
Compressing the Graph Structure of the Web

Torsten Suel� Jun Yuan�
Abstract

A large amount of research has recently focused on the graph structure (or link structure)
of the World Wide Web. This structure has proven to be extremely useful for improving the
performance of search engines and other tools for navigating the web. However, since the
graphs in these scenarios involve hundreds of millions of nodes and even more edges, highly
space-efficient data structures are needed to fit the data in memory. A first step in this direction
was done by the DEC Connectivity Server, which stores the graph in compressed form.

In this paper, we describe techniques for compressing the graph structure of the web, and
give experimental results of a prototype implementation. We attempt to exploit a variety of
different sources of compressibility of these graphs and ofthe associated set of URLs in order
to obtain good compression performance on a large web graph.

1 Introduction
Over the last couple of year, a large number of academic and industrial researchers have studied the
problems of searching, exploring, and characterizing the World Wide Web. While many different
aspects of the web have been investigated, a significant fraction of recent work has focused on the
graph structure (or link structure) of the Web, i.e., the structure of the graph defined by havinga
node for each page and a directed edge for each hyperlink between pages.

A number of recent papers have studied this graph, and have looked for ways to exploit its
properties to improve the quality of search results. For example, thePagerank algorithm of Brin
and Page [4], used in theGoogle search engine, and the HITS algorithm of Kleinberg [16] both
rank pages according to the number and importance of other pages that link to them. Currently,
almost all1 of the major search engines use information about the link structure in their decision on
how to rank search results. Link structure has also been exploited for a variety of other tasks, e.g.,
finding related pages [3], classifying pages [7], crawling for pages on a particular subject [10, 9],
and many other examples. Recent large-scale studies of the web [6, 18, 17] have looked at basic
graph-theoretic properties, such as connectivity, diameter, or the existence of bipartite cliques, on
subsets of the web consisting of several hundred million nodes and over a billion hyperlinks.

This raises the problem of how to efficiently compute with graphs whose size is significantly
larger than the memory of most current workstations. One possibility is to employ I/O-efficient
techniques for computing with graphs (e.g., see [12, 19]), but even with these advanced techniques,
computation times on large graphs can be prohibitive. The alternative is to use machines with
massive amounts of main memory, but this is expensive and notfeasible for many smaller research
groups. Thus, it would be desirable to construct highly compressed representations of web graphs
that can be stored and analyzed in machines with moderate amounts of main memory.�CIS Department, Polytechnic University, Brooklyn, NY 11201. suel@poly.edu, jyuan@emu.poly.edu1Seehttp://www.searchenginewatch.com/webmasters/features.html.

1

A first step in this direction was done with theConnectivity Server [2] used by theAltaVista
search engine, which stores a large subgraph of the web and allows users to query this structure.
While the first implementation in [2] uses a fairly inefficient representation of the graph, a newer
version is reported in [6] to achieve significant compression compared to a standard adjacency-list
representation. No details of the construction were published, but even with these improvements,
the study in [6] required almost10 GB of of main memory. Our goal is to find and experiment with
techniques that result in improved compression, thus allowing efficient computations with large
graphs on more moderately endowed machines.

1.1 Problem Definition

We now define the web graph compression problem. We consider the web graph to consist of a
node for each page, and a directed edge for each hyperlink. Weassume that each node is labeled
with the URL2 of the corresponding page, and that the compressed data structure stores this URL
in addition to the link structure. We also assume that the outgoing links of a node are an unordered
set, and that they can be reordered for improved compression. We would like the compressed
structure to support the same operations as an adjacency list representation of a labeled graph, while
occupying significantly less space. In particular, we are interested in the following operations:

(1) getIndex(url): Given a URL, return the index of the corresponding node in thestructure.

(2) getUrl(index): Given the index of a node in the data structure, return its URL.

(3) getNeighbors(index): Given the index of a node in the data structure, return a list of the
indices of all its directed neighbors.

In some applications, it may not be necessary to store the text of the URL together with the graph
structure. For example, we could search for certain structures in the graph (e.g., bipartite cliques
[18]) using only operation (3) above, which does not requireaccess to the URLs. At the end of the
computation, we could then identify the URLs correspondingto the result nodes by using a lookup
table on another machine or on disk. In general, we expect (3)to be the most performance-critical
operation, while the other two will be used less frequently by most applications. We describe
techniques for compressing both link structure and URLs, although our implementation also has
the option of building a structure without URLs. The problems of compressing URLs and link
structure are largely independent, assuming that we numberpages in alphabetically sorted order of
the URLs. Such an ordering also tends to maximize compression for both URLs and link structure.

Our current implementation only stores a directed edge fromthe source to the destination of
a hyperlink. There are cases where one would like to also follow links in the reverse direction.
We can of course achieve this by adding edges in the reverse direction, using about twice as much
space, but we have not yet fully optimized this case. Our current implementation is static and does
not allow changes in the graph without rebuilding. We plan tosupport updates in the future, most
likely by periodically merging updates stored in a smaller buffer structure.

1.2 Graph and Machine Sizes

To give the reader a feel for the problem, we now present some numbers concerning the typical
data and memory sizes. The current size of the web is estimated at more than 1.2 billion pages
and 8 billion hyperlinks. Most major search engines are currently based on a collection of several
hundred million web pages3 This is also the size of the graphs used in [6, 18]. In our experiments,2Uniform Resource Locator, e.g.,http://cis.poly.edu/courses/fall99.htm.3The largest search engine, Google, currently (10/2000) contains over600 million pages, but claims a larger num-
ber that includes pages referenced by downloaded pages thathave not been downloaded themselves.

2

we use graph data from a 1998/99 crawl stored at the Internet Archive4. This data, which is
currently (Fall 2000) the largest collection that is easilyaccessible to academic researchers, has
about400 million pages and over2 billion links.

A fairly straightforward implementation of an adjacency list requires about4 bytes per link
(29 bits to address400 million items, plus overhead), resulting in about8 GB of link data. An
average URL consists of about 50 characters in uncompressedform, though this can be reduced
fairly easily to about13 bytes by exploiting common prefixes in the sorted list of URLs. Thus,
this “baseline” implementation would require at least13 GB for the above crawl represented with
edges in only one direction, and21 GB otherwise.

Our final goal is to be able to handle graphs of this size using machines with at most2-4 GB
of main memory. While this is larger than the main memory of the average workstation, most
departments or research groups are probably able to afford amachine in this category. The results
reported in this paper achieve about1:7 bytes per link and6:5 bytes per URL, for a total of 100 MB
on a subgraph with11 million nodes and15 million edges. Thus, we would not quite be able to
store the above graph in 4GB if we insist on storing the URLs. Future work will hopefully further
increase the graph sizes that can be stored.

1.3 Why are Web Graphs Compressible?

Having motivated the need for highly compressed representations of the web graph, we now have
to convince ourselves that there is significant potential for achieving compression. Following is
an informal description of some of the sources of compressibility in the web graph; a detailed
description of the techniques that we use in our implementation is given in Section 3.

As already noted, the size of a URL can be reduced by almost75% by identifying the length
of the common prefix with the previous URL in the sorted order.To compress the remaining text,
we can try to identify common substrings, such as/index, /people, or.html. One problem
here is how to identify boundaries for suitable substrings5. In addition, we could encode single
characters or pairs to compress non-frequent text strings.We have to make sure, however, that we
can access single nodes in the structure without decoding large chunks of the entire graph.

To compress the link structure, we need to exploit “typical”properties of the web graph. As
shown by several studies [17], the web is not just any arbitrary graph, but it has a fairly unique
structure. However, this structure does not seem to fit well into any of the families of graphs,
such as trees, planar graphs, or graphs of bounded genus or arboricity, that have been studied in
the graph compression literature [11, 13, 15]. We can identify a number of possible “sources of
compressibility” in the link structure. First, some very popular pages (e.g.,www.yahoo.com)
have much higher in-degree than others, which suggests using appropriate coding for these links.
Furthermore, the link structure shows a significant degree of locality: almost three quarters of the
links point to pages on the same host, and often to pages that are only a short distance from the
source in the sorted order of URLs. Some other sources of compressibility are discussed later.

Given these observations, most people experienced with compression techniques can probably
already think of some approaches that one could try. We note that this paper will not present any
revolutionary or surprising new compression technique forgraphs. Instead, our goal is to design
a compression scheme for the web graph based on the careful application and optimization of a
variety of known techniques. As we hope to show, the compression of such a graph provides a4http://www.archive.org5E.g., should we considerindex.html as one word or two, and do we include slashes and dots in the words?

3

number of research challenges, and we hope subsequent work will improve our results.

1.4 Content of this Paper

In this paper, we study the problem of compressing the structure of web graphs, i.e., graphs cor-
responding to the link structure of the World Wide Web or subsets of it. We assume that both
the link structure and the URL strings have to be stored, and that individual nodes and edges can
be efficiently accessed in the resulting structure. We describe the techniques that we used in our
implementation, and present experimental results on a subset of the web. Note that the results in
this version are still very preliminary, and that more final numbers will be available in a Technical
Report6 during the Spring of 2001.

Section 2 discusses some related work. Section 3 describes our compression scheme and its
implementation. Section 4 presents our experimental results. Section 5 describes extensions and
optimizations that we are currently working on, and Section6 offers some concluding remarks.

2 Related Work
We now discuss related work in the data compression and web search areas. For a recent overview
of compression techniques, we refer the reader to the textbook by Witten, Moffat, and Bell [20],
which contains excellent descriptions of most of the codingtechniques that we exploit, including
canonical Huffman coding, and techniques for encoding gap sizes. An idea that we apply repeat-
edly involves the use ofextra bits, as used, e.g., ingzip [14], to reduce the number of codewords
needed. As mentioned, there are a number of known techniquesfor compressing special families
of graphs [11, 13, 15]. However, these techniques do not seemto be applicable to web graphs, and
we thus rely on standard coding and text compression techniques in our construction.

For recent surveys of information retrieval on the Web with emphasis on link-based methods,
we refer to [5, 8]. Examples of ranking techniques based on link structure are thePagerank algo-
rithm of Brin and Page [4] and the HITS algorithm of Kleinberg[16]. Recent large-scale studies
of the graph structure of the web are reported in [6, 18, 17].

TheConnectivity Server of Bharat et al. [2], used in theAltaVista search engine, stores a large
subgraph of the web in a data structure and provides an interface for remotely querying this struc-
ture. The first version of the system, described in [2], required16 bytes for each URL and4 bytes
for each directed link. The space requirement for the URLs was achieved by stripping common
prefixes, as described earlier, and the links were stored as4-byte pointers. The newer version of the
server, as reported in [6], uses10 bytes for each URL and3:4 bytes for each bidirectional link, but
no implementation details are given. A direct comparison ofthese numbers with our own results
is a bit tricky, as discussed in Section 4, due to differencesin the data set. Our work is strongly in-
fluenced by the Connectivity Server; in fact, one of our main objectives is to build a similar system
that obtains better compression and that is fully accessible to the academic community.

Very recently and independent of our work, Adler and Mitzenmacher [1] have proposed a new
technique that exploits the special global structure of theweb for compression, and that is based
on recent attempts to model the web graph using a new type of random graph model [17]. The idea
is to code an adjacency list by referring to the already codedadjacency list of another node that
points to many of the same pages. Adler and Mitzenmacher showthat combining this with stan-
dard Huffman coding results in significant improvements fora graph with global links. The main
difference to our work is that [1] focuses on a novel technique that exploits one possible source of6Seehttp://cis.poly.edu/tr/.

4

compressibility in web graphs, and on the algorithmic problems associated with this techniques.
In contrast, our goal is to design and engineer a complete tool for web graph compression that
is based on a combination of several coding techniques, and that achieves compression due to a
variety of properties of the web graph. Integrating the ideain [1] into our system would result in
improved compression for global links, and we are currentlyconsidering this. One problem is the
efficiency of the reference selection of [1] in external memory, since the graphs that we use are
significantly larger.

3 Techniques and Implementation
We now describe in detail our compression techniques and their implementation. Throughout the
description, we assume that the URLs are indexed from0 to n � 1 in alphabetically sorted order.
A overview of our structure is shown in Figure 1(a). We have a Host table that contains the host
names in compressed form. The table itself actually consists of concatenated blocks of size4 MB
each. Most of the space in the structure is taken up by the Pagetable, which also consists of blocks
of size4 MB each. The Page table stores the URL strings, minus the hostname prefix, and the
adjacency list of each page, both in highly compressed form.The Index table provides pointers
into the other tables. More precisely, we have a pointer to the beginning of at least everyd-th entry
in the Page table, and to the corresponding host. This allowsus to search for a particular page, by
either index or URL, using a form of binary search.

URL links URL links linksURL URL links URL

Fig. 1(b): View of the page table storing each URL
followed by its link data

Page Table
Index Table

Host Table

Fig. 1(a): High−level view

structure
 of the graph data

Figure 1(b) shows a more detailed look of the Page table, now shown as a single long array.
Pages are stored in alphabetical order by URL, and for each page we store the URL, followed by
a list of outgoing links (plus incoming links if specified). Everykth entry has an incoming pointer
from the Index table; for these entries, we cannot use the technique of omitting the common prefix
with the previous URL, since we want to be able to uncompress these entries without looking at
the previous URL. Thus, by changingk we can trade off compression ratio vs. access speed.

3.1 Compressing the URLs and Hosts

As mentioned, we strip the host prefix from each URL, and storeit in the Host table. The com-
pression of the Host table is done in basically the same way asthe compression of the rest of the
URL, described in the following, although it is less critical due to the smaller number of hosts.

We now focus on the compression of the remaining parts of the URL strings, which we will
refer to simply as URLs. We assume that any alphabetical ordering is with respect to the original
URLs before stripping hosts or any other prefixes, and that each URL is terminated by a special

5

end symbol @. For each URLi, we now determine the length of the common prefix ofi with the
previous URLi� 1 in the sorted order, denoted bylp(i), and the change in length of the common
prefix, denoted bydp(i) = lp(i) � lp(i� 1). For each URLi, we storedp(i) as the first field
of the page data, using a canonical Huffman code. See the figure below for a typical sequence of
URLs before and after stripping common prefixes and replacing them by the valuesdp(i).

For the remaining strings we now try to identify frequent “words”, where each URL is split
into words delimited by slashes and dots7. We then determine thew most frequent such words,
and encode them with a canonical Huffman code on words. Finally, for any piece of text not yet
coded, we use another Huffman code on pairs of2 consecutive characters. Thus, in summary each
URL string is represented bydp(i) and a sequence of Huffman-encoded words and pairs.

3.2 Compressing the Links

We now describe our compression of the link structure, whichis slightly more complicated, and
which we focused most of our attention on. We distinguish between two basic kinds of links,
global links between pages on different hosts, andlocal links between pages on the same host. As
in a standard adjacency list, a link will be represented by the index of the link destination.

Global Links: For global links, we first identify thep pages with the highest in-degree,
and encode links to these pages using a canonical Huffman code. We call links to such pages
global frequent links. This results in short encodings for very popular linkdestinations (e.g.,
www.yahoo.com). For the remaining global links, calledglobal absolut links, we uselog2(n)
bits each, wheren is the number of pages in the graph. However, if the number of global absolut
links from a page is at least4, then we use an additional encoding based on a Golomb code (see,
e.g., [20]). More precisely, letl0; : : : ; lm�1 be the list ofm global absolut links from the current
page, in sorted order by destination. Then we represent eachlink li by the value ofdi = li � li�1.
We then computeb = dlog2(n=m)e, and encodedi by a series of

jdi=2bk “1” bits followed by a

“0” bit followed by a b-bit representation ofdi mod 2b.
Local Links: We again have two classes of links. First, for each hosthi with pi pages, we

determine thepi=100 most popular destinations for local links inside this host.Links to these
pages, calledlocal frequent links, are encoded using a Huffman code. (The number100 in the
denominator appears to be a good choice, as it balances compression with table space overhead.)

We then look at all the remaining links, calledlocal distance links, and collect statistics about
the typical distance between source and destination page inthe sorted order. As it turns out, a
significant number of links go only over a fairly small distance8. More precisely, we partition
the set of hosts into a number of different classes (about10 to 15), according to their size, and
collect the distance statistics separately for each host class. We then represent each local distance
link by coding the distance between source and destination.In a further optimization, not yet
reflected in the reported results, we used the gaps between the destinations instead of the distance.
In order to limit the number of codewords, and thus the size ofthe tables, we do not reserve7For example,faculty/index.html@ consists of the wordsfaculty, /index and.html@.8However, the distribution also has a very significant tail that limits compression.

6

a codeword for each distance, but instead group distances into intervals of increasing size, and
assign an appropriate number ofextra bits to each group.

Storing the links: We also need to store the number of links and the type of each link in
a node. After a few clumsy and inefficient attempts, where we used additional leading bits in
each link to describe its type, and an additional bitfield forthe total number of outgoing links, we
arrived at the following approach. All links in a node are reordered so that we first have all global
frequent links, followed by global absolut links, followedby local frequent links, followed by local
distance links. We then store the tuple(gf; ga; lf; ld), containing the number of global frequent,
global absolut, local frequent, and local distant links, respectively, after the URL and before the
links. The tuples(gf; ga; lf; ld) are encoded using a single Huffman code on the set of such tuples.
To limit the number of codewords, we again group classes of adjacent tuples into intervals, in this
case rectangles in4 dimensions, with the size of the intervals increasing with distance from the
origin. An appropriate number ofextra bits is used for intervals containing more than one tuple.

3.3 Implementation

Preprocessing:The data from the Internet Archive was initially stored in a meta data format used
by Alexa Inc. for its crawls. In this format, links are identified by destination URL, and nodes are
listed in arbitrary order. Using several I/O-efficient sorting and merging steps, we transformed this
data into a format where the URLs are stored in alphabetical order in one file, already compressed
by stripping common prefixes, and the links are stored sortedby source in another file, where every
link is represented as a (source,destination) pair of line numbers in the URL file. This is the format
that we assume for the input of our compression tool. The preprocessing takes significantly more
time than the actual compression phase, due to the large initial data size.

Gathering statistics: We first performed several scans over the URL and link data to gather
statistics for our coding. In a first pass over the URL file, word frequencies are counted and used
to construct the Huffman code for frequent words in the host and URL string. In a second pass, the
statistics for the pairwise encoding are collected on partsof the host and URL strings not covered
by the frequent words. In a first pass over the link file, we gather statistics for the most popular
hyperlink destinations, both global and inside each host. Using this data, we can decide after this
pass which of the four categories (global frequent, global absolute, local frequent, local distance)
each link belongs to. In the second pass, we collect the distance statistics for the local distance
links, and the statistics for the tuple frequencies for(gf; ga; lf; ld).

Building the compressed structure:We then build the structure in a single coordinated pass
over both URL and link data. The entire data structure in Figure 1 is built from top to bottom during
this pass; this allows us to build structures larger than main memory and write them out to disk.
As parameters, we chose100000 frequent words and100000 global frequent link destinations. For
the local distance links, we considered12 different host size classes, and used several hundred
codewords for each class. We used10000 codewords to model the tupel statistics (10 intervals in
each dimension). All components were implemented in C resulting in about5000 lines of code.

4 Experimental Results
We now provide an overview of our experimental results on compression ratio and access speed.
We used data from a 1998/99 crawl of about400 million pages stored at the Internet Archive.
However, for the experiments reported in this version, we did not run our code on the full set of
pages, but instead used a subset consisting of11 million pages and about15 million links. We
also prepared to perform runs on a larger set consisting of125 million pages and about190 million

7

links. Unfortunately, we were unable to access the InternetArchive for the last several weeks,
and thus only very preliminary results on the smaller set of11 million URLs are reported. As
mentioned before, more final numbers will be available in a Technical Report9 during the Spring
of 2001.

A few comments are in order about the scaling of such data sets, and the ratio of pages to links.
Our data sets contain nodes for actually crawled pages as well as pages pointed to by crawled
pages. This leads to a larger pages-to-links ratio, compared to the web as a whole where we have
about7 to 8 links for every page. The ratio also depends on the crawling strategy and the size of
the data set, since larger sets tend to have a smaller pages-to-links ratio. Most studies of the web
perform a preprocessing step that prunes some of the nodes; e.g., [6] keeps only pages that were
either crawled, or referenced at least5 times by other pages. We have not yet incorporated such a
cleaning phase, and thus it is difficult to compare our numbers directly to those reported in [6] for
the new version of theConnectivity Server.

4.1 Compression Ratio

We now present our results on the compression ratio, shown inFigure 3(a). As mentioned, the
results are very preliminary at the moment. The baseline implementation already saves space by
omitting common prefixes between subsequent URLs, and uses24 bits to address the11 million
nodes. (This is somewhat optimistic since we need extra bitsto mark the end of an adjacency
list.) Our method compresses each URL to about6:49 bytes and each edge to about1:74 bytes
on average. The compression ratio is not very impressive when compared, e.g., to results in text
or image compression, but this is not surprising given the data set. Figure 3(b) shows the number
of links in each of the4 classes, and the compression for each class. Each of our techniques
contributes to the compression, but no technique alone gives good compression on the entire graph.

Total SizeNodes Edges

Number

Baseline

Compressed

Ratio

11556269

13 bytes

6.49 bytes

14709649

3 bytes

1.74 bytes

194.4 MB

100.6 MB

Number Type of Link

Global Absolute

Global Frequent

Local Frequent

Local Distance

1636836

2308253

1015728

9748832

Size

2.64

1.97

1.06

1.30

Figure 3(a): Compression results on small graph Figure 3(b): Results for different types of links

49.9 % 58 % 51.7 %

Comparing these numbers to those claimed for the new versionof the Connectivity Server in [6]
is difficult, since no details were published, and since the graphs are quite different. The numbers
in [6] are 10 bytes per URL and3:4 bytes for a link in both directions. Without implementation
details, it is difficult to predict how the bidirectional links affect compression. The data sets in [6]
are larger, and thus more bits would be needed for global absolute links. On the other hand, the
data in [6] has significantly more links, which is likely to reduce the cost per link. For the URLs,
more pages would likely result in better compression. In summary, we feel that we cannot make a
valid comparison yet.

4.2 Access Speed

We now give performance numbers for the three data access operations defined in Subsection 1.1.
These numbers are also preliminary since we have not optimized for access times yet. We looked
at two values fork, the number of pages between two pointers from the Index table into the Page9Checkhttp://cis.poly.edu/tr/ or contact the authors.

8

table. The times forgetNeighbor are per link, but the time really consists of a fixed cost for finding
the node using binary search, plus a lower cost for decoding each link in the node. We plan to
measure this effect more precisely in the final version.

k = 40

k = 20 1.7 ms

1.7ms

getNeighbors

0.26 ms/link

0.57 ms/link

getIndex getUrl

0.26 ms

0.4 ms

Figure 4: Time for access to the data

5 Current and Future Extensions
We now list a few additional ideas that we are currently implementing or considering for imple-
mentation.

(1) Locality: we currently have only one level of locality, within a host, which probably captures
most of the potential benefits. However, one could consider additional levels, e.g., internet
domains or directories inside a host, to improve compression of links within these levels.

(2) Representation of Huffman tables:since we are using quite a number of Huffman codes,
it would make sense to better optimize the representation.

(3) Exploiting URL structure for link compression: one might try to use the structure of the
URLs to improve link compression; however, this requires that the URLs are stored as well.

(4) Integrating the idea of Adler and Mitzenmacher [1]: this would result in improved com-
pression for global links, but might significantly increasethe time for building the structure.

(5) Correlations among local links: We are currently using Huffman coding for frequent local
links. However, there are often strong correlations between these links, e.g., when many
pages of a site have the same menu of navigational links. One could apply the technique in
[1] here, but we believe that explicitly recognizing such sets might be better for local links.

(6) Bidirectional links: An improvement could be achieved here by only storing the forward-
going direction for very ”short” links that run between two pointers into the page table, since
the other direction can be found while traversing the structure.

(7) Updates: we plan to allow insertions and deletions of nodes and edges,most likely by stor-
ing updates in a smaller buffer structure that is periodically merged into the main structure.

6 Conclusions
In this paper, we have described techniques for compressingthe link structure of the web, and have
presented preliminary experimental results on compression ratio and access speed. Beyond the
extensions listed in the previous section, which we are currently working on, there are other more
fundamental open questions in the context of efficient computing with large web graphs.

An obvious question is whether there are other more novel techniques that offer substantial im-
provements in compression, beyond those achievable by optimizing the types of coding schemes
we use in our work. The work in [1] provides one such techniquefor global links. We are particu-
larly interested in a better coding of local links. Most of the recent studies of the web graph have
focused on the global link structure, often even removing local links in a preprocessing phase.

It would be interesting to study the representation of simplified versions of the web graph, e.g.,
graphs where certain clusters of nodes are collapsed into a single node. Such representations could

9

be significantly more concise, while still supporting many interesting applications. Investigating
persistent graph structures that retain a history of updates might also be of interest. Finally, our
main interest is in using our implementation to study the weband its evolution.

Acknowledgements:We acknowledge the Internet Archive (http://www.archive.org)
for providing access to the web graph data. We also thank Nasir Memon for helpful discussions.

References
[1] M. Adler and M. Mitzenmacher. Towards compressing web graphs. InProc. of the IEEE Data Com-

pression Conference (DCC), March 2001. To appear.
[2] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and S. Venkatasubramanian. The connectivity server:

Fast access to linkage information on the web. In7th Int. World Wide Web Conference, May 1998.
[3] K. Bharat and M. Henzinger. Improved algorithms for topic distillation in a hyperlinked environment.

In Proc. 21st Int. Conf. on Research and Development in Inf. Retrieval (SIGIR), August 1998.
[4] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. InProc. of the

Seventh World-Wide Web Conference, 1998.
[5] A. Broder and M. R. Henzinger. Information retrieval on the web. InProc. of the 30th IEEE Symp. on

Foundations of Computer Science, October 1998.
[6] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.

Graph structure in the web: experiments and models. In9th Int. World Wide Web Conference, 2000.
[7] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertextcategorization using hyperlinks. InProc.

of the ACM SIGMOD Int. Conf. on Management of Data, pages 307–318, June 1998.
[8] S. Chakrabarti, B. Dom, R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, David Gibson, and

J. Kleinberg. Mining the web’s link structure.IEEE Computer, 32(8):60–67, 1999.
[9] S. Chakrabarti, M. van den Berg, and B. Dom. Distributed hypertext resource discovery through

examples. InProc. of 25th Int. Conf. on Very Large Data Bases, pages 375–386, September 1999.
[10] S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: A new approach to topic-specific

web resource discovery. InProc. of the 8th Int. World Wide Web Conference (WWW8), May 1999.
[11] S. Chen and J. Reif. Efficient lossless compression of trees and graphs. InIEEE Data Compression

Conference (DCC), 1996.
[12] Y. Chiang, M. Goodrich, E. Grove, R. Tamassia, D. Vengroff, and J. Vitter. External-memory graph

algorithms. InProc. of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, January 1995.
[13] N. Deo and B. Litow. A structural approach to graph compression. InProc. of the MFCS Workshop

on Communications, pages 91–101, 1998.
[14] J. Gailly. gzip compression utility. Available athttp://www.gzip.org.
[15] K. Keeler and J. Westbrook. Short encodings of planar graphs and maps.Discrete Applied Mathemat-

ics, 58:239–252, 1995.
[16] J. Kleinberg. Authoritative sources in a hyperlinked environment. Proc. of the 9th ACM-SIAM Sym-

posium on Discrete Algorithms, pages 668–677, January 1998.
[17] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Extracting large-scale knowledge bases

from the web. InProc. of the 25th Int. Conf. on Very Large Data Bases, September 1999.
[18] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the web for emerging cyber-

communities. InProc. of the 8th Int. World Wide Web Conference (WWW8), May 1999.
[19] J. Vitter. External memory algorithms and data structures. InExternal Memory Algorithms and Visu-

alization, DIMACS Series on Discrete Mathematics and Theoretical Computer Science. AMS, 1999i.
[20] I. H. Witten, A. Moffat, and T. C. Bell.Managing Gigabytes: Compressing and Indexing Documents

and Images. Morgan Kaufmann, second edition, 1999.

10

