Compressing the Graph Structure of the Web

Torsten Suet Jun Yuan*

Abstract

A large amount of research has recently focused on the gtapttse (or link structure)
of the World Wide Web. This structure has proven to be extigraseful for improving the
performance of search engines and other tools for navigdtie web. However, since the
graphs in these scenarios involve hundreds of millions afescand even more edges, highly
space-efficient data structures are needed to fit the datanmany. A first step in this direction
was done by the DEC Connectivity Server, which stores thplgia compressed form.

In this paper, we describe techniques for compressing tyghgstructure of the web, and
give experimental results of a prototype implementatione tempt to exploit a variety of
different sources of compressibility of these graphs anith@fassociated set of URLs in order
to obtain good compression performance on a large web graph.

1 Introduction

Over the last couple of year, a large number of academic ahgtnal researchers have studied the
problems of searching, exploring, and characterizing tloeld\Wide Web. While many different
aspects of the web have been investigated, a significanitdinaaf recent work has focused on the
graph structure (or link structure) of the Web, i.e., the structure of the graph defined by haging
node for each page and a directed edge for each hyperliniekeatpages.

A number of recent papers have studied this graph, and hakedofor ways to exploit its
properties to improve the quality of search results. Fongxa, thePagerank algorithm of Brin
and Page [4], used in thBoogle search engine, and the HITS algorithm of Kleinberg [16] both
rank pages according to the number and importance of otlggspthat link to them. Currently,
almost alt of the major search engines use information about the linictre in their decision on
how to rank search results. Link structure has also beeroggdIfor a variety of other tasks, e.g.,
finding related pages [3], classifying pages [7], crawlinggages on a particular subject [10, 9],
and many other examples. Recent large-scale studies oféhd6y 18, 17] have looked at basic
graph-theoretic properties, such as connectivity, diamer the existence of bipartite cliques, on
subsets of the web consisting of several hundred milliores@hd over a billion hyperlinks.

This raises the problem of how to efficiently compute withgirewhose size is significantly
larger than the memory of most current workstations. Onesipdgy is to employ 1/0O-efficient
techniques for computing with graphs (e.g., see [12, 19 elen with these advanced techniques,
computation times on large graphs can be prohibitive. Therrative is to use machines with
massive amounts of main memory, but this is expensive anfitasible for many smaller research
groups. Thus, it would be desirable to construct highly caeaped representations of web graphs
that can be stored and analyzed in machines with moderataramof main memory.

*CIS Department, Polytechnic University, Brooklyn, NY 1128uel @ol y. edu, j yuan@nu. pol y. edu
!Seeht t p: / / ww. sear chengi newat ch. coml webmast ers/ f eatures. htni .



A first step in this direction was done with ti@nnectivity Server [2] used by theAltaVista
search engine, which stores a large subgraph of the web kwvdsalsers to query this structure.
While the first implementation in [2] uses a fairly inefficteepresentation of the graph, a newer
version is reported in [6] to achieve significant compressiompared to a standard adjacency-list
representation. No details of the construction were phbtlis but even with these improvements,
the study in [6] required almogt GB of of main memory. Our goal is to find and experiment with
techniques that result in improved compression, thus afligwefficient computations with large
graphs on more moderately endowed machines.

1.1 Problem Definition

We now define the web graph compression problem. We condideréb graph to consist of a
node for each page, and a directed edge for each hyperlinkaséleme that each node is labeled
with the URL? of the corresponding page, and that the compressed dataus&stores this URL
in addition to the link structure. We also assume that thgaug links of a node are an unordered
set, and that they can be reordered for improved compresaidgsm would like the compressed
structure to support the same operations as an adjaceh@pissentation of a labeled graph, while
occupying significantly less space. In particular, we atergsted in the following operations:

(1) getindex(url): Given a URL, return the index of the corresponding node irsthecture.

(2) getUrl(index): Given the index of a node in the data structure, return its URL

(3) getNeighbors(index): Given the index of a node in the data structure, return a fishe
indices of all its directed neighbors.
In some applications, it may not be necessary to store thetdélke URL together with the graph
structure. For example, we could search for certain strastin the graph (e.g., bipartite cliques
[18]) using only operation (3) above, which does not reqageess to the URLs. At the end of the
computation, we could then identify the URLs correspondantie result nodes by using a lookup
table on another machine or on disk. In general, we expec¢o(3¢ the most performance-critical
operation, while the other two will be used less frequentfynbost applications. We describe
techniques for compressing both link structure and URLoaigh our implementation also has
the option of building a structure without URLs. The probkeof compressing URLs and link
structure are largely independent, assuming that we nupdggrs in alphabetically sorted order of
the URLs. Such an ordering also tends to maximize compnes$sidoth URLs and link structure.

Our current implementation only stores a directed edge ftloensource to the destination of
a hyperlink. There are cases where one would like to alsovolinks in the reverse direction.
We can of course achieve this by adding edges in the revensgtidn, using about twice as much
space, but we have not yet fully optimized this case. Oureriimplementation is static and does
not allow changes in the graph without rebuilding. We plasupport updates in the future, most
likely by periodically merging updates stored in a smalleffér structure.

1.2 Graph and Machine Sizes

To give the reader a feel for the problem, we now present samaoers concerning the typical
data and memory sizes. The current size of the web is estihadtmore than 1.2 billion pages
and 8 billion hyperlinks. Most major search engines areentty based on a collection of several
hundred million web pagésThis is also the size of the graphs used in [6, 18]. In our eérpants,

2Uniform Resource Locator, e.g.,ht t p: // ci s. pol y. edu/ cour ses/ fal | 99. ht m
3The largest search engine, Google, currently (10/2000d0os 0over600 million pages, but claims a larger num-
ber that includes pages referenced by downloaded pagdsatanot been downloaded themselves.

2



we use graph data from a 1998/99 crawl stored at the Internehive!. This data, which is
currently (Fall 2000) the largest collection that is easicessible to academic researchers, has
about400 million pages and ovet billion links.

A fairly straightforward implementation of an adjacencstlrequires about bytes per link
(29 bits to addres400 million items, plus overhead), resulting in abduGB of link data. An
average URL consists of about 50 characters in uncomprdssad though this can be reduced
fairly easily to aboutl3 bytes by exploiting common prefixes in the sorted list of URO$us,
this “baseline” implementation would require at led3tGB for the above crawl represented with
edges in only one direction, arzd GB otherwise.

Our final goal is to be able to handle graphs of this size usiaghimes with at most-4 GB
of main memory. While this is larger than the main memory & #verage workstation, most
departments or research groups are probably able to affordchine in this category. The results
reported in this paper achieve abaui bytes per link and.5 bytes per URL, for a total of 100 MB
on a subgraph with 1 million nodes and 5 million edges. Thus, we would not quite be able to
store the above graph in 4GB if we insist on storing the URLLguFe work will hopefully further
increase the graph sizes that can be stored.

1.3 Why are Web Graphs Compressible?

Having motivated the need for highly compressed repretentof the web graph, we now have
to convince ourselves that there is significant potentiakfthieving compression. Following is
an informal description of some of the sources of comprdggilin the web graph; a detailed

description of the techniques that we use in our implemgntas given in Section 3.

As already noted, the size of a URL can be reduced by alfridstby identifying the length
of the common prefix with the previous URL in the sorted ordercompress the remaining text,
we can try to identify common substrings, such andex, / peopl e, or. ht m . One problem
here is how to identify boundaries for suitable substrings addition, we could encode single
characters or pairs to compress non-frequent text strifgshave to make sure, however, that we
can access single nodes in the structure without decodigg thhunks of the entire graph.

To compress the link structure, we need to exploit “typiqaidperties of the web graph. As
shown by several studies [17], the web is not just any amyitgaaph, but it has a fairly unique
structure. However, this structure does not seem to fit wvetl any of the families of graphs,
such as trees, planar graphs, or graphs of bounded genubaicdty, that have been studied in
the graph compression literature [11, 13, 15]. We can ifeatinumber of possible “sources of
compressibility” in the link structure. First, some verypquar pages (e.gwww. yahoo. con)
have much higher in-degree than others, which suggestg apipropriate coding for these links.
Furthermore, the link structure shows a significant degfdeaality: almost three quarters of the
links point to pages on the same host, and often to pagesrhaindy a short distance from the
source in the sorted order of URLs. Some other sources of cessibility are discussed later.

Given these observations, most people experienced witlpeEssion techniques can probably
already think of some approaches that one could try. We maiiethis paper will not present any
revolutionary or surprising new compression techniquegi@phs. Instead, our goal is to design
a compression scheme for the web graph based on the carglidadfpn and optimization of a
variety of known techniques. As we hope to show, the compress such a graph provides a

‘http://www. archi ve. org
SE.g., should we considémdex. ht Ml as one word or two, and do we include slashes and dots in thds®or



number of research challenges, and we hope subsequent wWhirkpvove our results.

1.4 Content of this Paper

In this paper, we study the problem of compressing the straatf web graphs, i.e., graphs cor-
responding to the link structure of the World Wide Web or sibof it. We assume that both
the link structure and the URL strings have to be stored, hatlihdividual nodes and edges can
be efficiently accessed in the resulting structure. We dest¢he techniques that we used in our
implementation, and present experimental results on aesubshe web. Note that the results in
this version are still very preliminary, and that more finahmbers will be available in a Technical
Reporf during the Spring of 2001.

Section 2 discusses some related work. Section 3 describasompression scheme and its
implementation. Section 4 presents our experimental tesBlection 5 describes extensions and
optimizations that we are currently working on, and Sec6affers some concluding remarks.

2 Related Work

We now discuss related work in the data compression and vwablsareas. For a recent overview
of compression techniques, we refer the reader to the tektbg Witten, Moffat, and Bell [20],
which contains excellent descriptions of most of the codedhniques that we exploit, including
canonical Huffman coding, and techniques for encoding gagss An idea that we apply repeat-
edly involves the use adxtra bits, as used, e.qg., i9zi p [14], to reduce the number of codewords
needed. As mentioned, there are a number of known technfquesmpressing special families
of graphs [11, 13, 15]. However, these techniques do not $edm applicable to web graphs, and
we thus rely on standard coding and text compression teabgiop our construction.

For recent surveys of information retrieval on the Web withphasis on link-based methods,
we refer to [5, 8]. Examples of ranking techniques basedmndtructure are thBagerank algo-
rithm of Brin and Page [4] and the HITS algorithm of Kleinb¢i$]. Recent large-scale studies
of the graph structure of the web are reported in [6, 18, 17].

The Connectivity Server of Bharat et al. [2], used in thaltaVista search engine, stores a large
subgraph of the web in a data structure and provides an atefbr remotely querying this struc-
ture. The first version of the system, described in [2], resplii 6 bytes for each URL and bytes
for each directed link. The space requirement for the URLs ahieved by stripping common
prefixes, as described earlier, and the links were storeebgse pointers. The newer version of the
server, as reported in [6], uség bytes for each URL angl.4 bytes for each bidirectional link, but
no implementation details are given. A direct comparisothee numbers with our own results
is a bit tricky, as discussed in Section 4, due to differemeéise data set. Our work is strongly in-
fluenced by the Connectivity Server; in fact, one of our mdijeotives is to build a similar system
that obtains better compression and that is fully accessibthe academic community.

Very recently and independent of our work, Adler and Mitzexxtmer [1] have proposed a new
technique that exploits the special global structure ofwiied for compression, and that is based
on recent attempts to model the web graph using a new typedbra graph model [17]. The idea
is to code an adjacency list by referring to the already caat#jecency list of another node that
points to many of the same pages. Adler and Mitzenmacher gatxcombining this with stan-
dard Huffman coding results in significant improvementsdaraph with global links. The main
difference to our work is that [1] focuses on a novel techeithat exploits one possible source of

6Seehttp://cis.poly.edu/tr/.



compressibility in web graphs, and on the algorithmic peotd associated with this techniques.
In contrast, our goal is to design and engineer a completeféoaveb graph compression that
is based on a combination of several coding techniques, lmidathieves compression due to a
variety of properties of the web graph. Integrating the igef] into our system would result in
improved compression for global links, and we are curreatigsidering this. One problem is the
efficiency of the reference selection of [1] in external meynsince the graphs that we use are
significantly larger.

3 Technigues and Implementation

We now describe in detail our compression techniques arndithglementation. Throughout the
description, we assume that the URLs are indexed foadmn — 1 in alphabetically sorted order.
A overview of our structure is shown in Figure 1(a). We haveastHable that contains the host
names in compressed form. The table itself actually camsistoncatenated blocks of sizéViB
each. Most of the space in the structure is taken up by thet@hfge which also consists of blocks
of size4 MB each. The Page table stores the URL strings, minus therntawmse prefix, and the
adjacency list of each page, both in highly compressed forire Index table provides pointers
into the other tables. More precisely, we have a pointeraédoébginning of at least everith entry

in the Page table, and to the corresponding host. This allmts search for a particular page, by
either index or URL, using a form of binary search.

— e —
C D [V ure | inks [urd]iinks| URL | links [V ure [ links | URL
Fig. 1(b): View of the page table storing each URL
followed by its link data
Host Table )
Fig. 1(a): High-level view
of the graph data .
structure Index Table
Page Table

Figure 1(b) shows a more detailed look of the Page table, imws as a single long array.
Pages are stored in alphabetical order by URL, and for eagh pe store the URL, followed by
a list of outgoing links (plus incoming links if specified)v&ry £th entry has an incoming pointer
from the Index table; for these entries, we cannot use thetgue of omitting the common prefix
with the previous URL, since we want to be able to uncompiresse entries without looking at
the previous URL. Thus, by changihgwve can trade off compression ratio vs. access speed.

3.1 Compressing the URLs and Hosts

As mentioned, we strip the host prefix from each URL, and starethe Host table. The com-
pression of the Host table is done in basically the same walgeasompression of the rest of the
URL, described in the following, although it is less crificae to the smaller number of hosts.
We now focus on the compression of the remaining parts of tRé skrings, which we will
refer to simply as URLs. We assume that any alphabeticakioglés with respect to the original
URLSs before stripping hosts or any other prefixes, and theh &RL is terminated by a special



end symbol @ For each URL;, we now determine the length of the common prefix @ifith the
previous URL: — 1 in the sorted order, denoted by (i), and the change in length of the common
prefix, denoted bylep(i) = lep(i) — lep(i — 1). For each URL, we storedep(i) as the first field
of the page data, using a canonical Huffman code. See the fiplow for a typical sequence of
URLs before and after stripping common prefixes and reptattiem by the valuegep(i).

ARAE 4] /KAB

JKAB/Contain, html +4 /Contain. html

/kaB/edtrain. html +1 edtrain html } }
JFutureshop/music/ramfiles/amanda_int. ram -4 Futureshop/music/ramfiles /amanda_int. ram
Jdeckmanual . html 4] deckmanual  himl
Jusers/darmo/TRRC/results/1998/9lasscity/gcmres. him 0 users/darmo/TRRC/resul 1s/1998/glasscity/gcmres. him
/users/holben +6 holben

Jusers/mharmon 4] mharmon ]

Jcontent/cyberdom/indax . html -6 content/ocyberdom/ index . html

For the remaining strings we now try to identify frequent ‘nas”, where each URL is split
into words delimited by slashes and dotsVe then determine the most frequent such words,
and encode them with a canonical Huffman code on words. Igjrfial any piece of text not yet
coded, we use another Huffman code on pairg cbnsecutive characters. Thus, in summary each
URL string is represented bip(i) and a sequence of Huffman-encoded words and pairs.

3.2 Compressing the Links

We now describe our compression of the link structure, wiscslightly more complicated, and
which we focused most of our attention on. We distinguisiwieen two basic kinds of links,
global links between pages on different hosts, &oahl links between pages on the same host. As
in a standard adjacency list, a link will be represented lgyitidlex of the link destination.

Global Links: For global links, we first identify the pages with the highest in-degree,
and encode links to these pages using a canonical Huffmas cd call links to such pages
global frequent links. This results in short encodings for very popular lidéstinations (e.qg.,
www. yahoo. con). For the remaining global links, calleglobal absolut links, we usdog,(n)
bits each, where is the number of pages in the graph. However, if the numbetaifaj absolut
links from a page is at leadt then we use an additional encoding based on a Golomb coége (se
e.g., [20]). More precisely, ld}, ..., 1, 1 be the list ofm global absolut links from the current
page, in sorted order by destination. Then we representledch by the value ofl; = I; — I;_;.

We then computé = [log,(n/m)], and encode; by a series ofd;/2" | “1” bits followed by a
“0” bit followed by a b-bit representation af; mod 2°.

Local Links: We again have two classes of links. First, for each Wesvith p;, pages, we
determine thep; /100 most popular destinations for local links inside this hokinks to these
pages, calledocal frequent links, are encoded using a Huffman code. (The nuniioérin the
denominator appears to be a good choice, as it balances essin with table space overhead.)

We then look at all the remaining links, calléatal distance links, and collect statistics about
the typical distance between source and destination pageisorted order. As it turns out, a
significant number of links go only over a fairly small disteéh More precisely, we partition
the set of hosts into a number of different classes (aboub 15), according to their size, and
collect the distance statistics separately for each hassclWe then represent each local distance
link by coding the distance between source and destinatiora further optimization, not yet
reflected in the reported results, we used the gaps betweatettinations instead of the distance.
In order to limit the number of codewords, and thus the siz¢heftables, we do not reserve

"For examplef acul t y/ i ndex. ht m @consists of the wordkacul ty,/ i ndex and. ht M @
8However, the distribution also has a very significant tadltimits compression.

6



a codeword for each distance, but instead group distantesntervals of increasing size, and
assign an appropriate numberextra bitsto each group.

Storing the links: We also need to store the number of links and the type of eaghiri

a node. After a few clumsy and inefficient attempts, where weduadditional leading bits in
each link to describe its type, and an additional bitfieldtfer total number of outgoing links, we
arrived at the following approach. All links in a node arendered so that we first have all global
frequent links, followed by global absolut links, followbs local frequent links, followed by local
distance links. We then store the tuplef, ga, L f, ld), containing the number of global frequent,
global absolut, local frequent, and local distant linkspectively, after the URL and before the
links. The tuplesgf, ga,lf,ld) are encoded using a single Huffman code on the set of suakstupl
To limit the number of codewords, we again group classes jaicadt tuples into intervals, in this
case rectangles ih dimensions, with the size of the intervals increasing witahce from the
origin. An appropriate number @ktra bitsis used for intervals containing more than one tuple.

3.3 Implementation

Preprocessing:The data from the Internet Archive was initially stored in atendata format used
by Alexa Inc. for its crawls. In this format, links are idéfigid by destination URL, and nodes are
listed in arbitrary order. Using several I/O-efficient sogand merging steps, we transformed this
data into a format where the URLSs are stored in alphabeticidran one file, already compressed
by stripping common prefixes, and the links are stored sdiyexburce in another file, where every
link is represented as a (source,destination) pair of lumalpers in the URL file. This is the format
that we assume for the input of our compression tool. Therpogssing takes significantly more
time than the actual compression phase, due to the largg hitta size.

Gathering statistics: We first performed several scans over the URL and link dataatbeg
statistics for our coding. In a first pass over the URL file, vbrequencies are counted and used
to construct the Huffman code for frequent words in the hogt@RL string. In a second pass, the
statistics for the pairwise encoding are collected on pafrtee host and URL strings not covered
by the frequent words. In a first pass over the link file, we gastatistics for the most popular
hyperlink destinations, both global and inside each hostngthis data, we can decide after this
pass which of the four categories (global frequent, globabéute, local frequent, local distance)
each link belongs to. In the second pass, we collect therdistatatistics for the local distance
links, and the statistics for the tuple frequencies(fof, ga, L f, ld).

Building the compressed structure: We then build the structure in a single coordinated pass
over both URL and link data. The entire data structure in Féduis built from top to bottom during
this pass; this allows us to build structures larger thamma&mory and write them out to disk.
As parameters, we cho$60000 frequent words and00000 global frequent link destinations. For
the local distance links, we consideré? different host size classes, and used several hundred
codewords for each class. We uséd00 codewords to model the tupel statistid¢$ {ntervals in
each dimension). All components were implemented in C tieguin about5000 lines of code.

4 Experimental Results

We now provide an overview of our experimental results on gm@ssion ratio and access speed.
We used data from a 1998/99 crawl of abddd million pages stored at the Internet Archive.
However, for the experiments reported in this version, weertht run our code on the full set of
pages, but instead used a subset consisting ahillion pages and about5 million links. We
also prepared to perform runs on a larger set consisting®million pages and aboud0 million

7



links. Unfortunately, we were unable to access the InteArehive for the last several weeks,
and thus only very preliminary results on the smaller set omillion URLs are reported. As
mentioned before, more final numbers will be available in ehhécal Repoft during the Spring

of 2001.

A few comments are in order about the scaling of such dataaedsthe ratio of pages to links.
Our data sets contain nodes for actually crawled pages dsas/glages pointed to by crawled
pages. This leads to a larger pages-to-links ratio, contip@aréhe web as a whole where we have
about7 to 8 links for every page. The ratio also depends on the crawlirajegy and the size of
the data set, since larger sets tend to have a smaller pagieg< ratio. Most studies of the web
perform a preprocessing step that prunes some of the nodes[6} keeps only pages that were
either crawled, or referenced at leadimes by other pages. We have not yet incorporated such a
cleaning phase, and thus it is difficult to compare our nusbd@ectly to those reported in [6] for
the new version of th€onnectivity Server.

4.1 Compression Ratio

We now present our results on the compression ratio, shoviigare 3(a). As mentioned, the
results are very preliminary at the moment. The baselindempntation already saves space by
omitting common prefixes between subsequent URLs, and24skets to address th&l million
nodes. (This is somewhat optimistic since we need extratbitaark the end of an adjacency
list.) Our method compresses each URL to akou9 bytes and each edge to abdui4 bytes

on average. The compression ratio is not very impressivenoenpared, e.g., to results in text
or image compression, but this is not surprising given tha dat. Figure 3(b) shows the number
of links in each of thet classes, and the compression for each class. Each of ouriqeels
contributes to the compression, but no technique alonesg@ed compression on the entire graph.

Nodes Edges Total Size Type of Link Number | Size

Number 11556269| 14709649 Global Absolute | 1636836| 2.64

Baseline 13 bytes 3 bytes | 194.4 MB Global Frequent | 2308253| 1.97

Compressed 6.49 bytes| 1.74 bytes| 100.6 MB Local Frequent | 1015728 1.06

Ratio 49.9 % 58 % 51.7% Local Distance | 9748832 1.30

Figure 3(a): Compression results on small graph  Figure 3(b): Results for different types of links

Comparing these numbers to those claimed for the new veo$itie Connectivity Server in [6]
is difficult, since no details were published, and since ttaglgs are quite different. The numbers
in [6] are 10 bytes per URL and.4 bytes for a link in both directions. Without implementation
details, it is difficult to predict how the bidirectional ks affect compression. The data sets in [6]
are larger, and thus more bits would be needed for globallateslinks. On the other hand, the
data in [6] has significantly more links, which is likely todwgce the cost per link. For the URLS,
more pages would likely result in better compression. Insamy, we feel that we cannot make a
valid comparison yet.

4.2 Access Speed

We now give performance numbers for the three data accesatapes defined in Subsection 1.1.
These numbers are also preliminary since we have not odhfar access times yet. We looked
at two values for:, the number of pages between two pointers from the Index tabd the Page

9Checkht t p: //cis. pol y. edu/ t r/ or contact the authors.



table. The times fogetNeighbor are per link, but the time really consists of a fixed cost fodifig
the node using binary search, plus a lower cost for decodaaty &ink in the node. We plan to
measure this effect more precisely in the final version.

getUrl getindex getNeighbors
k=20 0.26 ms 1.7ms 0.26 ms/link
k =40 0.4 ms 1.7ms 0.57 ms/link

Figure 4: Time for access to the data

5 Current and Future Extensions

We now list a few additional ideas that we are currently impdating or considering for imple-
mentation.
(1) Locality: we currently have only one level of locality, within a hoshiah probably captures
most of the potential benefits. However, one could considditi@nal levels, e.g., internet
domains or directories inside a host, to improve compressfdinks within these levels.

(2) Representation of Huffman tables:since we are using quite a number of Huffman codes,
it would make sense to better optimize the representation.

(3) Exploiting URL structure for link compression: one might try to use the structure of the
URLSs to improve link compression; however, this requirest the URLS are stored as well.

(4) Integrating the idea of Adler and Mitzenmacher [1]: this would result in improved com-
pression for global links, but might significantly incredake time for building the structure.

(5) Correlations among local links: We are currently using Huffman coding for frequent local
links. However, there are often strong correlations betwiese links, e.g., when many
pages of a site have the same menu of navigational links. Guid apply the technique in
[1] here, but we believe that explicitly recognizing suclssaight be better for local links.

(6) Bidirectional links: An improvement could be achieved here by only storing thevéod-
going direction for very "short” links that run between twoipters into the page table, since
the other direction can be found while traversing the struect

(7) Updates: we plan to allow insertions and deletions of nodes and edgest likely by stor-
ing updates in a smaller buffer structure that is periodijaalerged into the main structure.

6 Conclusions

In this paper, we have described techniques for comprefisaignk structure of the web, and have
presented preliminary experimental results on compresstio and access speed. Beyond the
extensions listed in the previous section, which we areeniily working on, there are other more
fundamental open questions in the context of efficient cdmpuwvith large web graphs.

An obvious question is whether there are other more novahigces that offer substantial im-
provements in compression, beyond those achievable bgnizintig the types of coding schemes
we use in our work. The work in [1] provides one such techniqueglobal links. We are particu-
larly interested in a better coding of local links. Most oétrecent studies of the web graph have
focused on the global link structure, often even removirogldinks in a preprocessing phase.

It would be interesting to study the representation of sifigal versions of the web graph, e.g.,
graphs where certain clusters of nodes are collapsed intmkesiode. Such representations could

9



be significantly more concise, while still supporting mangeresting applications. Investigating
persistent graph structures that retain a history of updatight also be of interest. Finally, our
main interest is in using our implementation to study the aed its evolution.
Acknowledgements:We acknowledge the Internet Archiviet(t p: / / ww. ar chi ve. or g)
for providing access to the web graph data. We also thankr N&anon for helpful discussions.

References
[1] M. Adler and M. Mitzenmacher. Towards compressing weépips. InProc. of the IEEE Data Com-
pression Conference (DCC), March 2001. To appear.
[2] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and S. Velakabramanian. The connectivity server:
Fast access to linkage information on the web7tmint. World Wide Web Conference, May 1998.
[3] K. Bharat and M. Henzinger. Improved algorithms for togistillation in a hyperlinked environment.
In Proc. 21st Int. Conf. on Research and Development in Inf. Retrieval (SGIR), August 1998.
[4] S. Brin and L. Page. The anatomy of a large-scale hyprrégxveb search engine. Proc. of the
Seventh World-Wide Web Conference, 1998.
[5] A.Broder and M. R. Henzinger. Information retrieval dretweb. InProc. of the 30th IEEE Symp. on
Foundations of Computer Science, October 1998.
[6] A.Broder, R. Kumar, F. Maghoul, P. Raghavan, S. RajagopaR. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web: experiments and model€thrint. World Wide Web Conference, 2000.
[7] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertextgorization using hyperlinks. FProc.
of the ACM SGMOD Int. Conf. on Management of Data, pages 307-318, June 1998.
[8] S. Chakrabarti, B. Dom, R. Kumar, P. Raghavan, S. Rajalgop A. Tomkins, David Gibson, and
J. Kleinberg. Mining the web’s link structuréEEE Computer, 32(8):60-67, 1999.
[9] S. Chakrabarti, M. van den Berg, and B. Dom. Distributggbdrtext resource discovery through
examples. IrProc. of 25th Int. Conf. on Very Large Data Bases, pages 375-386, September 1999.
[10] S. Chakrabarti, M. van den Berg, and B. Dom. Focused langwA new approach to topic-specific
web resource discovery. Froc. of the 8th Int. World Wide Web Conference (WMWWB), May 1999.
[11] S. Chen and J. Reif. Efficient lossless compressionegfstand graphs. IMEEE Data Compression
Conference (DCC), 1996.
[12] Y. Chiang, M. Goodrich, E. Grove, R. Tamassia, D. Vefiigrand J. Vitter. External-memory graph
algorithms. InProc. of the 6th Annual ACM-S AM Symposium on Discrete Algorithms, January 1995.
[13] N. Deo and B. Litow. A structural approach to graph coagsion. InProc. of the MFCS Workshop
on Communications, pages 91-101, 1998.
[14] J. Gailly. gzip compression utility. Available bt t p: / / www. gzi p. or g.
[15] K. Keeler and J. Westbrook. Short encodings of planaplygs and map®iscrete Applied Mathemat-
ics, 58:239-252, 1995.
[16] J. Kleinberg. Authoritative sources in a hyperlinketviconment. Proc. of the 9th ACM-SAM Sym-
posium on Discrete Algorithms, pages 668—677, January 1998.
[17] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkingra&ting large-scale knowledge bases
from the web. InProc. of the 25th Int. Conf. on Very Large Data Bases, September 1999.
[18] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkingawling the web for emerging cyber-
communities. IrProc. of the 8th Int. World Wide Web Conference (WMWWS), May 1999.
[19] J. Vitter. External memory algorithms and data stroesu InExternal Memory Algorithms and Visu-
alization, DIMACS Series on Discrete Mathematics and Theoretical Computer Science. AMS, 1999i.
[20] I. H. Witten, A. Moffat, and T. C. Bell Managing Gigabytes. Compressing and Indexing Documents
and Images. Morgan Kaufmann, second edition, 1999.

10



