
Compressing Bitmap Indies by Data Reorganization�Ali P�narComputational Researh DivisionLawrene Berkeley National Laboratoryapinar�lbl.gov Tao TaoDepartment of Computer SieneU. Illinois at Urbana-Champaigntaotao�s.uiu.eduHakan FerhatosmanogluDepartment of Computer SieneThe Ohio State U.hakan�is.ohio-state.eduAbstratMany sienti� appliations generate massive vol-umes of data through observations or omputer sim-ulations, bringing up the need for e�etive indexingmethods for eÆient storage and retrieval of sienti�data. Unlike onventional databases, sienti� data ismostly read-only and its volume an reah to the orderof petabytes, making a ompat index struture vital.Bitmap indexing has been suessfully applied to sien-ti� databases by exploiting the fat that sienti� dataare enumerated or numerial. Bitmap indies an beompressed with variants of run length enoding for aompat index struture. However even this may notbe enough for the enormous data generated in someappliations suh as high energy physis. In this paper,we study how to reorganize bitmap tables for improvedompression rates. Our algorithms are used just as apreproessing step, thus there is no need to revise theurrent indexing tehniques and the query proessingalgorithms. We introdue the tuple reordering problem,whih aims to reorganize database tuples for optimalompression rates. We propose Gray ode ordering al-gorithm for this NP-Complete problem, whih is an in-plae algorithm, and runs in linear time in the orderof the size of the database. We also disuss how thetuple reordering problem an be redued to the travel-ing salesperson problem. Our experimental results onreal data sets show that the ompression ratio an beimproved by a fator of 4 to 7.�This work was funded by he Diretor, OÆe of Siene, Divi-sion of Mathematial, Information, and Computational Sienesof the U.S. Department of Energy under ontrat DE-AC03-76SF00098.

1 IntrodutionAdvanes in tehnology have enabled the produtionof massive volumes of data through observations andsimulations in many sienti� appliations suh as biol-ogy, high-energy physis, limate modeling, and astro-physis. In omputational high-energy physis, simula-tions are ontinuously run, and events that are notablefor physiists are stored with all the details. The num-ber of events that need to be stored in one year is inthe order of several millions [20℄. In astrophysis, teh-nologial advanes enabled devoting several telesopesfor observations, results of whih need to be stored forlater query proessing [21℄. Genomi and proteomitehnologies are now apable of generating terabytesof data in a single day's experimentation [28℄. Thesenew data sets and the assoiated queries are signi�-antly di�erent than those of the traditional databasesystems, most importantly due to their enormous sizeand high-dimensionality (more than 500 attributes inhigh-energy physis experiments). These new data setsand the assoiated queries pose a new hallenge for ef-�ient storage and retrieval of data and require novelindexing strutures and algorithms.Most of the sienti� databases of pratial inter-est are read-only, i.e., large volumes of data are storedone and never updated. Further use of the data istypially by means of seletion queries. Various typesof queries, suh as partial math and range queries,are exeuted on these large data sets to retrieve usefulinformation for sienti� disovery. As an example, auser an pose a range query to retrieve all events withenergy less than 15 GeV, and the number of partilesless than 13. When the data are large and read-only,as in the ase of sienti� databases, indexing tehnolo-1

gies are well-known to signi�antly improve the per-formane of query and data analysis, thus developingindex strutures tailored for sienti� data is ruial toe�etively explore suh data. Due to the sale and highdimensionality of these databases, simple extensions oftraditional indexing strategies are inadequate: R-treesand its variants are well-known to lose e�etiveness forhigh dimensions; hashing-based indies lak storage ef-�ieny; and transformation based approahes are note�etive for partial math and range queries. Further-more, most of the indexing approahes do not fous onthe size of the index struture itself. However, due tothe huge data volume in a typial sienti� database,the size of the indexing struture beomes as importantas other parameters and must be taken into aount.Fousing on the major harateristis of sienti�data, suh as being read-only, having speial aesspatterns and numerial attributes, researhers havemanaged to develop indexing tehniques that are fea-sible for high dimensional sienti� databases. Bitmapindexing, whih has been e�etively utilized in manymajor ommerial database systems [2, 14, 27℄, has alsobeen the most popular approah for sienti� databases[3, 15, 22, 24, 25, 27℄. Several tehniques have beenproposed exploiting the bitmap indexing approah forsienti� data. The general idea is to organize the dataas a two dimensional table. Events are stored rowwiseas tuples. Every attribute is partitioned to several bins,and these bins form the olumns of the table. A tableentry is 1, if the tuple of this row is in the bin of theolumn, and "0" otherwise. Thus, the index table is a0-1 table. This table needs to be ompated to be e�e-tively used on a large database. General purpose textompression tehniques are learly not suitable for thispurpose sine they signi�antly redue the eÆienyof queries [11, 24℄. Speialized bitmap ompressionshemes have been proposed to overome this prob-lem. The two most e�etive shemes in the literatureare Byte-aligned Bitmap Code (BBC) [2℄ and Word-Aligned Hybrid Code (WAH) [1, 11, 24, 25, 26℄. Bothof these shemes, like many others [3, 27℄, are based onrun-length enoding, i.e., they both replae repeatedruns of 0s or 1s in the olumns by a single instane ofthe symbol and a run ount. These methods not onlyompress the data but also enable fast bitwise logialoperations, whih translates to faster query proessing.Run-length enoding and its variants exploit uni-form segments of a sequene, thus their performanesdepend diretly on the presene of suh uniform seg-ments. Their e�etiveness varies for di�erent organi-zations of the database tuples, sine ordering of tuplesa�et uniform segments in the olumns. In this paper,we study how to reorder tuples of a database to ahieve

higher ompression rates. Our tehniques are used as apreproessing step before ompression, only to improvethe performane, without a�eting algorithms used forompression and querying. We state this tuple reorder-ing problem as a ombinatorial optimization problem,and propose heuristis for e�etive solutions for thisNP-Complete problem [16℄. We show a redution ofthe tuple reordering problem to the traveling salesper-son problem, whih is a well-studied ombinatorial op-timization problem. However, given the enormous sizesof the databases, we are only restrited to memory andtime eÆient heuristis, whih takes away the applia-bility of most frequently used tehniques suh as sim-ulated annealing. In this paper, we propose Gray odesorting to order the rows of a bitmap table for largersegments of uniform 1s. Our algorithm is linear, inthe size of the database, and an in-plae algorithm,i.e., does not require any auxiliary memory alloation.Theoretially, we prove that our algorithm is optimal,when all ells of a bitmap table are full. In pratie,our experiments on sienti� data showed signi�antimprovements in ompression rates. In many instanes,ompressed �le size for the reordered �le less than halfthe ompressed size of the original �le. We have alsoobserved a 5.36 times redution in ompresses �le sizeon data set HEP1, bitmap table for whih has has 122olumns and 2,173,762 rows.The remainder of this paper is organized as follows.In the next setion, we present ompression algorithmsfor bitmap tables. Setion 3 disusses the tuple reorder-ing problem. We �rst de�ne the problem, and intro-due Gray ode ordering, whih is tailored for the tuplereordering problem. Next, we disuss the redution tothe traveling salesperson problem. Experimental re-sults are presented in Setion 4. Finally, we disussfuture work and onlude with Setion 5.2 Compressing Bitmap TablesThe data that omes from sienti� experiments isomposed of attributes that are numerial or enumer-ated. Unlike onventional databases, a data reord ina sienti� database involves many more attributes,up to order of a hundreds. And the number of tu-ples is huge due to the tehnologial advanes thatmake it possible to generate huge volumes of data ona daily basis. High energy physis simulations gen-erate millions of events to be stored in a single year.Due to suh large data volume, even simple queriesare extremely slow without an e�etive index stru-ture in plae. However, neither the well-known multi-dimensional indexing tehniques [19, 10℄ nor their ex-tensions [13, 12, 5, 7, 6℄ have been suessful in sienti�

database systems, partly due to the e�ets of the infa-mous dimensionality problems [4, 23℄ and the massivesale of these systems.Most pratial approahes for indexing sienti�data are based on bitmap indexing strategies [2, 27,24, 14, 3, 22, 8, 9, 25, 15, 1, 11, 26℄. For example,Wu, Otoo, and Shoshani proposed an e�etive bitmapindexing tehnique for large-sale high energy physisdata [26℄. This tehnique uses a ompression tehniquealled word-aligned hybrid (WAH) to ompress the in-dex struture to onveniently small sizes without losingaessing eÆieny. Exploiting the fat that eah at-tribute is numeri or enumerated, data are partitionedinto several bins, where the number of bins per eahattribute ould vary. If a value falls into a bin, this binis marked \1", otherwise \0". Sine a value an onlyfall into a single bin, only a single \1" an exist foreah row of eah attribute. After binning, the wholedatabase is onverted into a huge 0-1 bitmap, whererows orrespond to tuples and olumns orrespond tobins. Table 1 shows a binning example with three at-tributes, eah partitioned into two bins. The �rst tuplet1 falls into the �rst bins in the attributes 1 and 2, andthe seond bin in attribute 3. Note that after binningwe an treat eah tuple as a binary number. For in-stane t1 = 101001 and t2 = 010101.
Table 1. Bitmap exampleTuple Attribute 1 Attribute 2 Attribute 3bin1 bin2 bin1 bin2 bin1 bin2t1 1 0 1 0 0 1t2 0 1 0 1 0 1t3 1 0 0 1 1 0t4 1 0 1 0 0 1t5 1 0 1 0 1 0t6 0 1 0 1 1 0Binning method itself annot ompress the size, andinstead, might even inrease the size [3℄. However, itonverts the original table to a more onise formatwith only two di�erent values: \0" and \1". Run lengthenoding [18℄ an therefore, be used over every olumnto ompress the data when long runs of pure \0" orpure \1" bloks beomes possible. Pure run lengthenoding is not a good strategy for indexing beause ofits aessing ineÆieny.Unlike traditional run length enoding, WAH mixesrun length enoding and diret storage. For instane,if the word length is 32, every olumn is partitioned tomany length-31 bloks. If a blok is a mixture of both\0" and \1", mark the most signi�ant bit of enoded

word \0" to indiate this word is literal word and opythe blok to left 31 bits diretly. Otherwise, withoutlosing generality, assuming the blok �lled with all \1",we ontinue to san and ount the number of onseu-tive bloks whih are �lled in with all \1". To enode,the most signi�ant bit is marked \1" to indiate thisword is a �ll word, and seond signi�ant bit is marked\1" to indiate the blok is �lled with \1"s. The re-maining bits are used to store the number of bloks.Table 2 presents an example. The �rst row is a ol-umn from the original bitmap, whih starts with a 1,ontinues with 20 0s, followed by 3 1s, 79 0s, and endswith 21 1s. The seond olumn partitions it into 4 seg-ments, eah of whih has 31 bits. Row 3 lists the hexrepresentation of those segments, and row 4 is its WAHenoding. The �rst word is a literal word mixing 0 and1, thus there is no hange to its enoding. The seondand third word are \�ll word" with all 0. We then putthem together. The enoding therefore is 80000002.The fourth word is another literal word.3 Improving Compression Rates by Tu-ple ReorderingRun-length enoding and its variants exploit uni-form segments of a sequene, thus their performanesdepend diretly on the presene of suh uniform seg-ments. Their e�etiveness an be improved by aligningdata for longer uniform segments. In this setion, westudy the problem of reorganizing bitmap tuples formore eÆient run-length enoding. In the next subse-tion, we desribe the problem, whih we all the tuplereordering problem. Then we disuss feasibility of reor-ganization, and requirements for an e�etive reorder-ing algorithm. Finally, we disuss solution tehniques.First, we propose exploiting Gray odes for ordering.Then we present a redution of the problem to the trav-eling salesperson problem.
3.1 Problem FormulationOur objetive in reordering is to inrease the perfor-mane of run-length enoding by having longer uniformsegments and thus fewer number of bloks. Reall thatrun-length enoding, when used on bitmaps, paks eahsegment of \1"s into a blok and stores a pointer toeah blok together with the length of the blok. Thusits eÆieny depends on the number of suh bloks.Consider two onseutive tuples in the bitmap table.If the tuples are on the same bin for an attribute, thenthey will be paked to the same blok. If not, then anew blok should start. EÆieny an be enhaned byreordering tuples so that they fall into the same bins

Table 2. WAH compressionoriginal bits 1�1, 20�0, 3�1, 79�0, 21�131-bit groups [1�1,20�0, 3�1, 7�0℄, [31�0℄,[31�0℄, [10�0, 21�1℄groups in hex 40000380 00000000 00000000 001FFFFFWAH(hex) 40000380 80000002 001FFFFFas muh as possible. An example is illustrated in Fig-ure 1. In this example, the original table has 12 bloks,whereas the reordered table requires only 7 bloks.Let di�(ti; tj) be the number of attributes that tu-ple ti and tuple tj fall in di�erent bins. Notie thatdi�(�i; �i+1) gives how many new bloks start at theith tuple after reordering when run-length enoding isused, where �i denotes the ith tuple in ordering �. Anexample for omputing the di� values is illustrated inFigure 2. For example di�(t1; t2) = 2, sine tuples t1and t2 fall into di�erent bins for the �rst two attributes.We an now formally de�ne the tuple reordering prob-lem.De�nition 1 (Tuple reordering problem) Let �be an ordering of m tuples so that �i denotes the ithtuple in the ordering. Tuple reordering problem is�nding an ordering � that minimizesm�1Xi=1 di�(�i; �i+1): (1)In Equation 1, we sum di� values over all onse-utive tuples to attain how many new bloks start forthe whole table. The �rst tuple requires starting ablok for eah attribute. Thus the number of bloksan be omputed as A + m�1Xi=1 di�(�i; �i+1), where Ais the number of attributes. Thus �nding an order-ing that minimizes Equation 1 minimizes number ofbloks in the reordered table. For instane, Equation 1returns 2 + 2 + 2 + 1 + 2 = 9 for the initial order-ing, whih means with the addition of A the numberof attributes there will be 9 + 3 = 12 bloks in theompressed table. Whereas for the reordered table inFigure 1, Equation 1 returns 0 + 1 + 1 + 1 + 1 = 4,whih means only 7 bloks in the ompressed �le.
3.2 Heuristics for Tuple ReorderingIn this setion we propose tehniques to reorderdatabase tuples for better ompression rates. Firstwe disuss feasibility of reorganizing a database andwhat is neessary for an ordering algorithm to be e�e-tive. We propose two approahes for tuple reordering.

The �rst approah exploits the Gray odes for tuplereordering. We show that this tehnique is optimal un-der ertain onditions. The seond approah reduesthe problem to the well-studied traveling salespersonproblem.3.2.1 Feasibility of Tuple ReorderingDatabases are seldom reordered, sine their enormoussizes make even moving data to implement a spei�edreordering a big hallenge. Thus one needs to be are-ful while designing algorithms to �nd suh reorderings.For an ordering algorithm to be applied to a database,it needs to be memory eÆient. The memory require-ment needs to be at least linear in the order of tuples.Preferably, the algorithm is in-plae, whih means itshould not use any auxiliary memory. Also, it willbe omputationally ineÆient, if not infeasible, to ap-ply a tehnique to the whole database. An e�etivetehnique should be loal, i.e., it must be suÆient toapply our tehniques to the portions of the databaseto improve ompression rates. This loality providessalability to a tehnique, sine it an be applied todatabases of arbitrary sizes.Reordering database tuples has only loal e�ets,thus it is easy to loalize reordering algorithms to onlyportions of the database. Reordering larger portions ofthe database is expeted to yield better performane,thus it is still important to limit the memory require-ment of the ordering algorithm to order larger portionsof the database. The Gray ode ordering proposedin the subsequent setion is an in-plae algorithm andthus optimal in terms of memory requirement. It aneven be applied to the whole database, sine it has aregular aess pattern and requires a small number ofpasses over the bitmap table. The last setion desribesa redution to the traveling salesperson problem, one ofthe most well-studied ombinatorial optimization prob-lems and a testbed for various optimization tehniques.This redution enables adoption of a wide variety oftehniques to the tuple reordering problem, howeverthese tehniques almost invariably require additionalstorage, whih is often superlinear in the number oftuples.

t1t2t3t4t5t6 26666664 1 0 1 0 0 10 1 0 1 0 11 0 0 1 1 01 0 1 0 0 11 0 1 0 1 00 1 0 1 1 0 37777775 t1t4t5t3t6t2 26666664 1 0 1 0 0 11 0 1 0 0 11 0 1 0 1 01 0 0 1 1 00 1 0 1 1 00 1 0 1 0 1 37777775(a) Original Table (b) Reordered Table
Figure 1. Example for tuple reorderingt1t2t3t4t5t6 26666664 1 0 1 0 0 10 1 0 1 0 11 0 0 1 1 01 0 1 0 0 11 0 1 0 1 00 1 0 1 1 0 37777775 t1 t2 t3 t4 t5t6 3 1 1 3 2t5 1 3 1 1t4 0 2 2t3 2 2t2 2(a) Original Table (b) Di�erene values between tuples
Figure 2. Function di� on an example3.2.2 Gray Code OrderingA Gray ode is an enoding of numbers so thatadjaent numbers have only a single digit dif-fering by 1. For binary numbers two adjaentnumbers di�er only by one digit. For instane(000; 001; 011;010; 110; 111;101;100) is a binary Grayode. Binary Gray ode is often referred to as the \re-eted" ode, beause it an be generated by the re-etion tehnique desribed below.1. Let S = (s1; s2; : : : sn) be a Gray ode.2. First write it forwards and then append thesame ode writing it bakwards. That is(s1; s2; : : : ; sn; sn; : : : ; s2; s1).3. Append 0 at the beginning of the �rst n numbers,and 1 at the beginning of the last n numbers.As an example, take the Gray ode (0; 1). Write itforwards, then add the same sequene bakwards, andwe get: (0; 1; 1; 0). Then we add 0's and 1's to get:(00; 01; 11; 10). We an use this new sequene as aninput to our algorithm. After the reetion step weget (00; 01; 11; 10; 10; 11; 01;00). We add the �rst dig-its to attain: (000; 001; 011; 010;110;111; 101;100). Itis worth noting that Gray odes are not unique, anddi�erent orders on the same numbers might satisfy theGray ode property. We use the term fundamentalGray ode to refer to a Gray ode generated by the

reetion tehnique desribed above with using (0; 1)as the initial sequene. We will also refer to ordering aset of numbers with respet to fundamental Gray odesor shortly Gray ode ordering, whih we desribe next.De�nition 2 (Gray ode rank) The Gray oderank g(s) of an n-bit binary number s is the rank ofthis number in an n-bit fundamental Gray-ode.For instane, g(0000) = 1, sine it is the �rst numberin the 4-bit fundamental Gray ode. And g(0001) = 2,sine it follows 0000, in the fundamental Gray ode.De�nition 3 (Gray ode sorting) A sequene S =(s1; s2; : : : ; sm) is Gray ode sorted i�g(si) � g(si+1)for i = 1; 2; : : :m � 1, where g(si) refers to the Grayode rank of si.The sequene (0001; 0010; 0101;1100; 1110;1011) isGray ode sorted beause g(0001) = 2 � g(0010) =4 � g(0101) = 7 � g(1100) = 9 � g(1110) = 12 �g(1011) = 14.This brings the question of how to eÆiently order aset of numbers to be Gray ode sorted. We an reversethe fundamental Gray ode generation proess, to sortnumbers with respet to the fundamental Gray ode.As the �rst step, we an divide numbers as those thatstart with 0 and those that start with 1. Clearly those

that start with 0 will preede others in the ordering.Then we an reursively order those that start with0. The same an be applied to the seond group butwe need to reverse their ordering due to the reetiveproperty of the Gray ode. In Algorithm 1, we presentthe pseudo-ode of this algorithm. In this algorithm,S(A; i; j) denotes the jth signi�ant bit of the ith tuplein table A. Note that the reversion does not need tobe a separate step in the algorithm, but we present itseparately for larity of the presentation.GC-sort (A; start; end; b)1: i start2: j end3: while i < j do4: Derement j until S(j; b) = 05: Inrement i until S(i; b) = 16: if i < j then7: Swap the ith and jth tuples on the table8: end if9: end while10: if b < no of bits then11: GC-sort (A; 1; j; b+ 1)12: GC-sort (A; j + 1; end; b+ 1)13: Reverse (j + 1; end)14: end ifAlgorithm 1: An in-plae Gray ode sorting algo-rithm. GC-sort (A; start; end; b) sorts numbers be-tween indies start{end in A aording to their leastsigni�ant b bits in Gray ode order. S(A; i; j) denotesthe jth signi�ant bit of the ith number in table ALemma 1 Algorithm 1 orders numbers in A to beGray ode sorted, when initially invoked with GC-sort(A; 1;m; n), where m is the number of tuples, and n isthe number of bits.Proof The proof is based on indution on the numberof bits. First observe that reursive alls respet theprevious orderings, sine after one pass, the reursivealls only operate on the segment of tuples that all startwith the same bit pre�x.The indutive basis is for n = 1, when it is easy toobserve the orretness of the algorithm. It is also easyto see that numbers that start with 0 should preedethose that start with 1 for Gray ode sorting. By theindutive hypothesis, the numbers that start with 0 aresorted orretly by the algorithm aording to their lastn�1 bits, and adding 0 does not a�et their Gray odepreedene. Similarly, numbers that start with 1 areGray ode sorted reursively aording to their last n�1bits, however putting 1 at the beginning requires the re-eted order, whih we ahieve by Reverse (j+1; end).

Figure 3 illustrates this algorithm. It is important tonote that Algorithm 1 is an in-plae algorithm, whihis important for our appliation sine we have to dealwith very large datasets.Reall that sine onseutive numbers di�er at onlyone bit, Gray ode numbers have maximum bit-levelsimilarity between onseutive numbers. This obser-vation an be used for ordering database tuples, sineevery tuple in the database an be onsidered as an n-bit binary number. By Gray ode sorting, we an im-pose similarity between onseutive numbers. And ifall distint tuples exist, i.e., if all ells of the bitmap ta-ble are full, Gray ode sorting will produe an optimalordering. We formalize this laim with the followingtheorem.Theorem 1 Gray ode ordering provides an optimalsolution for the tuple reordering problem, if all ells ofthe bitmap table are full.Proof The algorithm orders idential tuples onseu-tively. Thus at most one bit di�ers between two on-seutive tuples, whih implies optimality.By the result of Theorem 1, Algorithm 1 gives anoptimal solution when all ells are full, however in pra-tie this will rarely happen, and the solution may notbe optimal. Gray ode ordering is more e�etive whenmost of the ells are full, whih means it is more e�e-tive with inreasing number of rows, and thus largerdatabases. Its performane also depends on the num-ber of attributes, and the number of bins per attribute.Inreasing these two terms inreases the number of ellsin the bitmap table, making the table more sparse.Nevertheless, even when the bitmap table has a lotof empty ells, Gray ode ordering imposes bit-levelsimilarity between onseutive tuples very e�etivelyas evidened by the experimental results.3.2.3 Redution to the traveling salespersonproblemIn this setion, we desribe a redution of the tuplereordering problem to the traveling salesperson prob-lem (TSP). TSP is a very well-studied problem, andmany e�etive heuristis have been proposed in the lit-erature [17℄, and has been a testbed to demonstratethe e�etiveness of optimization methods suh as sim-ulated annealing and geneti algorithms. However ourtarget appliation is database reorganization where thenumber of tuples (verties of the TSP graph) may beeasily in the order of millions, and the enormous sizesof these problems require memory- and time-eÆientheuristis.

6
t 1 1 1 0

t 0 0 1 0
1

4
t 0 0 0 1

2
t 1 1 0 0

3
t

t 1 1 0 0
2

6
t 1 1 1 0

5
t 1 0 1 1

t 0 0 1 0
1

4
t 0 0 0 1

3
t 0 1 0 1

t 1 0 1 1

SwapDecrement j
Incremant i

 0 1 0 1 0 1 0 1Reverse(4,6) GC−sort(A,4,6,2)

t 0 0 1 0
1

 0 1 0 1

GC−sort(A,1,3,2)

j

i

5

t 0 0 1 0

t 0 0 1 0
1

 0 1 0 1

6
t 1 1 1 0

5
t 1 0 1 1

4
t 0 0 0 1

3
t

2
t 1 1 0 0

6
t 1 1 1 0

5
t 1 0 1 1

4
t 0 0 0 1

3
t

2
t 1 1 0 0

t

1

4
t 0 0 0 1

2
t 1 1 0 0

6
t 1 1 1 0

5
t 1 0 1 1

3
t

t 0 0 1 0
1

 0 1 0 1

2
t 1 1 0 0

4
t 0 0 0 1

6
t 1 1 1 0

5
t 1 0 1 1

3

Figure 3. Illustration of Algorithm 1.Traveling salesperson problem an be intuitively de-�ned as �nding a shortest path that visits all ities ina given map. In a graph theoretial formulation, itiesorrespond to verties of a graph, and a weight funtionis de�ned on edges that onnet verties. The obje-tive is to �nd a path visiting all verties that minimizesthe sum of weights of the edges between suessive ver-ties. We desribe a graph model to redue the tuplereordering problem to the TSP.Sine we are seeking an ordering of tuples, we willhave verties to represent tuples and de�ne a weightfuntion so that an optimal solution to the TSP prob-lem minimizes the number of bloks in run-length en-oding. Given, a bitmap B as a set of tuples, de�neits graph GB = (V;E) so that eah tuple ti in B isrepresented by a vertex vi, and eah pair of verties viand vj is onneted by an edge (vi; vj) in E. De�nethe weight of an edge (vi; vj) as di�(ti; tj) as de�nedin Setion 3.1.Theorem 2 Given a bitmap B, de�ne graph GB =(V;E) so that eah tuple ti is represented by a vertexvi 2 V . All pairs of tuples ti and tj are onneted by anedge with weight diff(ti; tj). Optimal TSP solution onGB, gives an optimal solution to the tuple reorderingproblem.
3

12

2

1
3

2

2

1
1

3

3

1

2

1t t 2

t 3 t 4

t 5 t 6

Figure 4. Reduction to TSP. TSP graph for thebitmap Table in Figure 1. Dark arrowed edges indi-ate an optimal TSP solution.Proof TSP ordering gives traversal of verties thatminimizes the sum of edge weights between onseu-tive verties. When we replae verties with tuples weget an ordering of tuples that minimizes the di� valuesbetween onseutive tuples. Thus minimizing the totaledge weight orresponds to minimizing Equation 1, thus

the number of bloks.TSP heuristis an be used to onstrut an order-ing, or improve a given ordering. However, expliitonstrution of the TSP graph is not feasible for re-ordering database tuples. The TSP graph has � n2 �potential edges. We an drop edges whose weights arezero, but even then number edges will be O(n2) fora bitmap table. Infeasibility of onstruting the TSPgraph restrits us to simple greedy strategies whereedge weights an be omputed on the air during theourse of the algorithm. In our experiments, we used a2-swith tehnique, whih repeatedly seeks for a pair ofverties swithing positions of whih dereases the solu-tion value. To further improve eÆieny, we restritedthe searh for pairs to only those within a spei�ed dis-tane. It will be worthwhile to observe performanes ofother TSP heuristis from the literature, but it shouldbe noted that one an use only a limited seletion dueto the very large sizes of the problems, and more im-portantly Gray ode is already very e�etive and anin-plae algorithm.A similar problem has been studied by Pinar andHeath in the ontext of inreasing memory performaneof sparse matrix-vetor multipliation [16℄. The on-ventional data strutures for sparse matries requireone memory indiretion (extra load operation), duringmatrix-vetor produt operations. Pinar and Heathdesribed how to redue the number of memory indi-retions by exploiting nonzeros in onseutive positionsin a olumn, and proposed a reordering method to re-order rows to align nonzeros of the matrix to onseu-tive positions in olumns. Their method is based on agraph model that redues the problem to the TSP. Tu-ple reordering problem is similar, sine a bitmap an beonsidered as a sparse matrix, with tuples orrespond-ing to rows and bins for all attributes orresponding toolumns. We have a nonzero at row i and olumn ji� ith tuple is in bin j. However, the pratial aspetsof these two problems are signi�antly di�erent, henerequire di�erent solution tehniques. Sparse matriesarising in many appliations de�ne systems of linearequations and are square. Retangular matries ariseespeially in optimization, but even then the numberof olumns and the number of rows are lose, at least inthe same order. In databases however, the number oftuples, whih orresponds to rows in a sparse matrix,is several orders of magnitude larger than the num-ber bins, whih orresponds to number of olumns ina sparse matrix. Sparse matries are muh smaller indimension ompared to number tuples in a database.

4 Experimental ResultsIn this setion, we disuss our empirial work to vali-date our proposed methods. We applied our reorderingtehniques to several data sets from various applia-tions to observe the derease in the sizes of the bitmaptables. As we will soon present in detail, we have ob-served signi�ant improvements, whih should diretlytranslate into improvements in query proessing times.Remember that sienti� databases, whih is the mainmotivation for our researh are mostly read-only, thusreorganization needs to be done only one, for fasterproessing times in all future queries. Nevertheless, wealso present the running times and salability of ourmethods to prove the feasibility of appliation of ourmethods on very large databases.It is also worth noting that our methods are usedas a preproessing step before atual ompression al-gorithms, to align 1s in the bitmap table into onse-utive positions. Thus, any ompression algorithm anbe employed to ompress our reorganized data. In ourexperiments we used WAH ompression algorithm [26℄.We present the e�etiveness of our methods based onthe improvement fator, whih we ompute as the ratioof the ompressed bitmap table size of the original datato the ompressed bitmap table size of the reordereddata, i.e,improvement fator = ompressed size of originalompressed size of reorderedThus, an improvement fator of 5 means, ompressedreordered data takes 5 times less spae than the om-pressed original.Table 3 reveals the e�etiveness of our Gray odereordering algorithm on 6 data sets from various appli-ations. In this table, the �rst three olumns give thename of the problem, number of tuples, and numberof olumns in the bitmap table, respetively. The nexttwo olumns present the sizes of the ompressed bitmaptables for the original and reordered data, respetively.The last olumn presents the improvement fator. Outof the 6 data sets, the �rst two data sets (HEP1 andHEP2) are from high energy physis appliations. Thethird data set, histobig, omes from an image databasewith 112,361 images. Images are olleted from a om-merial CD-ROM and 64-dimensional olor histogramsare omputed as feature vetors. The fourth data set,stok, is a time-series data whih ontains 360 daysstok prie movements of 6500 ompanies, i.e., 6500data points with dimensionality 360. Histogram dataset is partially orrelated, whereas the stok data set ishighly orrelated. The last two data sets are omposedof doument feature vetors from 20 newsgroups based

Table 3. Improvement in compression of real data setsBitmap table Compressed size (bytes) ImprovementName #olumns #rows Original Reordered fatorHEP1 122 2; 173; 762 3; 149; 590 587; 773 5.36HEP2 907 2; 173; 762 11; 482; 527 7; 008; 601 1.64histobig 64 112; 361 209; 066 54; 605 3:83stok 360 6; 500 156; 980 22; 904 6:85irvetor16 160 19; 997 14; 952 2; 971 5:03irvetor32 320 19; 997 17; 135 11; 064 1:55on tf/idf followed by SVD redution.As seen in Table 3, ompression rates are magni�edwhen the tuples are reordered with respet to Grayode ordering in all problem instanes from all appli-ations. The ompressed index size for data stok is7 times less than the original after reordering. Theimprovement fators are 5.36 and 1.64 for high energyphysis data sets HEP1 and HEP2, respetively. Com-paring the results for these two data sets, we see that,as expeted, improvements are more signi�ant, whenthe number of olumns is smaller. Fewer number ofolumns means more room for improvement for a re-ordering algorithm, sine more tuples are likely to fallinto the same bins, and thus it is possible to order tu-ples so that onseutive tuples fall into same bins in alot of attributes. A similar trend an be observed in in-formation retrieval data sets irvetor16 and irvetor32,where the improvement fators are 5.03 and 1.55 re-spetively. Nevertheless, improvements are signi�anteven for larger numbers of olumns. It should also benoted that the Gray ode ordering tehnique an be ap-plied to arbitrary data sizes, sine it is an in-plae algo-rithm. This means the e�etiveness of our tehniqueswill only get better, as we apply these tehniques tolarger data sets.As already disussed, our proposed tehniques arepreproessing steps for onventional ompression algo-rithms and assoiated query running tehniques, andthus these query running tehniques an be used as is,together with our algorithms. For this reason, we arenot presenting any results on query run times, sine ithas been already reported that query run times are lin-early dependent on the ompressed bitmap table sizes.We expet our improved ompression rates to translatediretly into improved query run times. Notie that thee�ets of our improved ompression rates will be even

more dramati under limited resoures, whih is typi-al in large-sale systems. Compated index strutureswill grant better loality for algorithms, providing aseond soure of improvement.In the seond set of experiments, we have tested theperformane of Gray ode ordering for varying numbersof olumns. We �xed the number of rows at 1,000,000and tested the performane of our algorithm by varyingthe number of bins per attribute to hange the numberof olumns to be 50, 100, 150, 200, 250, and 300. Theresults of our experiments are presented in Figure 5. Inthis �gure original orresponds to the size of the om-pressed bitmap tables for the original data, whereasreordered orresponds to the size for ompressing re-ordered data. As observed in this �gure, ompresseddata sizes grow with inreasing number of olumns. Re-ordering signi�antly dereases ompressed index sizein all ases. The improvement fator is 2.52 2.08, 1.64,1.92, 1.68 and 1.68, when the number of olumns is 50,100, 150, 200, 250, and 300, respetively. Fewer num-ber of olumns leaves more room for improvement forreordering due to inreased likelihood of tuples in thesame bins, whih is niely exploited by our Gray odeordering algorithm.In the next set of experiments, we tested the runtime performane of our algorithm. We run exper-iments on a Linux mahine with 2:4GHz CPU and1GByte memory. We used the irvetor data from aninformation retrieval appliation, whih has 19,996 tu-ples and 32 attributes, as our base data set, and ran-domly seleted tuples, and attributes for our salabilitystudies. The results presented in Figures 6{8 are theaverages of �ve runs on di�erent problems of the samesize. That is the run time of the algorithm for 1,00 rowsis reported as the average run time for 5 randomly se-leted row sets of size 1,000.

Figure 5. Performance for varying numbers of
columns

0.5

1

1.5

2

2.5

3

3.5

4000 6000 8000 10000 12000 14000 16000 18000 20000

tim
e(

s)

rows

Figure 6. Algorithm scalability on the number
of rows

0

0.5

1

1.5

2

2.5

3

5 10 15 20 25 30

tim
e(

s)

columns

Figure 7. Algorithm scalability on the number
of attributes

0

1

2

3

4

5

6

7

10 20 30 40 50 60 70 80 90

tim
e(

s)

bins

Figure 8. Algorithm scalability on bins per at-
tributeFigure 6 studies the e�et of number of rows in therun time. For these runs, we used 30 attributes allof whih are partitioned into 10 bins. The number ofobjets vary from 5000 to 19000. In Figure 6, the x-axis is the number of rows, and the y-axis is the runtime in seonds, and the results learly show the linearrelation between the number of rows, and the runtime.Similarly, Figures 7 and 8, observe the e�et of numbersof attributes and bins per attribute on the run time.In Figure 7, we �x the number of objets as 19; 000,the number of bins per attribute as 40. In Figure 8, we�x the number of objets as 19; 000 and the number ofattributes as 30. All results on�rm the linear relationbetween the runtime of our algorithm and the bitmaptable size.In the �nal set of experiments, we applied the 2-swith heuristi desribed in Setion 3.2.3 on the TSPgraphs for tuple reordering. As expeted the runtimeswere orders of magnitude slower ompared to Grayode ordering. For instane, Gray ode ordering onHEP1, whih has 122 olumns and 2,173,762 rows tookonly 43.4 seonds, whereas the 2-swith heuristi onthe TSP graph took over 1,600 seonds. We have ob-served some improvement in the ompression (aroundonly 1%), but the huge gap in run time was daunting.We have observed similar results in the other data sets.5 Conlusions and Future WorkWe studied the problem of improving bitmap indexompression rates by reorganizing data layout. Our al-gorithms reorder database tuples so that onseutivetuples are likely to fall into same bins to boost theperformane of run-length enoding based ompressionshemes. We de�ned the tuple reordering problem,

whih aims to �nd an ordering of tuples that maxi-mizes the similarity (measured by being in the samebin), between onseutive tuples. We proposed Grayode ordering tehnique for the tuple reordering prob-lem, whih exploits the idea of Gray odes. Our algo-rithm runs in linear time in the size of the database,and does not require any extra storage. This pro-vides the appliability of our algorithm to very largedata segments, even to the whole database. We alsopresented a redution of the tuple reordering problemto the well-known, well-studied traveling salespersonproblem(TSP). However, enormous sizes of the prob-lems hinder appliability of frequently used TSP teh-niques for the tuple reordering problem. Our exper-iments showed that bitmap ompression rates an bemagni�ed by reordering database tuples. In many in-stanes, ompressed �le size for the reordered �le lessthan half the ompressed size of the original �le. Wehave also observed a 5.36 times redution in ompresses�le size on data set HEP1, bitmap table for whih hashas 122 olumns and 2,173,762 rows.This paper shows the inontestable advantages ofdata reorganization for elevating bitmap index om-pression and introdues an important problem, whihwe all the tuple reordering problem. While ourtehniques are very e�etive in dereasing ompressedbitmap indies, they are only our �rst steps in this di-retion, and leaves muh for further researh. The per-formane of Gray ode sorting algorithm is a�eted bythe order, in whih we proess the olumns, and thus�nding a good ordering of olumns will be another in-teresting researh projet. Also, the literature in TSPis extremely rih, a more detailed study on adoptingTSP tehniques for the tuple reordering problem isworth investigating. Although enormous problem sizeshinder most of the tehniques, a thorough study intoTSP literature might be able to produe tehniques,whih avoid expliit onstrution of the TSP graph andmight be applied to smaller segments of the data. Fi-nally, existing ompression algorithms are tuned for un-ordered data, whereas our algorithms provide long uni-form segments in the data. We expet signi�ant ad-ditional improvements in ompression rates by tuningexisting ompression algorithms to reorganized data.In general, an interesting avenue will be better inte-gration of ordering and ompression algorithms, whereordering algorithms are tuned for the ompression al-gorithm to be used, and the ompression algorithmsare tuned for the reordered data.AknowledgmentsWe are grateful John Wu from Lawrene Berkeley Na-

tional Laboratory for his provision of some of the datasets, and insightful disussions.Referenes[1℄ S. Amer-Yahia and T. Johnson. Optimizingqueries on ompressed bitmaps. In VLDB, pages329{338, 2000.[2℄ G. Antoshenkov. Byte-aligned bitmap ompres-sion. Tehnial Report, Orale Corp., 1994. U.S.Patent number 5,363,098.[3℄ A.Shoshani, L.M.Bernardo, H.Nordberg,D.Rotem, and A.Sim. Multidimensinal in-dexing and query oordination for tertiarystorage management. In SSDBM, pages 214{225,1999.[4℄ S. Berhtold, C. Bohm, D. Keim, and H. Kriegel.A ost model for nearest neighbor searh in high-dimensional data spae. In Pro. ACM Symp. onPriniples of Database Systems, pages 78{86, Tus-on, Arizona, June 1997.[5℄ S. Berhtold, D. Keim, and H. Kriegel. The X-tree:An index struture for high-dimensional data. InProeedings of the Int. Conf. on Very Large DataBases, pages 28{39, Bombay, India, 1996.[6℄ C. Bohm, S. Berhtold, and D. A. Keim. Searh-ing in high-dimensional spaes: Index struturesfor improving the performane of multimediadatabases. ACM Computing Surveys, 33:322{373,2001.[7℄ K. Chakrabarti and S. Mehrotra. The hybrid tree:An index struture for high dimensional featurespaes. In Pro. Int. Conf. Data Engineering,pages 440{447, Sydney, Australia, 1999.[8℄ C.-Y Chan and Y. E. Ioannidis. Bitmap indexdesign and evaluation. In SIGMOD, pages 355{366, 1998.[9℄ C.-Y Chan and Y. E. Ioannidis. An eÆientbitmap enoding sheme for seletion queries. InSIGMOD, pages 215{226, 1999.[10℄ V. Gaede and O. Gunther. Multidimensional a-ess methods. ACM Computing Surveys, 30:170{231, 1998.[11℄ T. Johnson. Performane measurement of om-pressed bitmap indies. In VLDB, pages 278{289,1999.

[12℄ K. Lin, H. V. Jagadish, and C. Faloutsos. TheTV-tree: An index struture for high-dimensionaldata. VLDB Journal, 3:517{542, 1995.[13℄ D. B. Lomet and B. Salzberg. The hb-tree: Amulti-attribute indexing method with good guar-anteed performane. ACM Transations onDatabase Systems, 15(4):625{658, Deember 1990.[14℄ P. O'Neil. Model 204 arhiteture and perfor-mane. In 2nd International Workshop in HighPerformane Transation Systems, pages 40{59,Asilomar, CA, September 1987.[15℄ Ekow J. Otoo, Arie Shoshani, and Seung wonHwang. Clustering high dimensional massive si-enti� dataset. In SSDBM, pages 147{157, Fair-fax, Virginia, July 2001.[16℄ A. P�nar and M. Heath. Improving performaneof sparse matrix-vetor multipliation. In Pro. ofSuperomputing 99, 1999.[17℄ G. Reinelt. The traveling salesman: omputa-tional solutions for TSP appliations. Springer-Verlag, Leture Notes in Computer Siene, Vol:840, 1994.[18℄ D. Salomon. Data Compression 2nd edition.Springer Verlag, New York, 2000.[19℄ H. Samet. The Design and Analysis of SpatialStrutures. Addison Wesley Publishing Company,In., Massahusetts, 1989.[20℄ SiDAC. Sienti� data management enter.http://sdm.lbl.gov/sdmenter/, 2002.[21℄ SNAP. Supernova aeleration probe.http://snap.lbl.gov/, 2004.[22℄ K. Stokinger. Bitmap indies for speeding uphigh-dimensional data analysis. In DEXA, 2002.[23℄ R. Weber, H.-J. Shek, and S. Blott. A quantita-tive analysis and performane study for similarity-searh methods in high-dimensional spaes. InProeedings of the Int. Conf. on Very Large DataBases, pages 194{205, New York City, New York,August 1998.[24℄ K. Wu, E. J. Otoo, and A. Shoshani. A perfor-mane omparison of bitmap indexes. In Proeed-ings of the 2001 ACM CIKM International Con-ferene on Information and Knowledge Manage-ment, pages 559{561, Atlanta, Georgia, November2001.

[25℄ Kesheng Wu, Ekow J. Otoo, and Arie Shoshani.Compressing bitmap indexes for faster searh op-erations. In SSDBM, pages 99{108, Edinburgh,Sotland, UK, July 2002.[26℄ Kesheng Wu, Ekow J. Otoo, and Arie Shoshani.An eÆient ompression sheme for bitmap in-dies. Tehnial Report 49626, LBNL, April 2004.[27℄ Kesheng Wu, Ekow J. Otoo, and Arie Shoshani.On the performane of bitmap indies for highardinality attributes. Tehnial Report 54673,LBNL, Marh 2004.[28℄ M. J. Zaki and J. T. L. Wang. Speial issue onbioinformatis and biologial data management.Information Systems, 28:241{367, 2003.

