
Compressing Relations and Indexes

Jonathan Goldstein Raghu Ramakrishnan Uri Shaft
Computer Sciences Department

University of Wisconsin�Madison

Abstract

We propose a new compression algorithm that is
tailored to database applications� It can be applied to
a collection of records� and is especially e�ective for
records with many low to medium cardinality �elds and
numeric �elds� In addition� this new technique sup�
ports very fast decompression�

Promising application domains include decision sup�
port systems �DSS�� since �fact tables�� which are by
far the largest tables in these applications� contain many
low and medium cardinality �elds and typically no text
�elds� Further� our decompression rates are faster than
typical disk throughputs for sequential scans	 in con�
trast� gzip is slower� This is important in DSS appli�
cations� which often scan large ranges of records�

An important distinguishing characteristic of our
algorithm� in contrast to compression algorithms pro�
posed earlier� is that we can decompress individual tu�
ples �even individual �elds�� rather than a full page
�or an entire relation� at a time� Also� all the infor�
mation needed for tuple decompression resides on the
same page with the tuple� This means that a page can
be stored in the bu�er pool and used in compressed
form� simplifying the job of the bu�er manager and
improving memory utilization�

Our compression algorithm also improves index
structures such as B�trees and R�trees signi�cantly by
reducing the number of leaf pages and compressing in�
dex entries� which greatly increases the fan�out� We
can also use lossy compression on the internal nodes
of an index�

� Introduction

Traditional compression algorithms such as Lempel�
Ziv ���� �the basis of the standard gzip compression
package�� require uncompressing a large portion of the

�le even if only a small part of that �le is required	 For
example� if a relation containing employee records is
compressed page�at�a�time� as in some current DBMS
products� a page
s worth of data must be uncompressed
to retrieve a single tuple	 Page�at�a�time compression
also leads to compressed �pages� of varying length that
must be somehow packed onto physical pages� and the
mapping between the original pagesrecords and the
physical pages containing compressed versions must be
maintained	 In addition� compression techniques that
cannot decompress individual tuples on a page store
the page decompressed in memory� leading to poorer
utilization of the bu�er pool �in comparison to storing
compressed pages�	
We present a compression algorithm that over�

comes these problems	 The algorithm is simple� and
can be easily added to the �le management layer of a
DBMS since it supports the usual technique of identi�
fying a record by a �pageid� slotid� pair� and requires
only localized changes to existing DBMS code	 Higher
layers of the DBMS code are insulated from the de�
tails of the compression technique �obviously� query
optimization needs to take into consideration the in�
creased performance due to compression�	 In addition�
this new technique supports very fast decompression
of a page� and even faster decompression of individual
tuples on a page	 Our contributions are�

Page level Compression� We describe a compres�
sion algorithm for collections of records �and index
entries� that can essentially be viewed as a new page�
level layout for collections of records �Section ��	 It al�
lows decompression at the level of a speci�ed �eld of a
particular tuple� all other proposed compression tech�
niques that we are aware of require decompressing an
entire page	 Scenarios that illustrate the importance
of tuple�level decompression are presented in Section
�	



Performance Study� We implemented all the algo�
rithms presented in the paper� and applied them to
various real and synthetic data sets	 We measured
both compression ratios and processing speed for de�
compression	 Section � contains a summary of the re�
sults	 �A very detailed presentation of the results can
be found in ���	�
The performance analysis underscores the impor�

tance of compression in the database context	 Current
systems� in particular Sybase IQ� use a proprietary
variant of gzip� applied page�at�a�time	 �We thank
Clark French at Sybase IQ for giving us information
about the use of compression in Sybase IQ	� We com�
pare our results to a compression technique similar to
the Sybase IQ compression	 �We used gzip on ��KB
blocks�	 We typically get better compression ratios �as
high as �� to ��	 Our compression and decompression
techniques are much faster than gzip� and are even
fast enough for maintaining sequential IO	

Application to B�trees and R�trees� We study
the application of our technique to index structures
�e	g	� B�trees and R�trees� in Section �	 We com�
press keys on both the internal �where keys are hyper�
rectangles� and leaf pages �where keys are either points
or hyper�rectangles�	 Further� for R�trees we can choose
between lossy and lossless compression in a way that
exploits the semantics of an R�tree entry� a capabil�
ity that is not possible with other compression algo�
rithms	 The key represents a hyper�rectangle� and in
lossy compression we can use a larger hyper�rectangle
and represent it in a smaller space	

Multidimensional bulk loading algorithm� We
can exploit a sort order over the data to gain better
compression	 B�tree sort orders can be utilized well
for that purpose	 We present a bulk loading algorithm
that essentially creates a sort order for R�trees	 The
bulk loading algorithm creates the levels of an indexing
structure in bottom up order	 If we only create the
leaf level� we get a compressed relation	 Creating the
next levels has little additional cost �typically� no more
than ��� the space cost of the leaf level�	 Thus� the
total size of the compressed clustered index is much
less than the size of the original relation	

� Compressing a relation

Our relation compression algorithm has two main
components	 The �rst component is called page level
compression	 It takes advantage of common informa�
tion amongst tuples on a page	 This common infor�

mation is called the frame of reference for the page	
Using this frame of reference� each �eld of each tuple
can be compressed� sometimes quite signi�cantly� thus
many more tuples can be stored on a page using this
technique than would be possible otherwise	 The com�
pression is done incrementally while tuples are being
stored� either at bulk�loading time or during run�time
inserts of individual tuples	 This ensures that addi�
tional tuples can �t onto a page� taking advantage of
the space freed by compression	 Section �	� describes
page level compression in detail	
The second component of the relation compression

algorithm is called �le level compression	 This compo�
nent takes a list of tuples �e	g	� an entire relation� and
divides the list into groups s	t	 each group can �t on
a disk page using page level compression	 Section �	�
describes �le level compression in detail	
The most important aspects of our compression

technique are�
� Each compressed data page is independent of the
other pages	 Each tuple in each page can be decom�
pressed based only on information found on the spe�
ci�c page	 Tuples� and even single �elds� can be de�
compressed without decompressing the entire page�
�let alone the entire relation�	

� A compressed tuple can be identi�ed by a page�id
and a slot�id in the same way that uncompressed
tuples are identi�ed in conventional DBMSs	

� Since tuples can be decompressed independently�
we can store compressed pages in the bu�er pool�
without decompressing them	 The way tuple�id
s
are used does not change with our compression tech�
nique	 Thus� incorporating our compression tech�
nique in an existing DBMS involves changes only to
the page level code and to the query optimizer	

� A compressed page can be updated dynamically
without looking at any other page	 This means that
a compressed relation can be updated without us�
ing �le level compression	 However� using �le level
compression will result in better compression	

��� Page level compression� frames of

reference

Our basic observation is as follows� if we consider
the actual range of values that appear in a given col�
umn on a given page� this is much smaller than the
range of values in the underlying domain	 For exam�
ple� if the �rst column contains integers and the small�
est value on the page in this column is �� and the
largest is ��� the range ���� ��� is much smaller than



the range of integers that can be represented �without
over�ow�	 If we know the range of potential values� we
can represent any value in this range by storing just
enough bits to distinguish between the values in this
range	 In our example� if we remember that only val�
ues in the range ���� ��� can appear in the �rst column
on our example page� we can specify a given value in
this range by using only � bits� ��� represents ��� ���
represents ��� ��� represents ��� and ��� represents ��
and ��� represents ��	
Consider a set S of points and collect� from S�

the minima and maxima for all dimensions in S	 The
minima and maxima provide a frame of reference
F � in which all the points lie	 For instance� if
S � f����� ������ ����� ������ ����� �����g then
F � ����� ������ ����� �����	
The frame of reference tells us the range of possible

values in each dimension for the records in the set S	
For instance� the points along the X�axis only vary
between � values ���� to ��� inclusive�� and the points
along the Y �axis vary between �� values	 Only � bits
are actually needed to distinguish between all the X
values that actually occur inside our frame of reference�
and only � bits are needed to distinguish between Y
values	 The set of points S would be represented using
the following bit strings�
S � f����� ������� ����� ������� ����� ������g
Since the number of records stored on a page is

typically in the hundreds� the overhead of remember�
ing the frame of reference is well worth it� in our exam�
ple� if values were originally stored as �� bit integers�
we can compress these points with no loss of informa�
tion by �on average� a factor of � �without taking into
account the overhead of storing the frame of reference��

dY

dY

dY

dX dX dX

2 bits per dimension = 4 equally spaced values

00 01 10 11
00

01

10

11

Figure �� Frame of reference for lossy compression�

Sometimes� it is su�cient to represent a point or
rectangle by a bounding rectangle� e	g	� in the index
levels of an R�tree	 In this case� we can reduce the

dX dX dX

dY

dY

dY

00 01 10 11
00

01

10

11

actual point

actual point

actual point

estimated point

estimating rectangle

Figure �� Point approximation in lossy compression�

number of bits required as much as we want by trad�
ing o� precision	 The idea is that we can use bits to
represent equally spaced numbers within the frame of
reference �see Figure ��� thereby creating a uniform
�grid
 whose coarseness depends on the number of bits
used to represent �cuts
 along each dimension	 Each
original point or rectangle is represented by the small�
est rectangle in the �grid
 that contains it	 If the orig�
inal data consists of points� these new rectangles are
always of width � along any dimension� and we can
represent such a rectangle by simply using its �min

value along every dimension� e	g	� the lower left corner
in two dimensions �see Figure ��	 For instance� if �
bits per dimension were used for both the X and Y
axes on S� then S � f���� ���� ���� ���� ���� ���g	

��� Non�numeric attributes

The page level compression technique� as described
in Section �	�� applies only to numeric attributes	 How�
ever� in some situations we can compress non�numeric
attributes	 It is common practice in decision support
systems �DSS� to identify attributes that have low car�
dinality for special treatment �see ����	 Low cardinality
attributes are attributes that have a very limited range
of valid values	 For example� gender� marital�status�
and state
country have very limited ranges although
valid values to these attributes are not numeric	
In such systems� it is common practice to map the

values to a set of consecutive integers� and use those
integers as id
s for the actual values	 The table con�
taining the mapping of values to integers is a dimen�
sion table	 The fact table� which is the largest table
in the system� contains the integers	 We recommend
building such dimension tables for attributes with low
and medium cardinality �i	e	� up to a few thousands
valid values�	 We get good compression on the fact
table� and the dimension tables are small enough to �t



in memory or in very few disk pages	

��� File level compression

The degree of compression obtained by our page�
level compression technique depends greatly on the
range of values in each �eld for the set of tuples stored
on a page	 Thus� the e�ectiveness of the compression
can be increased� often dramatically� by partitioning
the tuples in a �le across pages in an intelligent way	
For instance� if a database contains ������� tuples�
there are many ways to group these tuples� and dif�
ferent groupings may yield drastically di�erent com�
pression ratios	 ���� demonstrates the e�ectiveness of
using a B�tree sort order to assign tuples to pages	 In
Section � we further develop the connection between
index sort orders� including multidimensional indexes
like R�trees� and improved compression	
In this section we present an algorithm for group�

ing tuples into compressed pages	 We assume that the
tuples are already sorted	 The grouping of the tuples
maintains the given sort order	 The algorithm works
as follows�
Input� An ordered list of tuples t�� t�� � � � � tn	

Output� An ordered list of pages containing the com�
pressed tuple	 The order of the tuples is maintained
�i	e	� the tuples in the �rst page are ft�� t�� � � � � tig
for some i� The tuples in the second page are
fti��� ti��� � � � � tjg for some j � i� etc		�	

Method� This is a greedy algorithm	 We �nd maxi�
mal i s	t	 the set ft�� t�� � � � � tig �ts �in compressed
form� on a page	 We put this set in the �rst page	
Next� we �nd maximal j s	t	 the set fti��� ti��� � � � � tjg
�ts on a page	 We put this set in the second page	
We continue in this way until all tuples are stored in
pages	
Note that given the restriction of using our page level
compression and the order of tuples� this greedy algo�
rithm achieves optimal compression	

� Compressing an indexing struc�

ture

Many indexing structures� including R�tree vari�
ants �e	g	� ��� ���� B�trees ��� � grid �les ����� buddy
trees ���� TV�trees ���� �using L� metric�� and X�
trees ���� all consist of collections of �rectangle�pointer�
pairs �for the internal nodes� and �point�data� pairs�for
the leaf nodes�	 Our main observation is� All these
indexing structures try to group similar objects �n�
dimensional points� on the same page	 This means

that within a group� the range of values in each di�
mension should be much smaller than the range of
values for the entire data set �or even the range of
values in a random group that �ts on a page�	 Hence�
our compression technique can be used very e�ectively
on these indexing structures� and is especially useful
when the search key contains many dimensions	
While the behavior of our compression technique

when used in index structures is similar in some ways
to B�tree pre�x compression� our compression scheme
is di�erent in that�
� We translate the minimum value of our frame of
reference to � before compressing	

� Lossy compression makes better use of bits for in�
ternal nodes than pre�x compression since all bit
combinations fall inside our frame of reference	

� We also compress leaf level entries� unlike pre�x
compression� which is applied only at non�leaf nodes	
Compressing an indexing structure can yield ma�

jor bene�ts in space utilization and in query perfor�
mance	 In some cases� indexing structures take more
disk space than any other part of the system	 �Some
commercial systems store data only in B�trees	� In
those cases� the space utilization of indexing struc�
tures is important	 The performance of IO bound
queries can increase dramatically with compression	
If the height of a B�tree is lower� than exact match
queries have better performance	 In all cases� each
page IO retrieves more data� thus reducing the cost
of the query	
Another reason for compression is the quality of

the indexing structure	 Our work in R�trees yields
the following result� As dimensionality �number of at�
tributes� increases� we need to increase the fan�out of
the internal nodes to achieve reasonable performance	
Compressing index nodes increases the utility of R�
trees �and similar structures� by increasing the fan�
out	
In Section �	� we describe our B�tree compres�

sion technique	 In Section �	� we discuss dynamic and
bulk loaded multidimensional indexing structures	 Of
particular interest is our bulk loading algorithm for
compressed rectangle based indexing structures �called
GBPack�	

��� Compressing a B�tree

The objects stored in the B�tree can be either �key�
pointer� pairs� or entire tuples �i	e	� �key� data� pairs�	
The internal nodes of the B�tree contain �key� pointer�
pairs and one extra pointer	 In both cases� we can
compress groups of these objects using our page level



compression	 �The extra pointer in internal nodes can
be put in the page header	 It can also be paired with a
�dummy� key that lies inside the frame of reference	�

����� Dynamic compressed B�trees� Note that
compressed pages can be updated without considering
other pages	 However� updates to entries in a com�
pressed page may change the frame of reference	 When
implementing a dynamic compressed B�tree� we need
to observe the following�
� When trying to insert an object into a compressed
page� we may need to split the page	 In the worst
case� the page may split into three pages	 �Details on
our algorithm for dynamic changes in the frame of
reference are in ���	� This may happen when the new
object is between the objects on the page �in terms
of B�tree order�� and the frame of reference changes
dramatically because of the new object	 �Note that
this can happen only if the key has multiple at�
tributes	� The B�tree insertion algorithm should be
modi�ed to take care of this case	

� We may not be able to merge two neighboring pages
even if the space utilized in these pages amounts to
less than one page	

� When deleting entries we can choose to change the
frame of reference	 However� it is not necessary to
do so	

����� Bulk loading� We sort the items in B�tree
sort order� after concatenating the key of each item
with the corresponding pointer or data	 We use the
�le level compression algorithm on these sorted items
�see Section �	��	 The resulting sorted list of pages is
the leaf level of the B�tree	
We create the upper levels of the B�tree� in a bot�

tom up order	 For each level� we create a list of �key�
pointer� pairs that corresponds to the boundaries of
the pages in the level below it	 We compress this list
using the same �le level compression algorithm	 The
resulting sorted list of pages is another level of the
B�tree	

��� Compressing a rectangle based in�

dexing structure

Most multidimensional indexing structures are rect�
angle based �e	g	� R�trees ���� X�trees ���� TV�tree ����
etc	�	 They all share these qualities�
� These are height�balanced hierarchical structures	
� The objects stored in the indexing structure are ei�
ther points or hyper�rectangles in some n�dimensional

space	

� The internal nodes consist of �rectangle� pointer�
pairs	 The pointer points to a node one level below
in the tree	 The rectangle is a minimum bounding
rectangles �MBR� of all the objects in the subtree
pointed to by the pointer	

� All the MBR
s are oriented orthogonally with re�
spect to the ��xed� axes	
In this section we describe our R�tree compression
technique	 The discussion is valid for the other rect�
angle based indexing structures as well	

����� Compression of R�tree nodes� Our page
level compression technique can be modi�ed for groups
of �rectangle� pointer� pairs	 Note that an n�dimensional
rectangle can be viewed as a �n�dimensional point �i	e	�
it is represented by minimum and maximum values for
each dimension�	 We can use page level compression
on �n�dimensional points	 We can also save some space
by using an n�dimensional frame of reference and treat�
ing each rectangle as two n�dimensional points	 Note
that the pointer part of the pair can be treated as
another dimension and be compressed as well	
We make the observation that an R�tree can be

used even if the bounding rectangles in the internal
nodes are not minimal	 In this case� the performance of
the indexing structure degrades� but the correctness of
search and update algorithms remains intact	 In some
cases� the leaf level of the tree may contain �rectan�
gle� pointer� pairs where the rectangle is a bounding
rectangle of some complex object	 Again� we may use
larger bounding rectangles �i	e	� not minimal�	 In this
case� queries may return a superset of the required
answers� resulting in some postprocessing	 When the
minimality of bounding rectangles is not a necessity�
we can use lossy compression	 There is a tradeo� be�
tween degradation of performance due to larger bound�
ing rectangles� and the gain in performance due to bet�
ter compression	

����� Dynamic maintenance of the tree� Since
our compression of pages is independent of other pages�
we can update the indexing structure dynamically	 Sim�
ilar to compressed B�trees� we need to consider changes
in frames of reference due to updates �see ����	 In the
R�tree case� splitting a node can result in at most two
pages �with B�trees it can result in three�	 The di�er�
ence is that the order of objects is not important in
an R�tree� so the worst case is realized when the new
entry is put in a new page by itself	



����� GBPack� compression oriented bulk load�
ing for R�trees� All bulk loading algorithms in this
paper partition a set of points or rectangles into pages	
The partitioning problem can be described as follows�

Input� A set �or multiset� of points �or rectangles�
in some n�dimensional space	 We assume that each
dimension �axis� of that space has a linear ordering
of values	

Output� A partition of the input into subsets	 The
subsets are usually identi�ed with index nodes or
disk pages	

Requirements� The partition should group points �or
rectangles� that are close to each other in the same
group as much as possible	 The partition should also
be as unbiased as possible with respect to �a set of
speci�ed� dimensions	
We bulk�load the R�tree by applying the above prob�
lem to each level of the R�tree	 We do the bulk loading
in a bottom up order	 First� the data items �points or
rectangles� are partitioned and compressed into pages	
Second� we create a set of �rectangle� pointer� pairs�
each composed of a bounding rectangle of a leaf page
and a pointer to that page	 We apply the above prob�
lem to compress this set	 We continue this process
until a level �ts on a compressed page that becomes
the root of the R�tree	
We solve the partition problem by ordering the set

of points	 Then we apply the packing algorithm �de�
scribed in Section �	��	 If we have a set of rectangles�
we use the ordering of the center points of the rect�
angles� and then apply the packing algorithm to the
rectangles	 The most important part is �nding a good
ordering of the points	
First� we
ll give an example of the sorting algo�

rithm	 Then� we
ll describe it in detail	

Partition 1 Partition 2 Partition 3 Partition 4

Pages

Figure �� Example for the bulk loading sort operator
�Using GBPack��

The following example in two dimensions demon�
strates the GBPack algorithm	 Consider the set of ��
points shown as small circles in Figure �	 Suppose we

Partition 1 Partition 2 Partition 3 Partition 4

Pages

Figure �� Example for the bulk loading sort operator
�Using STR�� Bold points belong to partitions to the
right of the point�

determine that the total number of pages needed is
��	 We sort the set on the X dimension in ascend�
ing order	 Then we de�ne p �� dp��e � � as the
number of partitions along the X dimension� taking
the square root re�ects our assumption that the num�
ber of partitions along each of the two dimensions is
equal �i	e	� we expect each of the X�partitions to be
cut into � partitions along the Y dimension�	 We sort
the �rst partition on the Y dimension in ascending
order	 Then the second partition is sorted in descend�
ing order� the third in ascending order and the fourth
in descending order	 Figure � shows the partitions	
The arrow in the �gure shows the general ordering of
points for that dataset	 Note that the linearization
generated by the alternation of sort order guarantees
that all but the last page are fully packed at the ex�
pense of a little spatial overlap amongst the leaf pages	
In the above description� we assumed that the number
of pages needed was known to be ��	 This number was
then used to determine the number of partitions along
each axis	 In actuality� we don
t know the �nal number
of pages needed since it depends on the compression
obtained� which depends on the data	 Therefore� we
use an estimate of the number of pages� obtained by
assuming that we have the bounding box of all the data
and values in tuples are uniformly distributed over this
range	
Finally� in the case of low cardinality data� we

want to guarantee that the partition divisions hap�
pen along changes in value of the dimension being cut	
This results in a much better division of the partitions
into small ranges when one considers the degenerate
case of low cardinality data	 This is a result of nar�
rowing the ranges over all the pages in the dataset�
since the same value isn
t in more than one partition
�since the partitions don
t overlap�	 For instance� in
Figure �� note that one of the natural partition divi�
sions occurred between two points that had the same
X value	 Nonetheless� we did not make the partition



there since it would have reduced compression of our
dataset	 See ��� for more details	
Our partitioning technique is similar to STR in

that� starting with the �rst dimension� we divide the
data in the leaf pages into �strips
	 For instance� Fig�
ure � shows how STR decomposes the data space into
pages	 Since� in STR� we are sorting uncompressed
data� we can calculate exactly the number of pages P
produced by the bulk loading algorithm	 P � in this
case ��� is used to calculate the number of pages in
each strip �except the last�	 In this case� we deter�
mine that the �rst three strips have four pages� while
the last has three	 Thus� since the �rst three strips
contain four pages each� each strip contains ������
points each	 The last strip contains whatever points
are left �� in this case�	 Each of the strips are then
grouped into partitions with � entries each� except the
very last page� which contains � point	 Note that all
pages are fully packed except the last	
The important di�erences between our algorithm

and STR arise from three considerations�
� We are using our bulk loading algorithm to pack
data onto compressed pages� and are willing to trade
o� some tree quality for increased compression	

� The degree of compression is based on the data on
a given page� and this makes the number of entries
per page data�dependent	

� In the case of low cardinality data� it is very impor�
tant that when we cut a dimension� it is done on a
value boundary in the data	
The �rst item listed above simply means that we

pack pages more aggressively at the expense of in�
creased spatial overlap among the partitions	 We do
this by creating a linearization of the data that allows
us to �steal
 data from a neighboring partition to �ll
a partially empty partition	 In particular� if one con�
siders the above example� there is a partially empty
page at the top of each strip	 These pages can be
�lled when one considers the e�ect of reversing the
sort order of each strip	 The results are illustrated by
Figure �	 Once this linear ordering is achieved� the
data may be packed onto pages from the beginning of
the linearization to the end	 The second point means
that we have to estimate the required number of pages	
The third point constrains how we determine partition
boundaries	
We now present the GBPack algorithm in more de�

tail	 The ordering of points is determined by a sorting
function sort�A� k�D�	 The arguments are�
A� An array of items to be ordered	 This is a �
dimensional array of integers where the �rst array
index is the tuple number and the second identi�es

a particular dimension �i	e	 A�i� is tuple i� A�i��j� is
the value of the jth dimension for the ith tuple�	 We
use the notation jAj to refer to the number of tuples
in A	

k� The number of elements in A	

D� An integer identifying the dimension we want to
sort on	
In addition� there exists the following global vari�

able�
S� An array of d booleans where d is the dimension�
ality of the data	
If S�d� is true� the current sort order for dimension d is
ascending� otherwise it is descending	 The initial value
of S does not matter	
The function sort�A� k�D� has the following steps�

�� S�D� � not S�D�	 Reverse the sort order for every
dimension	 This step ensures the linearization of the
space illustrated in the example later in this section	

�� Sort the array A on dimension D according to the
sorting order S�D�	

�� If D �� � do
�a� Estimate P as the number of pages needed for
storing the items in the array	 This estimate is
more di�cult since the frame of reference for an
individual page is needed to determine the com�
pression ratio	 Currently we estimate this number
by retrieving all tuples to partition and using their
frame of reference and the number of tuples to get
a very accurate estimate of the number of pages	

�b� Set p �� bP ��Dc	 This is the number of parti�
tions on dimension D for the array	

�c� De�ne a list L s	t	 for � � j � d Lj �
j�k
p 	 L

is the list of partition start locations	

�d� Lower all values in L s	t	 a particular Lj is the
�rst occurrence of A�Lj ��D� in A	

�e� Remove any duplicates from the L array	 This
and the previous step guarantee that dimensions
aren
t overcut� an important guarantee for low car�
dinality �elds	

�f� For � � j � jLj � � do the following�
sort�array starting at A�Lj �� Lj�� � Lj � D � ��	

�g� sort�array starting at A�L�jLj��� k�L�j�� D���	
To perform bulk�loading of an entire tree to maxi�

mize compression� we use the function sort�A� jAj� D�	
Since the resulting array A is now sorted� we simply
pack the pages of the leaf level maximally by introduc�
ing entries sequentially from the array until all entries
are packed	 This process is repeated for higher levels
in the tree by using the center points of the resulting



pages in the leaf level as input to the next level	 Ob�
serve that both leaf and internal nodes are compressed
in the resulting R�tree index	

� Performance evaluation

This section is a summary of an extensive perfor�
mance evaluation of our techniques	 The full details of
the experiments and results are in ���	 These experi�
ments include the compression of many widely varying
data sets	 When we say that we achieved ���� com�
pression� we mean that the compressed data set is
��� the size of the uncompressed data set	 Therefore�
lower numbers are better	

Relational compression experiments� We stud�
ied both synthetic and real data sets	 One real data
set �the companies relation�� consisted of ten attributes
taken from a the CompuStat stock market data set�
which described companies on the stock exchange	 We
achieved between ��� compression �for two attributes�
to ��� compression �for ten attributes�	 Another real
data set �the sales relation� consisted of eleven at�
tributes taken from a catalog sales company	 Each
tuple described a transaction with one customer	 We
applied low cardinality mapping �see Section �	�� and
achieved between ��� and ��� compression	 A third
real data set was the Tiger GIS data set for Orange
county� California	 We achieved ��� compression with
no sorting and ��� with the GBPack algorithm	 In all
cases� our compression ratios were similar to gzip	
When performing experiments on synthetic data

sets we observed the following trends�
� The range of values for attributes had a major in�u�
ence on compression	 When the range was small� we
needed few bits for representing a value	 Therefore�
we got better compression	

� Page size had little e�ect on compression	
� The number of attributes had little e�ect on com�
pression	 We achieved slightly better compression
for a lower number of attributes	

� The number of tuples had a logarithmic e�ect on
compression	 In general� when the number of tuples
doubled� the number of bits needed for representing
a tuple decreased by one	

� The data distribution had a major e�ect on com�
pression	 The worst distribution was the uniform
distribution	 When the data distribution was highly
skewed �e	g	� exponential distribution� most of the
values on a page were in some small range and com�
pression for those values was very high	

� Sorting the tuples increased compression signi�cantly	
However� the type of sort order had little in�uence	
B�tree sort order seemed to achieve slightly better
compression than GBPack sorting	 Therefore� GB�
Pack should be used only when constructing a mul�
tidimensional indexing structure	

CPU versus I�O costs� We studied the CPU cost
associated with decompressing an entire compressed
page	 We compared our results to the CPU cost of
gunzip used in a manner consistent with Sybase IQ	
The data set used was the CompuStat relation	 Our
decompression technique was faster by a factor of be�
tween � and �� �depending on the amount of compres�
sion achieved�	 Of particular importance was that our
compression technique was fast enough to keep up with
sequential IO on fast disks �we typically achieved ��
Mbytes per second for decompressing all contents of a
page�	 gunzip could not keep up with sequential IO	

Comparison with techniques found in commer�
cial systems� We implemented a compression tech�
nique similar to Sybase IQ compression	 We used gzip
and gunzip on blocks of data	 Each block had size of
�� Kbytes	 Note that Sybase IQ uses a propriety com�
pression algorithm that is a variant of the Lempel�Ziv
algorithm �gzip is another variant of that algorithm�	
We expect the Sybase IQ algorithm to be more e��
cient	
On a low cardinality sales data set we achieved ��

compression� while Sybase achieved ���	 On medium
cardinality sales data set we achieved ��� compression
while Sybase achieved ���	 On the Compustat data
set �which was a mix of low� medium and high car�
dinality� we achieved ��� compression while Sybase
achieved ���	

Importance of tuple level decompression� Our
decompression algorithm can be used for decompress�
ing single tuples and even single �elds	 If we only
need a small amount of information from a compressed
page� the CPU throughput increases by orders of mag�
nitude	
For example� consider performing an index nested

loops join where the inner relation
s index can �t in
memory in compressed form	 For each tuple from the
outer relation we need to probe the index and decom�
press only the relevant tuples from the inner relation	
The cost of this join is dominated by the CPU cost
since all the index probes are done in memory	 Our
decompression can be two to three orders of magnitude
faster than gunzip in such cases	



Another possible scenario occurs in a multiuser
system� when a relation �ts in memory in compressed
form� but does not �t in memory in uncompressed
form	 In this case it is possible for many users to
access random tuples from the relation	

R�tree compression experiments� The space re�
quired by an R�tree or B�tree is slightly larger than the
space required for the leaf level of the tree	 Therefore�
the relational compression results hold for R�trees and
B�trees as well	 In this section we studied the impact
of compression on the performance of R�trees	
We created R�trees for the three real data sets de�

scribed earlier in this section	 We performed point
queries� partial match queries �the selection criterion
speci�es a range for a subset of the attributes� and
range queries �the selection criterion speci�es a range
for all attributes�	 We measured the amount of IO
needed for several queries on both compressed and un�
compressed R�trees	
For the sales data set� the average IO cost using

the compressed R�tree was between ��� and ��� the
average IO cost using the uncompressed R�tree	 For
the CompuStat data set it was between ��� and ���	
For the Tiger data set it was between ��� and ���	

� Related work

Ng and Ravishankar ���� discussed a compression
scheme that is similar in some respects to our work	
In particular� their paper did the following	

� Introduced a page level compressiondecompression
algorithm for relational data	

� Explored the use of a B�tree sort order over the
compressed data as well as using actual B�Trees over
the data	

Note� however� that the details of their compres�
sion scheme are quite di�erent	
� Our scheme decompresses on a per �eld� per tuple
basis� not a per page basis	

� Except for the actual information in the tuples� we
store extra information only on a per page basis	
Their compression technique uses run length encod�
ing which stores extra information on a per �eld per
tuple basis	

� Our compression scheme is easily adapted to be
lossy� which is important for compressing index pages
in R Trees	
Some scenarios that highlight the di�erences be�

tween our schemes are�

� Multiuser workloads that randomly access individ�
ual tuples on pages	 Clearly� our approach would be
superior in this case	

� Performing a range query using a linear scan over
the data	 Since the bounding box for the entire page
is stored on each data page� our scheme can check to
see if the entries on the page need to be examined	

� Performing small probes on a B�tree	 Using our
compression scheme� a binary search can be used
to search on a page� since each record is of �xed
length	 Note that this becomes a serious issue in a
compressed environment� where many more entries
can �t on a page	

Additionally� we demonstrated the application of
multidimensional bulk loading to compression� and pre�
sented a range of performance results that strongly ar�
gue for the use of compression in a database context	
��� ��� �� discuss several compression techniques

such as run length encoding� header compression� en�
coding category values� order preserving compression�
Hu�man encoding� Lempel�Ziv� di�erencing� pre�x and
post�x compression� none of which support random
access to tuples within a page	 The above techniques�
unlike ours� handle any kind of data� but introduce
bu�er and storage management problems	
���� discusses several query evaluation algorithms

based on the use of compression	 While this paper as�
sumes gzip compression is used� our techniques could
be used as well in most of the examples discussed there	

� Conclusions and future work

This paper presents a new compression algorithm
and demonstrates its e�ectiveness on relational database
pages	 Compression ratios of between � and � to �
seemed typical on real datasets	 Low cardinality datasets
in particular produced compression ratios as high as
�� to �	 Decompression costs are surprisingly low	 In
fact� the CPU cost of decompressing a relation was
approximately ���� the CPU cost of gunzip over the
same relation� while the achieved compression ratios
were comparable	 This di�erence in CPU costs means
that the CPU decompression cost becomes much less
than sequential IO cost� whereas it was earlier higher
than sequential IO cost	 Further� if only a single tu�
ple is required� just that tuple �or even �eld� can be
decompressed at orders of magnitude lower cost than
decompressing the entire page	 This makes it feasi�
ble to store pages in the bu�er pool in compressed
form� when a tuple on the page is required� it can
be extracted very fast	 To our knowledge no other



compression algorithm allows decompression on a per�
tuple basis	
The compression code is localized in the code that

manages tuples on individual pages� making it easy
to integrate it into an existing DBMS	 This� together
with the simpli�cations it o�ers in keeping compressed
pages in the bu�er pool �also leading to much better
utilization of the bu�er pool�� makes it attractive from
an implementation standpoint	 A related point is that
by applying it to index pages that contain hkey� ridi
pairs� we can obtain the bene�ts of techniques for stor�
ing hkey� rid� listi pairs with specialized rid represen�
tations that exploit �runs� of rids	
In comparison to techniques like gzip compres�

sion� our algorithm has the disadvantage that it com�
presses only numeric �elds �low cardinality �elds of
other types can be mapped into numeric �elds� and in
fact� this is often done anyway since it also improves
the compression attained by gzip�	 Note� however�
that it can be applied to �les containing a combination
of numeric and non�numeric �elds� it will then achieve
compression on just the numeric �elds	 Nonetheless�
the range of applicability is quite broad� as an exam�
ple� fact tables in data warehouses� which contain the
bulk of warehoused data� contain many numeric and
low�cardinality �elds� and no long text �elds	
We also explored the relationship between sort�

ing and compressibility in detail	 Among the sorts
explored were sorts suitable for bulk loading multidi�
mensional indexing structures and B�trees	 The im�
portant conclusion is that both sorts worked equally
well which implies that compression will work well
on both linear and multidimensional indexes and are
signi�cantly better than no sort	 The latter observa�
tion underscores the importance of sorting data prior
to compression� if it is not already at least approxi�
mately sorted	

� Acknowledgements

We would like to give a warm acknowledgement
to Kevin Beyer� for his time as a sounding board� and
asking such questions as �Can you support primary
indexes!� We would also like to thank Clark French
and Sybase for providing us with the details concerning
their compression techniques	 In addition� we would
like to thank Patrick O
Neil for valuable feedback� in
addressing his questions� we signi�cantly strengthened
this paper	

References

��� M� A� Bassiouni� �Data Compression in Scienti�c and
Statistical Databases�� in IEEE Transactions on Soft�
ware Engineering� Vol� SE���� No� �	� pp� �	
���	��
����

��� R� Bayer and E� McCreight� �Organization and main�
tenance of large ordered indexes�� in Acta Informat��
Vol� �� pp� ������� �����

��� N� Beckmann� H��P� Kriegel� R� Schneider and B�
Seeger� �The R��Tree� An E�cient and Robust Ac�
cess Method for Points and Rectangles�� in ACM SIG�
MOD ���� pp� ��������

�
� S� Berchtold� D� A� Keim and H��P� Kriegel� �The
X�Tree� An Index Structure for High Dimensional
Data�� in VLDB ����� pp� �����

��� S� J� Eggers� F� Olken and A� Shoshani� �A Com�
pression Technique for Large Statistical Databases��
in VLDB ����� pp� 
�
�
�
�

��� J� Goldstein� R� Ramakrishnan and U� Shaft� �Com�
pressing Relations and Indexes�� Technical report no�
����� CS Dept�� University of Wisconsin�Madison� De�
cember �����

��� Antonin Guttman� �R�Trees� A Dynamic Index Struc�
ture for Spatial Searching�� in ACM SIGMOD �����
pp� 
�����

�� R� Kimball� The Data Warehouse Toolkit� John Wiley
and Sons� �����

��� H��P� Kriegel et al� �The Buddy�Tree� An E�cient
and Robust Method for Spatial Data Base Systems��
in VLDB ����� pp� ��	��	��

��	� A� Lempel and J� Ziv� �A Universal Algorithm for
Sequential Data Compression�� in IEEE Transactions
on Information Theory� Vol� ��� No� �� pp� �����
��
�����

���� S� T� Leutenegger et al� �STR� A Simple and E�cient
Algorithm for R�Tree Packing�� Tech� Report� Math�
ematics and Computer Science Dept�� University of
Denver� No� ���	�� �����

���� K��I� Lin� H� V� Jagadish and C� Faloutsos� �The
TV�Tree� An Index Structure for High�Dimensional
Data�� in VLDB journal� Vol� �� No� 
� pp� �����
��
���
�

���� W� K� Ng� C� V� Ravishankar� �Relational Database
Compression Using Augmented Vector Quantization��
in IEEE ��	th International Conference on Data En�
gineering� pp� �
	��
�� �����

��
� J� Nievergelt� H� Hinterberger and S� C� Sevcik� �The
Grid File� An Adaptable� Symmetric Multikey File
Structure�� Readings in Database Systems� Morgan
Kaufmann� ���

���� P� O�Neil and D� Quass� �Improved Query Perfor�
mance with Variant Indexes�� inACM SIGMOD ���
�
pp� ��
��

���� M� A� Roth and S� J� Van Horn� �Database Compres�
sion�� in SIGMOD Record� Vol� ��� No� �� pp� ������
�����


