second height level.

(a): ϕ̂1, (b): ϕ̂2, (c): Ŝ2 and (d): the marginal variance Ŝ2/(I − ϕ̂2
1 − ϕ̂
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Figure 3: Fit and diagnostic for the single band parameters for p = 850hPa (a,c,e) and p =

20hPa (b,d,f). Panels (a) and (b) show the fit of the periodogram for two bands, panels (c) and

(d) the corresponding empirical and fitted correlation function and panels (e) and (f) the empirical

and fitted east-west contrast, averaged across longitudes, times and realizations. The black dots

correspond to the latitude bands chosen for the results in the above panels.
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Figure 4: Fit and diagnostic for the multiple band parameters for p = 850hPa (a,c,e) and p = 20hPa

(b,d,f). Panels (a) and (b) show the fit of the cross-periodogram for two bands at same height

and longitude and neighboring latitudes, panels (c) and (d) the corresponding empirical and fitted

cross-correlation and panels (e) and (f) the empirical and fitted up-down contrast, averaged across

longitudes, times and realizations. The black dots correspond to the latitude bands chosen for the

results in the above panels.
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Figure 5: Fit and diagnostic for the multiple band parameters for p = 850hPa (a,c,e) and p = 20hPa

(b,d,f). Panels (a) and (b) show the fit of the cross-periodogram for two bands at same latitude

and longitude and neighboring heights, panels (c) and (d) the corresponding empirical and fitted

cross-correlation and panels (e) and (f) the empirical and fitted up-down contrast, averaged across

longitudes, times and realizations. The black dots correspond to the latitude bands chosen for the

results in the above panels.
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Figure 6: Comparison of climate model output and simulated output. (a) For the nearest point

to Jeddah, Saudi Arabia, at approximately 3km above ground level, the R = 6 realizations of the

model output (in gray) and 6 realizations of the simulated output (in red, offset by 2◦ C) are shown.

(b) For the same setting as (a), we focus on the year 2014 and show a histogram of the values of

annual temperature for the climate model (6 realizations) and the statistical model (extracted from

105 full space-time resolved realizations). (c) Comparison of latitudinal bands, with the same

setting, latitude and height as in (a) for the year 2014. (d) Comparison of vertical profiles, with the

same setting, latitude and longitude as in (a) and for the year 2014.
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