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Abstract

Pre-trained Transformer-based models have
achieved state-of-the-art performance for vari-
ous Natural Language Processing (NLP) tasks.
However, these models often have billions
of parameters, and thus are too resource-
hungry and computation-intensive to suit low-
capability devices or applications with strict
latency requirements. One potential remedy
for this is model compression, which has at-
tracted considerable research attention. Here,
we summarize the research in compressing
Transformers, focusing on the especially pop-
ular BERT model. In particular, we survey the
state of the art in compression for BERT, we
clarify the current best practices for compress-
ing large-scale Transformer models, and we
provide insights into the workings of various
methods. Our categorization and analysis also
shed light on promising future research direc-
tions for achieving lightweight, accurate, and
generic NLP models.

1 Introduction

Sentiment analysis, paraphrase detection, machine
reading comprehension, question answering, text
summarization—all these Natural Language Pro-
cessing (NLP) tasks benefit from pre-training a
large-scale generic model on an enormous corpus
such as a Wikipedia dump and/or a book collec-
tion, and then fine-tuning for specific downstream
tasks, as shown in Figure 1. Earlier solutions fol-
lowing this methodology used recurrent neural
networks (RNNs) as the base model, for example,
ULMFiT (Howard and Ruder, 2018) and ELMo

∗Both authors contributed equally to this research.

(Peters et al., 2018), but more recent methods
use the Transformer architecture (Vaswani et al.,
2017), which relies heavily on the attention
mechanism.

Popular pre-trained Transformers include
BERT (Devlin et al., 2019), GPT-2 (Radford et al.,
2019), XLNet (Yang et al., 2019), MegatronLM
(Shoeybi et al., 2019), Turing-NLG (Rosset,
2020), T5 (Raffel et al., 2020), and GPT-3 (Brown
et al., 2020). These Transformers are—for exam-
ple, BERT, when first released, improved the state
of the art for eleven NLP tasks by sizable margins
(Devlin et al., 2019). However, Transformers are
also bulky and resource-hungry: For instance,
GPT-3 (Brown et al., 2020), a recent large-scale
Transformer, has over 175 billion parameters.
Models of this size incur high memory consump-
tion, computational overhead, and energy. The
problem is exacerbated when we consider devices
with lower capacity (e.g., smartphones), and ap-
plications with strict latency constraints, (e.g.,
interactive chatbots).

To put things in perspective, a single training
run for GPT-3 (Brown et al., 2020), one of the
most powerful and heaviest Transformer-based
models, trained on a total of 300 billion tokens,
costs well above 12 million USD (Floridi and
Chiriatti, 2020). Moreover, fine-tuning or even
inference with such a model on a downstream task
cannot be done on a GPU with 32GB memory,
which is the capacity of Tesla V100, one of the
most advanced data center GPUs.

Instead it requires access to high-performance
GPU or multi-core CPU clusters, which often
means a need to access cloud computing with high
computation density, such as the Google Cloud
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Figure 1: Pre-training large-scale models.

Platform (GCP), Microsoft Azure, Amazon Web
Services (AWS), and so forth, and results in a high
monetary cost (Floridi and Chiriatti, 2020).

One way to address this problem is through
model compression, an intricate part of deep learn-
ing that has attracted attention from both research-
ers and practitioners. A recent study by Li et al.
(2020c) highlights the importance of first training
over-parameterized models and then compressing
them, instead of directly training smaller models,
to reduce the performance errors. Although most
methods in model compression were originally
proposed for convolutional neural networks (CNNs)
(pruning, quantization, knowledge distillation,
etc.) (Cheng et al., 2018), many ideas are di-
rectly applicable to Transformers. There are also
methods designed specifically for Transformers
(e.g., attention head pruning, attention decompo-
sition, replacing Transformer blocks with an RNN
or a CNN), which we will discuss in Section 3.
Unlike CNNs, a Transformer model has a rela-
tively complex architecture consisting of multiple
parts such as embedding layers, self-attention,
and feed-forward layers (details introduced in
Section 2). Thus, the effectiveness of different
compression methods can vary when applied to
different parts of a Transformer model.

Several recent surveys have focused on pre-
trained representations and large-scale Transformer-
based models (Qiu et al., 2020; Rogers et al.,
2020; Wang et al., 2020a). However, to the best
of our knowledge, no comprehensive, systematic
study has compared the effectiveness of different
model compression techniques on Transformer-
based large-scale NLP models, even though a
variety of approaches for compressing such mod-
els have been proposed. Motivated by this, here
we offer a thorough and in-depth comparative
study on compressing Transformer-based NLP
models, with a special focus on the widely used

BERT (Devlin et al., 2019). Although the com-
pression methods discussed here can be extended
to Transformer-based decoders and multilingual
Transformer models, we restrict our discussion to
BERT in order to be able to provide more detailed
insights into the various methods that we compare.

Our study is timely, since (i) the use of
Transformer-based BERT-like models has grown
dramatically, as demonstrated by current leaders
of various NLP tasks such as language under-
standing (Wang et al., 2018), machine reading
comprehension (Rajpurkar et al., 2016, 2018),
machine translation (Machacek and Bojar, 2014),
summarization (Narayan et al., 2018), and so on;
(ii) many researchers are left behind as they
do not have expensive GPUs (or a multi-GPU
setup) with a large amount of GPU memory, and
thus cannot fine-tune and use the large BERT
model for relevant downstream tasks; and (iii) AI-
powered devices such as smartphones would ben-
efit tremendously from an on-board BERT-like
model, but do not have the capability to run it. In
addition to summarizing existing techniques and
best practices for BERT compression, we point out
several promising future directions of research
for compressing large-scale Transformer-based
models.

2 Breakdown and Analysis of BERT

Bidirectional Encoder Representations from Trans-
formers, or BERT (Devlin et al., 2019), is a
Transformer-based model (Vaswani et al., 2017)
pre-trained on large corpora from Wikipedia and
the Bookcorpus dataset (Zhu et al., 2015) us-
ing two training objectives: (i) Masked Language
Model (MLM), which helps it learn the context in a
sentence, and (ii) Next Sentence Prediction (NSP),
from which it learns the relationship between two
sentences. Subsequent Transformer architectures
have further improved the training objective in
various ways (Lan et al., 2020; Liu et al., 2019b).
In the following, we focus on the original BERT
model.

BERT decomposes the input sentence(s) into
WordPiece tokens (Wu et al., 2016). Specifically,
WordPiece tokenization helps improve the rep-
resentation of the input vocabulary and reduce
its size, by segmenting complex words into sub-
words. These subwords can even form new words
not seen in the training samples, thus making the
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Figure 2: BERT model flowchart.

model more robust to out-of-vocabulary (OOV)
words. BERT further inserts a classification token
([CLS]) before the input tokens, and the output
corresponding to this token is used for classifica-
tion tasks that target the entire input. For sentence
pair tasks, the two sentences are packed together
by inserting a further separator token ([SEP])
between them.

BERT represents each WordPiece token with
three vectors, namely, its token, segment, and posi-
tion embeddings. These embeddings are summed
together and then passed through the main body of
the model (i.e., the Transformer backbone), which
produces the output representations that are fed
into the final, application-dependent layer (e.g., a
classifier for sentiment analysis).

As shown in Figure 2, the Transformer back-
bone consists of multiple stacked encoder units,
each with two major sub-units: a self-attention
sub-unit and a feed forward network (FFN)
sub-unit, both with residual connections. Each
self-attention sub-unit consists of a multi-head
self-attention layer, and fully connected layers be-
fore and after it. An FFN sub-unit exclusively
contains fully connected layers. The architecture
of BERT can be specified using the following three
hyper-parameters: number of encoder units (L),
size of the embedding vector (H), and number of
attention heads in each self-attention layer (A). L
and H determine the depth and the width of the
model, whereas A is an internal hyper-parameter
that affects the number of contextual relations that
each encoder can focus on. The authors of BERT
provided two pre-trained models:

• BERTBASE (L = 12;H = 768;A = 12);

• BERTLARGE (L = 24;H = 1024;A = 16).

We conducted various experiments with the
BERTBASE model by running inference on a sen-

tence of length 256, and then we collected the
results in Figure 3. The top graph in the figure
compares the model size as well as the theoretical
computational requirements (measured in millions
of FLOPs) of different parts of the model. The
bottom two graphs track the model’s run-time
memory consumption as well as the inference
latency on two representative hardware setups.

We conducted our experiments using Nvidia
Titan X GPU with 12GB of video RAM and
Intel Xeon E5-1620 CPU with 32 GB of system
memory, which is a commonly used server or
workstation configuration. All data was collected
using the PyTorch profiling tool.

Clearly, the parts consuming the most memory
in terms of model size and executing the high-
est number of FLOPs are the FFN sub-units. The
embedding layer is also a substantial part of the
model size, due to the large vector size (H) used
to represent each embedding vector. Note that it
has zero FLOPs, since it is a lookup table that in-
volves no arithmetic computations at inference
time. For the self-attention sub-units, we further
break down the costs into multi-head self-attention
layers and the linear (i.e., fully connected) lay-
ers before and after them. The multi-head self-
attention does not have any learnable parameters;
however, its computational cost is non-zero due
to the dot products and the softmax operations.

The linear layers surrounding each attention
layer incur additional memory and computational
overhead, though it is relatively small compared
to the FFN sub-units. Note that the input to the at-
tention layer is divided among various heads, and
thus each head operates in a lower-dimensional
space (H/A). The linear layer before attention is
roughly three times the size of that after it, since
each attention has three inputs (key, value, and
query) and only one output.

The theoretical computational overhead may
differ from the actual inference cost at run-time,
which depends on the hardware that the model
runs on. As expected, when running the model
on a GPU, the total run-time memory includes
memory both on the GPU side and on the CPU
side, and it is greater than for a model running
solely on a CPU due to duplicate tensors present
on both devices for faster processing on a GPU.

The most notable difference between the theo-
retical analysis and the run-time measurements on
a GPU is that the multi-head self-attention layers
are significantly more costly in practice than in
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Figure 3: Breakdown analysis of BERTBASE.

theory. This is because the operations in these
layers are complex, and are implemented as sev-
eral matrix transformations followed by a matrix
multiplication and a softmax. Moreover, GPUs
are designed to accelerate certain operations, and
thus can implement linear layers faster and more
efficiently than the more complex attention layers.

When we compare the run-time performance
on a CPU, where the hardware is not specialized
for linear layer operations, the inference time as
well as the memory consumption of all the linear
layers shoots up more compared to the multi-head
self-attention. Thus, on a CPU, the behavior of run-
time performance is similar to that of theoretical
computations. The total execution time for a single
example on a GPU (57.1 ms) is far superior as
compared to a CPU (750.9 ms), as expected. The
execution time of the embedding layer is largely
independent of the hardware on which the model
is executed (since it is just a table lookup) and it
is relatively small compared to the other layers.

The FFN sub-units are the bottleneck of the whole
model, which is consistent with the results from
the theoretical analysis.

3 Compression Methods

Because of BERT’s complex architecture, no ex-
isting compression method has focused on every
single aspect of the model: self-attention, linear
layers, embedding size, model depth, and so forth.
Instead, each compression method applies to cer-
tain components of BERT. Below, we consider
the compression methods that offer model size
reduction and speedup at inference time, rather
than during the training procedure.

3.1 Quantization

Quantization refers to reducing the number of
unique values required to represent model weights
and activations, which allows to represent them
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Figure 4: Quantization.

using fewer bits, to reduce the memory footprint,
and to lower the precision of the numerical calcula-
tions. Quantization may even improve the runtime
memory consumption as well as the inference
speed when the underlying computational device
is optimized to process lower-precision numerical
values, for example, tensor cores in newer gener-
ations of Nvidia GPUs. Programmable hardware
such as FPGAs can also be specifically optimized
for any bitwidth representation. Quantization of
intermediate outputs and activations can further
speed up the model execution (Boo and Sung,
2020).

Quantization is applicable to all model weights
as the BERT weights reside in fully connected
layers (i.e., the embedding layer, the linear layers,
and the FFN sub-units), which have been shown
to be quantization-friendly (Hubara et al., 2017).
The original BERT model provided by Google
represents each weight by a 32-bit floating point
number. A naı̈ve approach is to simply truncate
each weight to the target bitwidth, which often
yields a sizable drop in accuracy as this forces
certain weights to go through a severe drift in
their value, known as quantization noise (Fan
et al., 2021).

A possible way around this issue is to identify
these weights and then not to truncate them during
the quantization step in order to retain the model
accuracy. For example, Zadeh et al. (2020) as-
sumed Gaussian distribution in the weight matrix
and identified the outliers. Then, by not quan-
tizing these outliers, they were able to perform
post-training quantization without any retraining
requirements.

A more common approach to retaining the
model accuracy is Quantization-Aware Training
(QAT), which involves additional training steps

to adjust the quantized weights. Figure 4 shows an
example of naı̈ve linear quantization, quantization
noise, and the importance of quantization-aware
training. For BERT, QAT has been used to
perform fixed-length integer quantization (Zafrir
et al., 2019; Boo and Sung, 2020), Hessian-based
mixed-precision quantization (Shen et al., 2020),
adaptive floating-point quantization (Tambe et al.,
2020), and noise-based quantization (Fan et al.,
2021). Finally, it has been observed that the em-
bedding layer is more sensitive to quantization
than the other encoder layers, and thus that it re-
quires more bits in order to maintain the model
accuracy (Shen et al., 2020).

3.2 Pruning

Pruning refers to identifying and removing redun-
dant or less important weights and/or components,
which sometimes even makes the model more ro-
bust and better-performing. Moreover, pruning is
a commonly used method of exploring the lottery
ticket hypothesis in neural networks (Frankle and
Carbin, 2019), which has also been studied in the
context of BERT (Chen et al., 2020b; Prasanna
et al., 2020). Pruning methods for BERT largely
fall into two categories, which we explore below.

Unstructured Pruning. Unstructured pruning,
also known as sparse pruning, prunes individual
weights by locating the set of the least impor-
tant weights in the model. The importance of the
weights can be judged by their absolute values,
by the gradients, or by some custom-designed
measurement (Gordon et al., 2020; Mao et al.,
2020; Guo et al., 2019; Sanh et al., 2020; Chen
et al., 2020b). Unstructured pruning could be
effective for BERT, given the latter’s massive
amount of fully-connected layers. Unstructured
pruning methods include magnitude weight prun-
ing (Gordon et al., 2020; Mao et al., 2020; Chen
et al., 2020b), which simply removes weights
that are close to zero, movement-based pruning
(Sanh et al., 2020; Tambe et al., 2020), which
removes weights that move towards zero dur-
ing fine-tuning, and reweighted proximal pruning
(RPP) (Guo et al., 2019), which uses itera-
tively reweighted �1 minimization followed by the
proximal algorithm for decoupling pruning and
error back-propagation. Since unstructured prun-
ing considers each weight individually, the set
of pruned weights can be arbitrary and irregular,
which in turn might decrease the model size, but

1065

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00413/1964006/tacl_a_00413.pdf by guest on 22 August 2022



Figure 5: Various pruning methods including structured pruning by (a) pruning number of encoder units (L), (b)
pruning embedding size (H), (c) pruning number of attention heads (A), as well as (d) unstructured pruning.

with negligible improvement in runtime memory
or speed, unless executed on specialized hardware
or with specialized processing libraries.

Structured Pruning. Unlike unstructured prun-
ing, structured pruning focuses on pruning struc-
tured blocks of weights (Li et al., 2020a) or even
complete architectural components in the BERT
model, by reducing and simplifying certain nu-
merical modules:

• Attention Head Pruning. As we have seen
above, the self-attention layer incurs consid-
erable computational overhead at inference
time; yet, its importance has often been ques-
tioned (Kovaleva et al., 2019; Tay et al.,
2020; Raganato et al., 2020). In fact, it has
been shown that high accuracy is possible
with only 1–2 attention heads per encoder
unit, even though the original BERT model
had 16 attention heads (Michel et al., 2019).
Randomly pruning attention heads during the
training phase has also been proposed, which
can create a model that is robust to vari-
ous numbers of attention heads, and thus a
smaller model can be directly extracted for
inference based on the required deployment
requirements (Hou et al., 2020).

• Encoder Unit Pruning. Another structured
pruning method aims to reduce the number
of encoder units L by pruning the less impor-
tant layers. For instance, layer dropout drops
encoder units randomly or with a pre-defined
strategy during training. If the layers are
dropped randomly, a smaller model of any

desired depth can be extracted during infer-
ence (Fan et al., 2020; Hou et al., 2020).
Otherwise, a smaller model of fixed depth is
obtained (Sajjad et al., 2020; Xu et al., 2020).
As BERT contains residual connections for
every sub-unit, using an identity prior to
prune these layers has also been proposed
(Lin et al., 2020).

• Embedding Size Pruning. Similarly to en-
coder unit pruning, we can reduce the size of
the embedding vector (H) by pruning along
the width of the model. Such a model can
be obtained by either training with adaptive
width, so that the model is robust to such
pruning during inference (Hou et al., 2020),
or by removing the least important feature
dimensions iteratively (Khetan and Karnin,
2020; Prasanna et al., 2020; Tsai et al., 2020;
Lin et al., 2020).

Figure 5 shows a visualization of various forms
of structured pruning and unstructured pruning.

3.3 Knowledge Distillation

Knowledge Distillation refers to training a smaller
model (called the student) using outputs (from
various intermediate functional components) of
one or more larger pre-trained models (called the
teachers). The flow of information can sometimes
be through an intermediate model (commonly
known as teaching assistants) (Ding and Yang,
2020; Sun et al., 2020b; Wang et al., 2020c).
In the BERT model, there are multiple inter-
mediate results that the student can potentially
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Figure 6: Knowledge distillation. Student models can be formed by (a) reducing the encoder width, (b) reducing
the number of encoders, (c) replacing with a BiLSTM, (d) replacing with a CNN, or some combination thereof.

learn from, such as the logits in the final layer,
the outputs of the encoder units, and the atten-
tion maps. Moreover, there are multiple forms of
loss functions that can be adapted for this pur-
pose such as cross-entropy loss, KL divergence,
MAE, and so on. While knowledge distillation
is most commonly used to train student models
directly on task-specific data, recent results have
shown that distillation during both pre-training
and fine-tuning can help create better performing
models (Song et al., 2020). An overview of var-
ious forms of knowledge distillation and student
models is shown in Figure 6. Based on what the
student learns from the teacher, we can categorize
the existing methods as follows:

Distillation from Output Logits. Similar to
knowledge distillation for CNNs (Cheng et al.,
2018), the student can directly learn from the
output logits (i.e., from soft labels) of the final
softmax layer in BERT. This is done to allow the
student to better mimic the output of the teacher
model, by replicating the probability distribution
across various classes.

While knowledge distillation on output logits
is most commonly used to train smaller BERT
models (Sun et al., 2019; Sanh et al., 2019; Jiao
et al., 2020; Zhao et al., 2019b; Cao et al., 2020;
Sun et al., 2020b; Song et al., 2020; Mao et al.,
2020; Li et al., 2020b; Ding and Yang, 2020;
Noach and Goldberg, 2020), the student does
not need to be a smaller version of BERT or
even a Transformer, and can follow a completely
different architecture. Below we describe the two
commonly used replacements:

• Replacing the Transformer with a BiLSTM, to
create a lighter backbone. Recurrent models
such as BiLSTMs process words sequen-
tially instead of simultaneously attending to

each word in the sentence like Transformers
do, resulting in a smaller runtime memory
requirement. Both can create bidirectional
representations, and thus BiLSTMs can be
considered a faster alternative to Transform-
ers (Wasserblat et al., 2020). Compressing to
a BiLSTM is typically done directly for a spe-
cific NLP task (Mukherjee and Awadallah,
2020). Since these models are trained from
scratch on the task-specific dataset without
any intermediate guidance, various methods
have been proposed to create additional syn-
thetic training data using rule-based data
augmentation techniques (Tang et al., 2019;
Mukherjee and Awadallah, 2020) or to col-
lect data from multiple tasks to train a single
model (Liu et al., 2019a).

• Replacing the Transformer with a CNN, to
take advantage of massively parallel compu-
tations and improved inference speed (Chia
et al., 2018). While it is theoretically pos-
sible to make the internal processing of an
encoder parallel, where each parallel unit
requires access to all the inputs from the
previous layer as an encoder unit focuses
on the global context, this setup is computa-
tionally intensive and cost-inefficient. Unlike
Transformers, each CNN unit focuses on lo-
cal context, and, unlike BiLSTMs, CNNs do
not operate on the input sequentially, which
makes it easier for them to divide the compu-
tation into small parallel units. It is possible
to either completely replace the Transformer
backbone with a deep CNN network (Chen
et al., 2020a), or to replace only a few encoder
units to balance performance and efficiency
(Tian et al., 2019).
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Distillation from Encoder Outputs. Each en-
coder unit in a Transformer model can be viewed
as a separate functional unit. Intuitively, the out-
put tensors of such an encoder unit may contain
meaningful semantic and contextual relationships
between input tokens, leading to an improved rep-
resentation. Following this idea, we can create
a smaller model by learning from an encoder’s
outputs. The smaller model can have a reduced
embedding size H , a smaller number of encoder
units L, or a lighter alternative that replaces the
Transformer backbone.

• Reducing the number of heads H yields
more compact representations in the student
(Zhao et al., 2019b; Sun et al., 2020b; Jiao
et al., 2020; Li et al., 2020b). One chal-
lenge is that the student cannot directly learn
from the teacher’s intermediate outputs, due
to different sizes. To overcome this, the stu-
dent also learns a transformation, which can
be implemented by either down-projecting
the teacher’s outputs to a lower dimension
or by up-projecting the student’s outputs to
the original dimension (Zhao et al., 2019b).
Another possibility is to introduce these
transformations directly into the student
model, and later to merge them with the ex-
isting linear layers to obtain the final smaller
model (Zhou et al., 2020a).

• Reducing the number of encoder units L
forces each encoder unit in the student to
learn from the behavior of a sequence of mul-
tiple encoder units in the teacher (Sun et al.,
2019; Sanh et al., 2019; Sun et al., 2020b;
Jiao et al., 2020; Zhao et al., 2019b; Li et al.,
2020b). Further analysis into various details
of choosing which encoder units to use for
distillation is provided by Sajjad et al. (2020).
For example, preserving the bottom encoder
units and aggressively distilling the top en-
coder units yields a better-performing student
model, which indicates the importance of the
bottom layers in the teacher model. While
most existing methods create an injective
mapping from the student encoder units to
the teacher, Li et al. (2020b) instead proposed
a way to build a many-to-many mapping for
a better flow of information. One can also
completely bypass the mapping by combin-
ing all outputs into one single representation
vector (Sun et al., 2020a).

• It is also possible to use encoder outputs to
train student models that are not Transform-
ers (Mukherjee and Awadallah, 2020; Tian
et al., 2019). However,when the student model
uses a completely different architecture, the
flexibility of using internal representations is
rather limited, and only the output from the
last encoder unit can be used for distillation.

Distillation from Attention Maps. An atten-
tion map refers to the softmax distribution output
of the self-attention layers and indicates the
contextual dependence between the input to-
kens. It has been proposed that attention maps
in BERT can identify distinguishable linguistic
relations, for example, identical words across
sentences, verbs and corresponding objects, or
pronouns and corresponding nouns (Clark et al.,
2019). These distributions are the only source
of inter-dependency between input tokens in a
Transformer model, and thus by replicating these
distributions, a student can also learn such linguis-
tic relations (Sun et al., 2020b; Jiao et al., 2020;
Mao et al., 2020; Tian et al., 2019; Li et al., 2020b;
Noach and Goldberg, 2020).

A common method of distillation from atten-
tion maps is to directly minimize the difference
between the teacher’s and the student’s multi-head
self-attention outputs. Similarly to distillation
from encoder outputs, replicating attention maps
also faces a choice of mapping between the teacher
and the student, as each encoder unit has its own
attention distribution. Previous work has also pro-
posed replicating only the last attention map in
the model to truly capture the contextual depen-
dence (Wang et al., 2020c). One can attempt an
even deeper distillation of information through
intermediate attention outputs such as key, query,
and value matrices, individual attention head out-
puts, key–query, and value–value matrix products,
and so forth, to facilitate the flow of information
(Wang et al., 2020c; Noach and Goldberg, 2020).

3.4 Matrix Decomposition
The computational overhead in BERT mainly con-
sists of large matrix multiplications, both in the
linear layers and in the attention heads. Thus, de-
composing these matrices can significantly impact
the computational requirements for such models.

Weight Matrix Decomposition. The compu-
tational overhead of the model can be reduced
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Figure 7: Attention decomposition.

through weight matrix factorization, which re-
places the original A × B weight matrix by the
product of two smaller ones (A× C and C ×B).
The reduction in model size and runtime memory
use is sizable if C � A,B. The method can be
applied to the linear layers (Noach and Goldberg,
2020; Mao et al., 2020), or to the embedding
matrix (Lan et al., 2020; Tambe et al., 2020).

Attention Decomposition. It has been shown
that computing attention over the entire sentence
makes a large number of redundant computations
(Tay et al., 2020; Cao et al., 2020). Thus, it has
been proposed to do it in smaller groups, by either
binning them using spatial locality (Cao et al.,
2020), magnitude-based locality (Kitaev et al.,
2020), or an adaptive attention span (Tambe
et al., 2020). Moreover, since the outputs are
calculated independently, local attention methods
also enable a higher degree of parallel processing
and individual representations can be saved dur-
ing inference for multiple uses. Figure 7 shows
an example of attention decomposition based on
spatial locality.

It has been also proposed to reduce the atten-
tion computations by projecting the key–query
matrix into a lower dimensionality (Wang et al.,
2020b) or by only calculating the softmax of the
top-k key-query product values in order to further
highlight these relations (Zhao et al., 2019a).

Since the multi-head self-attention layer con-
tains no weights, these methods only improve the
runtime memory costs and execution speed, but
do not reduce the model size.

3.5 Dynamic Inference Acceleration
Besides directly compressing the model, some
methods focus on reducing the computational

Figure 8: Dynamic inference acceleration.

overhead at inference time by catering to indi-
vidual input examples and dynamically changing
the amount of computation. Figure 8 shows a visu-
alization of two such methods, which we discuss
below.

Early Exit Ramps. One way to speed up infer-
ence is to create intermediary exit points in the
model. Since the classification layers are the least
parameter-extensive part of BERT, separate clas-
sifiers can be trained for each encoder unit output.
This allows the model to have dynamic inference
time for various inputs. Training these separate
classifiers can be done either from scratch (Xin
et al., 2020; Zhou et al., 2020b; Tambe et al., 2020)
or by distilling the output of the final classifier
(Liu et al., 2020).

Progressive Word Vector Elimination. An-
other way to accelerate inference is by reducing
the number of words processed at each encoder
level. Since we only use the final output corre-
sponding to the [CLS] token (defined in Section 2)
as a representation of the complete sentence, the
information of the entire sentence must have fused
into that one token. Goyal et al. (2020) observed
that such a fusion cannot be sudden, and that it
must happen progressively across various encoder
levels. We can use this information to lighten the
later encoder units by reducing the sentence length
through word vector elimination at each step.

3.6 Other Methods

Besides the aforementioned methods, there are
also several one-of-a-kind methods that have been
shown to be effective for reducing the size and the
inference time of BERT-like models.
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Parameter Sharing. ALBERT (Lan et al.,
2020) uses the same architecture as BERT, but
with weights shared across all encoder units,
which reduces memory consumption signifi-
cantly. Moreover, ALBERT enables training
larger and deeper models: While BERT’s per-
formance peaks at BERTLARGE (performance of
BERTXLARGE drops significantly), ALBERT keeps
improving until the far larger ALBERTXXLARGE

model (L = 12;H = 4096;A = 64).

Embedding Matrix Compression. The embed-
ding matrix is the lookup table for the embedding
layer, which is about 21% of the size of the
complete BERT model. One way to compress it
is by reducing the vocabulary size V , which is
about 30k in the original BERT model. Recall
from Section 2 that the vocabulary of BERT is
learned using a WordPiece tokenizer, which relies
on the vocabulary size to figure out the degree
of fragmentation of the words in the input text.
A large vocabulary size allows for better repre-
sentation of rare words and for more adaptability
to out-of-vocabulary words. However, even with
a 5k vocabulary size, 94% of the tokens match
those created using a 30k vocabulary size (Zhao
et al., 2019b). Thus, the majority of the words that
appear frequently enough are covered even with
a small vocabulary size, which makes it reason-
able to decrease the vocabulary size to compress
the embedding matrix. Another alternative is to
replace the existing one-hot vector encoding with
a ‘‘codebook’’-based one, where each token is
represented using multiple indices from the code-
book. The final embedding of the token can then
be calculated as the sum of the embeddings present
in all these indices (Prakash et al., 2020).

Weight Squeezing. Weight squeezing
(Chumachenko et al., 2020) is a compression
method similar to knowledge distillation, where
the student learns from the teacher. However,
instead of learning from intermediate outputs
as in knowledge distillation, the weights of the
teacher model are mapped to the student through
a learnable transformation, and thus the student
learns its weights directly from the teacher.

4 Effectiveness of Compression Methods

In this section, we compare the performance of
several BERT compression techniques based on

their model size and speedup, as well as their
accuracy or F1 score on various NLP tasks. We
chose work whose results are either on the Pareto
frontier (Deb, 2014) or representative for each
compression technique mentioned in the previous
section.

4.1 Datasets and Evaluation Measures

From the General Language Understanding Eval-
uation (GLUE) benchmark (Wang et al., 2018)
and the Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016), we use the
following most common tasks: MNLI and QQP
for sentence pair classification, SST-2 for sin-
gle sentence classification, and SQuAD v1.1 for
machine reading comprehension. Following the
official leaderboards, we report the accuracy for
MNLI, SST-2, and QQP, and F1 score for SQuAD
v1.1. In an attempt to quantify the results on a sin-
gle scale, we also report the absolute drop in
performance with respect to BERTBASE, aver-
aged across all tasks for which the authors have
reported results.

We further report speedup on both GPU and
CPU devices, collected directly from the original
papers. For papers that report speedup, we also
mention the target device on which is was cal-
culated, and for such that do not, we run their
models on our own machine and we perform in-
ference on the complete MNLI-m test set (using
a batch size of 1) with machine configurations as
detailed in Section 2. We also report the model
size with and without the embedding matrix, since
for certain application scenarios, where the mem-
ory constraints for model storage are not strict,
the parameters of the embedding matrix can be
ignored as it has negligible run-time cost (see
Section 2). As no previous work has reported the
drop in runtime memory, and as many papers that
we compare to use probabilistic models that cannot
be easily replicated without their code, we could
not perform direct runtime memory comparisons.

4.2 Comparison and Analysis

Table 1 compares various BERT compression
methods. While some compress only part of the
model, for uniformity, we report size and speedup
for the final complete models after compression.
Thus, certain values might not match exactly what
is reported in the original papers.
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Methods Provenance Target Model Size Speedup Accuracy/F1 Avr.
Device w/ emb w/o emb GPU CPU MNLI QQP SST-2 SQD Drop

BERTBASE (Devlin et al., 2019) – 100% 100% 1x 1x 84.6 89.2 93.5 88.5 0.0

Quantization
(Shen et al., 2020) S – 15% 12.5% 1x 1x 83.9 – 92.6 88.3 −0.6
(Zadeh et al., 2020) S – 10.2% 5.5% 1x 1x 83.7 – – – −0.9

Unstructured
(Guo et al., 2019) A – 67.6% 58.7% 1x 1x – – – 88.5 0.0

Pruning
(Chen et al., 2020b) S – 48.9%∗ 35.1%∗ 1x 1x 83.1 89.5 92.9 87.8 −0.63
(Sanh et al., 2020) S – 23.8% 3% 1x 1x 79.0 89.3 – 79.9 −4.73

Structured (Lin et al., 2020) S – 60.7% 50% – – – 88.9 91.8 – −1.0
Pruning (Khetan and Karnin, 2020) A – 39.1% 38.8% 2.93x‡ 2.76x‡ 83.4 – 90.9 86.7 −1.86

KD from
(Song et al., 2020) A,S V100 22.8% 10.9% 6.25x 7.09x – 88.6 92.9 – −0.6

Output Logits
(Liu et al., 2019a)† S V100 24.1% 3.3% 10.7x 8.6x‡ 78.6 88.6 91.0 – −3.03
(Chen et al., 2020a) A,S V100 7.4% 4.8% 19.5x∗ – 81.6 88.7 91.8 – −2.06

KD from Attn. (Wang et al., 2020c) A P100 60.7% 50% 1.94x 1.73x 84.0 91.0 92.0 – −0.1

Multiple KD
(Sanh et al., 2019) A CPU 60.7% 50% 1.94x 1.73x 82.2 88.5 91.3 86.9 −1.73

combined
(Sun et al., 2020b)† A Pixel 23.1% 24.8% 3.9x‡ 4.7x‡ 83.3 – 92.8 90.0 −0.16
(Jiao et al., 2020) A,S K80 13.3% 6.4% 9.4x 9.3x‡ 82.5 89.2 92.6 – −1.0
(Zhao et al., 2019b) A – 1.6% 1.8% 25.5x‡ 22.7x‡ 71.3 – 82.2 – −12.3

Matrix (Noach and Goldberg, 2020) S Titan V 60.6% 49.1% 0.92x 1.05x 84.8 89.7 92.4 – −0.13
Decomposition (Cao et al., 2020) S V100 100% 100% 3.14x 3.55x 82.6 90.3 – 87.1 −0.76
Dynamic (Xin et al., 2020) S P100 100% 100% 1.25x 1.28x‡ 83.9 89.2 93.4 – −0.26
Inference (Goyal et al., 2020) S K80 100% 100% 2.5x 3.1x‡ 83.8 – 92.1 – −1.1
Param. Sharing (Lan et al., 2020) A – 10.7% 8.8% 1.2x‡ 1.2x‡ 84.3 89.6 90.3 89.3 −0.58
Pruning (Mao et al., 2020) S – 40.0% 37.3% 1x 1x 83.5 88.9 92.8 – −0.7
with KD (Hou et al., 2020) S K40 31.2% 12.4% 5.9x‡ 8.7x‡ 82.0 90.4 92.0 – −0.96
Quantization (Zadeh et al., 2020) S CPU 7.6% 3.9% 1.94x 1.73x 82.0 – – – −2.6
with KD (Sun et al., 2020b)† A Pixel 5.7% 6.1% 3.9x‡ 4.7x‡ 83.3 – 92.6 90.0 −0.23
Compound (Tambe et al., 2020) S TX2 1.3% 0.9% 1.83x – 84.4 89.8 88.5 – −1.53

Table 1: Evaluation of various compression methods. ∗ indicates models using task-specific sizes or
speedups; average values are reported in such cases. † represents models that use BERTLARGE as the
teacher model. ‡ represents speedup values that we calculated. Empty cells in the speedup columns
are for papers that do not describe the detailed architecture of their final compressed model. A marks
models compressed in a task-agnostic setup, i.e., requiring access to the pre-training dataset. S indicates
models compressed in a task-specific setup. V100 is Nvidia Tesla V100; P100 is Nvidia Tesla P100;
K80 is Nvidia Tesla K80; Titan V is Nvidia Titan V; K40 is Nvidia Tesla K40; CPU is Intel Xeon E5;
TX2 is Nvidia Jetson TX2; and Pixel is Google Pixel Phone.

Quantization and Pruning. Quantization is
well suited for BERT, and it can outperform
other methods in terms of both model size and
accuracy. As shown in Table 1, it can compress
BERT to 15% and 10.2% of its original size, with
accuracy drop of only 0.6% and 0.9%, respec-
tively, across various tasks (Shen et al., 2020;
Zadeh et al., 2020). This can be attributed to its
architecture-invariant nature, as it only reduces
the precision of the weights, but preserves all
original components and connections. Unstruc-
tured pruning also shows performance that is on
par with other methods. It compresses BERT to
67.6% of its original size, without any loss in

accuracy, possibly due to the regularization effect
of pruning (Guo et al., 2019). However, almost all
existing work in unstructured pruning freezes the
embedding matrix and focuses only on pruning the
weight matrices of the encoder. This makes ex-
treme compression difficult—for example, even
with 3% weight density in encoders, the total
model size still remains at 23.8% of its original
size (Sanh et al., 2020), and yields a sizable drop
in accuracy/F1 (4.73% on average).

While both quantization and unstructured prun-
ing reduce the model size significantly, none of
them yields actual run-time speedups on a stan-
dard device. Instead, specialized hardware and/or
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libraries are required, which can do lower-bit
arithmetic for quantization and an optimized im-
plementation of sparse weight matrix multipli-
cation for unstructured pruning. However, these
methods can be easily combined with other com-
pression methods as they are orthogonal from an
implementation viewpoint. Below, we discuss the
performance of compounding multiple compres-
sion methods.

Structured Pruning. As discussed in Section 3,
structured pruning removes architectural compo-
nents from BERT, which can also be seen as
reducing the number of hyper-parameters that
govern the BERT architecture. While Lin et al.
(2020) pruned the encoder units (L) and reduced
the model depth by half with an average accuracy
drop of 1.0%, Khetan and Karnin (2020) took
it a step further and systematically reduced both
the depth (L) as well as the width (H , A) of the
model, compressing to 39.1% of the original size
with an average accuracy drop of only 1.86%. De-
tailed experiments by Khetan and Karnin (2020)
also show that reducing all hyper-parameters in
harmony, instead of focusing on just one, yields
better performance.

Model-Agnostic Distillation. Applying distil-
lation from output logits only allows model-
agnostic compression and gives rise to LSTM/
CNN-based student models. While methods exist
that try to train a smaller BERT model (Song et al.,
2020), this category is dominated by methods that
replace Transformers with lighter alternatives. It
has been shown that a BiLSTM student model
can yield significantly better speedup (Liu et al.,
2019a) compared to a Transformer-based student
model of comparable size (Song et al., 2020). Chen
et al. (2020a) demonstrated the fastest model in
this category, a NAS-based CNN model, with only
2.06% average drop in accuracy. Overall, these
methods achieved high compression ratio, but
they paid a heavy price: sizable drop in accuracy.
This could be because the total model size is not
a true indicator of how powerful their compres-
sion is, as the model size is dominated by the
embedding matrix.

For example, while the total size of the student
model of Liu et al. (2019a) is 101 MB, only 11
MB is the size of their BiLSTM model, and the
remaining 90 MB are just the embedding ma-
trix. Thus, we can conclude that, similarly to un-

structured pruning, ignoring the embedding matrix
can hurt the practical deployment of such models
on devices with strict memory constraints.

Distillation from Attention Maps. Wang et al.
(2020c) were able to reduce BERT to 60.7% its
original size, with only 0.1% loss in accuracy on
average, just by doing deep distillation on the at-
tention layers. For the same student architecture,
Sanh et al. (2019) used all other forms of dis-
tillation (i.e., output logits and encoder outputs)
together and still faced an average accuracy loss
of 1.73%. Clearly, the intermediate attention maps
are an important distillation target.

Combining Multiple Distillations. Combining
multiple distillation targets can yield an even better
compressed model. Jiao et al. (2020) created a stu-
dent model with smallerH andL hyper-parameter
values, compressing the model size to 13.3% and
achieving a 9.4x speedup on a GPU (9.3x on
a CPU), while only facing a drop of 1.0% in
accuracy. Zhao et al. (2019b) extended the idea
and created an extremely small BERT student
model (1.6% of the original size, ∼ 25x faster)
with H = 48 and vocabulary size |V | = 4, 928
(BERTBASE has H = 768 and |V | = 30, 522).
The model lost 12.3% accuracy to pay for its size.

Matrix Decomposition and Dynamic Inference
Acceleration. While weight matrix decomposi-
tion helps reduce the size of the weight matrices
in BERT, it creates deeper and fragmented mod-
els, which hurts the execution time (Noach and
Goldberg, 2020). On the other hand, methods that
implement faster attention and various forms of
dynamic speedup do not change the model size,
but instead provide faster inference. For example,
Cao et al. (2020) showed that attention calculation
across the complete sentence is not needed for
the initial encoder layers, and they were able to
achieve ∼ 3x speedup with only 0.76% drop in
accuracy. For applications where latency is the
major constraint, such methods can be suitable.

Structured Pruning vs. Distillation. While
structured pruning attempts to iteratively prune
the hyper-parameters of BERT, distillation starts
with a smaller model and tries to train it us-
ing knowledge directly from the original BERT.
However, both of them end up with a similar
compressed model, and thus it is interesting to
compare which path yields better results. As can
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be noted from Table 1, for the same compressed
model with L = 6, the drop in accuracy for the
model of Lin et al. (2020) is smaller compared to
that of Sanh et al. (2019). However, this is not a
completely fair comparison, as Sanh et al. (2019)
did not use attention as a distillation target. When
we compare other methods, we find that Jiao
et al. (2020) was able to beat Khetan and Karnin
(2020) in terms of both model size and accuracy.
This shows that structured pruning outperforms
student models trained using distillation only on
encoder outputs and output logits, but fails against
distillation on attention maps. This further indi-
cates the importance of replicating attention maps
in BERT.

Pruning with Distillation. Similarly to com-
bining multiple distillation methods, it is also
possible to combine pruning with distillation, as
this can help guide the pruning towards removing
the less important connections. Mao et al. (2020)
combined distillation with unstructured pruning,
while Hou et al. (2020) combined distillation with
structured pruning. When compared with only
structured pruning (Khetan and Karnin, 2020), we
see that Hou et al. (2020) achieved both a smaller
model size (12.4%) and also a smaller drop in
accuracy (0.96%).

Quantization with Distillation. Similarly to
pruning, quantization is also orthogonal in imple-
mentation to distillation, and can together achieve
better performance than either of them individu-
ally. Zadeh et al. (2020) attempted to quantize an
already distilled BERT model (Sanh et al., 2019)
to four bits, thus reducing the model size from
60.2% to 7.5%, with an additional accuracy drop
of only 0.9% (1.73% to 2.6%). Similarly, Sun
et al. (2020b) attempted to quantize their model
to eight bits, which reduced their model size from
23% to 5.25%, with only a 0.07% additional drop
in accuracy.

Compounding Multiple Methods Together.
As we have seen in this section, different meth-
ods of compression target different parts of the
BERT architecture. Note that many of these meth-
ods are orthogonal in implementation, similarly
to the work we discussed on combining quantiza-
tion and pruning with distillation, and thus it is
possible to combine them. For example, Tambe
et al. (2020) combined multiple forms of com-
pression methods to create a truly deployable lan-

guage model for edge devices. They combined
parameter sharing, embedding matrix decompo-
sition, unstructured movement pruning, adaptive
floating-point quantization, adaptive attention
span, dynamic inference speed with early exit
ramps, and other hardware accelerations to suit
their needs. However, as we noticed in this section,
these particular methods can reduce the model size
significantly, but they cannot drastically speed up
the model execution on standard devices. While
the model size is reduced to only 1.3% of its orig-
inal size, the speedup obtained on a standard GPU
is only 1.83x, with an average drop of 1.53% in
terms of accuracy. With specialized accelerators,
the authors eventually pushed the speedup to 2.1x.

4.3 Practical Advice

Based on the experimental results we have dis-
cussed in this section, below we attempt to give
some practical advice to the reader on what to use
for specific applications:

• Quantization and unstructured pruning can
help reduce the model size, but they do noth-
ing to improve the runtime inference speed
or the memory consumption, unless executed
on specialized hardware or with specialized
processing libraries. On the other hand, if
executed on proper hardware, these meth-
ods can provide tremendous boost in terms
of speed with negligible loss in performance
(Zadeh et al., 2020; Tambe et al., 2020; Guo
et al., 2019). Thus, it is important to recognize
the target hardware device before deciding to
use such compression methods in practical
applications.

• Knowledge distillation has shown great af-
finity to a variety of student models and its or-
thogonal nature of implementation compared
to other methods (Mao et al., 2020; Hou et al.,
2020) means that it is an important addition
to any form of compression. More specif-
ically, distillation from self-attention layers
(if possible) is an integral part of Transformer
compression (Wang et al., 2020c).

• Alternatives such as BiLSTMs and CNNs
have an additional advantage in terms of
execution speed when compared to Trans-
formers. Thus, for applications with strict
latency constraints, replacing Transformers
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with alternative units is a better choice. Model
execution can also be sped up using dynamic
inference methods, as they can be incorpo-
rated into any student model with a skeleton
that is similar to that of Transformers.

• A major takeaway of our discussion above is
the importance of compounding various com-
pression methods together to achieve truly
practical models for edge environments. The
work of Tambe et al. (2020) is a good exam-
ple of this, as it attempts to compress BERT,
while simultaneously performing hardware
optimizations in accordance with their cho-
sen compression methods. Thus, combining
compression methods that complement each
other is generally a better idea than com-
pressing a single aspect of the model to its
extreme.

5 Open Issues and Research Directions

From our analysis and comparison, we con-
clude that traditional model compression methods
such as quantization and pruning are beneficial
for BERT. Techniques specific to BERT also
yield competitive results, for example, variants of
knowledge distillation and methods that reduce the
number of architectural hyper-parameters. Such
methods also offer insights into BERT’s work-
ings and the importance of various layers in its
architecture. We see multiple avenues for future
research:

1. A very prominent feature of most BERT
compression methods is their coupled na-
ture across various encoder units, as well as
the inner architecture. However, some layers
might be able to handle more compression.
Methods compressing each layer indepen-
dently (Khetan and Karnin, 2020; Tsai et al.,
2020) have shown promising results, but
remain under-explored.

2. The Transformer backbone that forces the
model to be parameter-heavy makes com-
pression challenging. Existing work in re-
placing the Transformer by Bi-LSTMs and
CNNs has yielded extraordinary compression
ratios, but with a sizable drop in accuracy.
This suggests further exploration of more
complex variations and hybrid Bi-LSTM/
CNN/Transformer models (Tian et al., 2019).

3. Many methods for BERT compression only
work on specific parts of the model. How-
ever, we can combine such methods to
achieve better results. We have seen in
Section 4 that compound compression meth-
ods perform better than their individual coun-
terparts (Tambe et al., 2020; Hou et al., 2020),
and thus more exploration in combining var-
ious existing methods is needed.
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