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Abstract—This paper investigates and compares the perfor-
mance of wireless sensor networks where sensors operate on
the principles of cooperative communications. We consider a
scenario where the source transmits signals to the destination
with the help of L sensors. As the destination has the capacity of
processing only U out of these L signals, the strongest U signals
are selected while the remaining (L−U) signals are suppressed.
A preprocessing block similar to channel-shortening is proposed
in this contribution. However, this preprocessing block employs
a rank-reduction technique instead of channel-shortening. By
employing this preprocessing, we are able to decrease the
computational complexity of the system without affecting the
bit error rate (BER) performance. From our simulations, it can
be shown that these schemes outperform the channel-shortening
schemes in terms of computational complexity. In addition,
the proposed schemes have a superior BER performance as
compared to channel-shortening schemes when sensors employ
fixed gain amplification. However, for sensors which employ
variable gain amplification, a tradeoff exists in terms of BER
performance between the channel-shortening and these schemes.
These schemes outperform channel-shortening scheme for lower
signal-to-noise ratio.

Index Terms—Cooperative communications, channel shorten-
ing, reduced-rank techniques, selection combining.

I. INTRODUCTION

In wireless sensor networks (WSNs), the fundamental task

is to broadcast data from the origin sensor to the destination.

However, due to the limited size, power and cost of these

sensors, a low power signal is often transmitted to the desti-

nation [1–3]. This low power signal is further attenuated due

to the propagation loss. To combat this problem, the signal

is sometimes measured by as many sensors as possible [1, 2].

These sensors form a distributed cooperative sensor network,
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enabling them to achieve spatial diversity which will help

combat fading effects and extend network coverage [4].

Low-complexity cooperative diversity protocols have been

developed and analyzed for cooperative communications in

different operating conditions and environments. According

to [4], the family of fixed relaying arrangements have the

lowest complexity as compared to all the other families.

The family of fixed relaying consists of decode-and-forward

(DF) and amplify-and-forward (AF) protocols. It has been

proved that the AF protocol has the ability to achieve similar

bit error rate (BER) performance as compared to that of

the DF protocol, while maintaining a lower complexity [4,

5]. Therefore, only the AF protocol is considered in our

contribution.

The design of low-complexity detectors at the destination

plays a significant role in WSNs, as the sensor nodes are

powered by batteries [1–3, 6]. The maximum likelihood (ML)

detector is the optimal detector in terms of BER for equally

likely symbols [7]. However, due to the high computational

complexity of the ML detector, suboptimal linear detectors

are often considered for WSNs [8–10]. In suboptimal linear

detectors, minimum mean square error (MMSE) detection is

preferred due to its improved BER performance [8]. It can be

observed that, as the number of sensors increases, the com-

plexity of the MMSE detector becomes extremely high [10].

Recently, in order to solve this problem, channel shortening

(CS)-based technique has been proposed for cooperative net-

works [11, 12]. A preprocessing matrix in CS-based technique

is designed where only U sensors are chosen out of L sensors.

The idea is to maximize the energy reception of the selected U
sensors while minimizing the energy leakage of the remaining

sensors and the ambient noise power. As only U sensors are

selected and processed at the destination, the computational

complexity will be lower than the ideal MMSE detector. In

cooperative communications, the best relay is selected and

then the transmit power of that relay is maximized [5, 13].

There are two major problems when applying this approach

to WSNs. Firstly, no power adaptation is applied. Secondly, the

sensors are powered by batteries, therefore, it is not rational

to transmit the signal with more power. In such scenarios,

CS-based techniques can be adopted and they outperform the

technique of best relay selection in terms of BER as shown

in [11, 12]. By employing CS-based techniques, the destination

captures U strongest signals out of the L received ones. As

the receiver tries to maximize the energy of U sensors, the
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energy in L−U sensors is lost. Therefore, a loss in the BER

is observed when comparing the CS-based techniques with the

approach involving all participating sensors.

In order to solve this problem, a design of the preprocessing

matrix with the assistance of reduced-rank techniques is pro-

posed in this paper. Reduced-rank techniques have been widely

applied to array processing [14], radar signal processing,

direct-sequence code divison multiple access (DS-CDMA) [8],

space-time coded space-division [15] and ultra-wide band

(UWB) systems [16, 17]. Specifically, in this contribution three

types of rank reduction techniques are considered, which

derive their detection subspaces based on the concepts of

principal component (PC) [8, 16, 18, 19], cross-spectral met-

ric (CSM) [14, 16, 20] and Taylor polynomial approximation

(TPA) [16, 21].

The main contributions of the paper are summarized as

follows: (i) Arrangement of the sensors according to signal-to-

noise ratio (SNR) ordering, as an improvement over CS-based

techniques; (ii) Application of reduced-rank techniques for

providing the compromise between computational complexity

and performance; and (iii) Development of a diversity-order

analysis for reduced-rank techniques.

The remainder of the paper is organized as follows. In

Section II, a detailed explanation of the WSN model and

the basic assumptions are presented. Section III investigates

the ideal MMSE detectors for a WSN environment. It also

highlights the issues of implementing an ideal MMSE detector

for WSNs. Section IV discusses the implementation of the

preprocessing matrix. The design of the preprocessing matrix

with the assistance of CS-based technique is discussed in

Section V, followed by the design of the preprocessing matrix

with the assistance of reduced-rank techniques in Section VI.

The complexity of all these algorithms and the ideal MMSE

detector is derived and compared in Section VII. Simulation

results are presented in Section VIII. Finally, Section IX

concludes the paper with summarizing comments.

Throughout the paper, the following notations are used.

Upper case and lower case boldfaces are used for matrices and

vectors, respectively. Given a matrix A, symbols A∗, AT , AH

and A
−1 denote the complex conjugate, transpose, Hermitian

transpose and inverse of A, respectively.

II. WSN SYSTEM MODEL

The basic WSN system model considered in this work is

shown in Fig. 1. As illustrated, the source sensor S transmits

data to the destination D with the assistance of L sensors. The

L sensors operate on the principle of cooperative communi-

cations, such that each one amplifies and forwards the data to

the destination. It is assumed that there exists no direct link

between the source sensor and the destination. The channel

gains for the links between the source and the lth sensor and

from the lth sensor to the destination are denoted as hSRl
and

hRlD, and are assumed to be mutually independent and follow

the Rayleigh fading distribution model with variances σ2
SRl

and σ2
RlD

, respectively. The data transmission takes place in

two phases as shown in Fig. 1. S transmits the signal to the

sensors in phase-I, while the signal is amplified and forwarded

to D through the intermediate sensors in phase-II. In order to

minimize the interference between the sensors, orthogonality

is achieved in the frequency or time domains [13, 22–24].
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Figure 1. Schematic block diagram of a WSN when communicating with
the assistance of L sensors using amplify-and-forward (AF) principles.

A. Phase-I: Transmission From Source Sensor

The sensor S broadcasts a data symbol b to all the sensors,

R1, R2, · · · , RL. The received signals can be represented as

yRl
=
√

EShSRl
b+ nRl

, l = 1, 2, · · · , L, (1)

where ES is the average signal energy transmitted by the

source and nRl
is a complex additive white Gaussian noise

(AWGN) with mean zero and variance σ2
Rl

. The variance of

the data symbol is assumed to be σ2
b = 1.

B. Phase-II: Transmission From Relay Sensor to Destination

During this phase, the lth sensor amplifies the received

signal yRl
by ζRl

and forwards the resulting signal to the

destination. At node D, the signal received from the lth sensor

is given by

yl = hRlDζRl
yRl

+ nDl
,

=
√

ESζRl
hRlDhSRl

b+ ζRl
hRlDnRl

+ nDl
. (2)

Depending upon the type of sensors [22], the amplifying factor

ζRl
can be either

ζRl
=

√

ERl

ESσ2
SRl

+ σ2
Rl

(3)

or

ζRl
=

√

ERl

ES |hSRl
|2 + σ2

Rl

, (4)

where ERl
is the average signal energy at the lth sensor. (3)

and (4) are called as fixed-gain and variable-gain amplification

factors, respectively. In the fixed-gain amplification factor, the

sensor ensures that the average or long-term power constraint

is maintained, but allows the instantaneous transmit power to

be much larger than the average [22–24]. However, in the

variable-gain amplification factor, each sensor uses the channel

state information (CSI) from the source-sensor link to ensure

that an average output energy per symbol is maintained for

each realization [22–24]. This operation is performed at all

the sensors.
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C. Receiver Structure

As the desired signal b arrives at the destination with the

assistance of L sensors, L copies of the desired signal need

to be collected. The vector form of the received signal can be

represented by

yyy = hhhb+nnn, (5)

where the channel and noise vectors, hhh and nnn, are defined as

follows:

hhh =
[

√

ESζR1
hR1DhSR1

, · · · ,
√

ESζRL
hRLDhSRL

]T

= [h1, h2, · · · , hL]
T , (6)

nnn = [ζR1
hR1DnR1

+ nD1
, · · · , ζRL

hRLDnRL
+ nDL

]
T

= [n1, n2, · · · , nL]
T . (7)

If the channel knowledge is available, the noise part can be

approximated as complex Gaussian noise with zero mean and

variance given by

σ2
l = ζ2Rl

|hRlD|2σ2
Rl

+ σ2
D, l = 1, 2, · · · , L. (8)

Therefore, nnn is a complex Gaussian with mean zero and

variance ΣΣΣ. The variance ΣΣΣ will be a diagonal matrix of size

L and can be expressed as

ΣΣΣ = diag[σ2
1 , σ

2
2 , · · · , σ

2
L]. (9)

III. MMSE DETECTION FOR WSNS
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Figure 2. Block diagram of an MMSE detector for WSN when communi-
cating with the assistance of L sensors using AF principles where a) is the
ideal MMSE detector and b) is the MMSE detector with the preprocessing
matrix PPP .

The receiver schematic block diagram for the ideal MMSE

receiver is shown in Fig. 2a. To estimate the desired data bit,

the receiver consists of a linear filter characterized by

z = wwwHyyy = wwwHhhhb+wwwHnnn, (10)

where www = [w1, w2 · · · , wL]
T and wl is the lth tap coefficient

of complex valued filter. The linear detector minimizes the

mean-square error (MSE) cost function, i.e.,

J(www) = E[|b−wwwHyyy|2]

= 1−wwwHE[b∗yyy]− E[yyyHb]www +wwwHE[yyyyyyH ]www, (11)

where E[·] represents the expected operator. The optimal

weights for an MMSE detector can be easily obtained by

derivation of (11) with respect to www and setting to zero. The

optimal weights can be easily determined as [25]

www = RRR−1ρρρ, (12)

where ρρρ = E[yyyb∗] = hhh is the cross-correlation vector between

yyy and b∗ and RRR = E[yyyyyyH ] = hhhhhhH +ΣΣΣ is the auto-correlation

of yyy. By substituting (12) in (11), the cost function can be

expressed as

J = 1− ρρρHRRR−1ρρρ. (13)

From (13), it can be observed that in order to minimize the

MSE we need to maximize the ρρρHRRR−1ρρρ which corresponds to

maximizing the power of z. It can be observed from (12) that

the complexity of the ideal MMSE detector is determined by

the inverse of RRR which is (L×L) dimensional matrix. Inverting

a matrix of this size requires a computational complexity of

O(L3). In WSNs, the size of L is usually very large, therefore,

the complexity of the ideal MMSE detector will be extremely

high. If the length of yyy is reduced to U , where U ≪ L, then

the computational complexity can be reduced significantly.

Therefore, in order to reduce the complexity of the ideal

MMSE detector, a preprocessing matrix PPP is designed in the

upcoming section.

IV. DESIGN OF THE PREPROCESSING MATRIX

The receiver block diagram for the preprocessing matrix PPP
is shown in Fig. 2b. The design of the preprocessing matrix

will operate in two modes. In the first mode, a preprocessing

matrix PPP is designed so that the received data which is of

length L gets reduced to U , where U < L. Therefore, for a

received vector yyy, the U -dimensional received vector is now

given by

ȳyy = PPPHyyy, (14)

where ( ·̄ ) indicates that the vector is now reduced to size U
instead of L. In the second mode, this ȳyy is passed through a

U dimensional filter. The modified cost function can now be

given as

J(w̄ww) = E[|b− w̄wwHȳyy|2]. (15)

Similarly, as mentioned in (11), the optimal weight vector can

be given as

w̄ww = R̄RR
−1

ρ̄ρρ, (16)

where R̄RR is the autocorrelation matrix of ȳyy, which is reduced

to a (U × U) matrix as compared to a (L × L) matrix.

This reduced-complexity scheme requires a computational

complexity of O(U3) to determine the inverse of R̄RR. As

U < L, the complexity of the proposed system will be

significantly lower than that of the ideal MMSE detector

having complexity of O(L3). Let us now design an optimal

or an efficient preprocessing matrix PPP with the assistance of

CS-based technique.

V. PREPROCESSING MATRIX THROUGH CHANNEL

SHORTENING

As the CS-based techniques work differently for time and

frequency orthogonal channels, we revisit them separately as

mentioned in [11, 12].
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A. Time Orthogonality

For time orthogonality, we assume that there is a prepro-

cessing vector ppp such that

ppp = [p1, p2, · · · , pU ]
T , (17)

where U is the length of the filter. The received signal yyy will

be convolved with ppp to generate the output out of which U is

selected to be processed by the reduced optimal weight vector

w̄ww. The output of the convolution can be written as

aaa = yyy ∗ ppp = (AAAb+NNN)ppp, (18)

where AAA and NNN are the convolution matrices of hhh and nnn, with

dimension (L+U − 1)×U . The “ ∗ ” sign in (18) represents

convolution. The size of the output vector aaa is (L+U−1). As

we can only process U elements of aaa, we require U elements

to be non-zero and the other (L − 1) elements to be zero

ideally. The location of these U non-zero elements may be

anywhere within aaa, but for simpler processing they should be

consecutively placed:

aaa = [0, 0, · · · , 0, ai, ai+1, · · · , ai+U−1, 0, 0, · · · , 0]
T , (19)

where i is an arbitrary number such that i = 1, 2, · · · , L. The

channel-shortened received signal will now be represented as

ȳyy = [ai, ai+1, · · · , ai+U−1]
T . (20)

AAA in (18) will now consist of two sub-matrices AAAU and

AAAL−1, where the selected signals will be placed in AAAU and

the signals to be compressed will be placed in AAAL−1. The

energy of the selected U branches is given by pppHAAAH
UAAAUppp,

while the energy of the remaining (L − 1) branches is given

by pppHAAAH
L−1AAAL−1ppp and the noise energy is pppHE[NNNHNNN ]ppp. We

require an optimum value of ppp, which maximizes the energy

of the selected branches and minimizes the energy of noise

and the (L−1) remaining branches. We can reduce the above

problem to a Rayleigh quotient, by placing a constraint on the

energy of the (L− 1) remaining branches and the noise such

that pppH(AAAH
L−1AAAL−1 + E[NNNHNNN ])ppp = 1, then

ppp = argmax
ppp

pppH(AAAH
UAAAU )ppp

pppH(AAAH
L−1

AAAL−1 + E[NNNHNNN ])ppp
. (21)

Since this is a basic Rayleigh quotient problem, a well known

solution is mentioned in [12, 26–28]. Letting CCC = AAAH
UAAAU and

BBB = AAAH
L−1AAAL−1 + E[NNNHNNN ], the optimal value of ppp can be

evaluated as

ppp = FFF−1vvv, (22)

where FFF is the Cholesky factor of BBB, such that BBB = FFFHFFF , and

vvv is the eigenvector corresponding to the maximum eigenvalue

of (FFFH)−1CCC(FFF )−1.

B. Frequency Orthogonality

Frequency orthogonality has been recently utilized instead

of time orthogonality among the channels because of better

BER performance as shown in [11, 12]. The received signal

can be represented as

yyy =DDDbbb+nnn = ddd+nnn, (23)

where

DDD = diag
[

√

ESζR1
hR1DhSR1

, · · · ,
√

ESζRL
hRLDhSRL

]

,

bbb = [b, b, · · · , b]T , (24)

ddd =
[

√

ESζR1
hR1DhSR1

b, · · · ,
√

ESζRL
hRLDhSRL

b
]T

.

Let ppp = [p1, p2, · · · , pL]
T be the processing vector of size L,

then the output signal processed through ppp can be given as

pppHyyy = pppHddd+ pppHnnn. (25)

As only U signals are required from L in order to reduce the

complexity, ddd can be defined as

ddd = dddU + dddL−U , (26)

where dddU will consist of the required U signals and dddL−U will

consist of the remaining (L − U) signals of ddd. The Rayleigh

quotient can now be employed to determine the optimized ppp:

ppp = argmax
ppp

pppH(dddUddd
H
U )ppp

pppH(dddL−UdddHL−U + E[nnnnnnH ])ppp
. (27)

Similar to time orthogonality, letting CCC = dddUddd
H
U and BBB =

dddL−Uddd
H
L−U+E[nnnnnnH ], the optimal value of ppp can be evaluated

as

ppp = FFF−1vvv, (28)

where FFF is the Cholesky factor of BBB, such that BBB = FFFHFFF , and

vvv is the eigenvector corresponding to the maximum eigenvalue

of (FFFH)−1CCC(FFF )−1. However, due to the multiplicative nature

of the processing, the optimum value using (28) will produce

only one signal with the maximum Rayleigh quotient. As

we want to maximize U observations, we must have U
observations coming out of the channel shortener. Therefore,

we select vvvi, 1 ≤ i ≤ U , to be the eigenvectors corresponding

to the highest U eigenvalues of (FFFH)−1CCC(FFF )−1. Finally, the

complete preprocessing matrix PPP can be given as

PPP = [ppp1, ppp2, · · · , pppU ], (29)

where

pppi = FFF−1vvvi, 1 ≤ i ≤ U. (30)

C. Proposed Optimized Channel Shortener

The task of choosing a group of U adds a level of optimiza-

tion to the above problem as the location of U signals can

be anywhere within L. For easy of processing, as previously

mentioned in [11], these U signals should be consecutively

placed [12] . If we could arrange yyy in a descending order

such that

|h1|
2

σ2
1

≥
|h2|

2

σ2
2

≥ · · · ≥
|hL|

2

σ2
L

, (31)

then AAAU and dddU will consist of the first U strongest signals

and, by applying the similar process as mentioned in sec-

tion V-A and section V-B, the optimal preprocessing matrix

PPP can be easily carried out.
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VI. DESIGNING PREPROCESSING MATRIX THROUGH

RANK-REDUCTION TECHNIQUES

In this section, we propose the design of the preprocessing

matrix PPP with the assistance of reduced-rank techniques. In

these techniques, we will utilize all the L signals to design

the preprocessing matrix PPP instead of selecting U signals out

of L and losing the energy of (L − U) signals. We propose

three different techniques, where the first two techniques are

based on an eigenvalue decomposition, while the last technique

utilizes the Taylor polynomial approximation (TPA).

A. Principal Component

In PC-based technique, the autocorrelation matrix RRR is

decomposed in terms of eigenvalues and eigenvectors [16, 18,

19]. A number of principal eigenvectors are chosen to form a

detection subspace [16, 18, 19]. The decomposed autocorrela-

tion matrix RRR can be given as

RRR = ΦΦΦΛΛΛΦΦΦH =

L
∑

i=1

λiϕϕϕiϕϕϕ
H
i , (32)

where matrix ΦΦΦ and matrix ΛΛΛ correspond to the eigenvectors

and eigenvalues of RRR. As the autocorrelation matrix RRR has

distinct eigenvalues, its eigenvectors are orthonormal [25, 29].

For this reason, when selecting the largest U eigenvalues, all

L signals are utilized instead of U . If these eigenvalues can be

arranged in a descending order such that λ1 ≥ λ2 ≥ · · · ≥ λL

then the eigenvectors corresponding to the first U eigenvalues

are retained to form the preprocessing matrix PPP given as

PPP = [ϕϕϕ1,ϕϕϕ2, · · · ,ϕϕϕU ]. (33)

B. Cross Spectral Metric

Similar to PC, this technique utilizes the eigenvalue based

technique to determine the preprocessing matrix [14, 16, 20]. It

has been shown in the literature that selecting the U strongest

eigenvalues does not necessarily represent the best set of U
eigenvectors, as measured by the lowest MSE [14, 16, 20]. To

minimize the MSE, we maximize the power of z, which can

be represented as

Ez = wwwHE[yyyyyyH ]www = hhhHRRR−1hhh. (34)

From (32), RRR−1 can be simply written as

RRR−1 =

L
∑

i=1

ϕϕϕiϕϕϕ
H
i

λi
. (35)

Substituting (35) into (34), we get

Ez =
L
∑

i=1

hhhHϕϕϕiϕϕϕ
H
i hhh

λi
=

L
∑

i=1

|hhhHϕϕϕi|
2

λi
. (36)

From (36), it can be observed that for a rank of U , in order

to maximize Ez , we need to collect the U highest values of

|hhhHϕϕϕi|
2/λi. If they are arranged in a descending order such

that |hhhHϕϕϕ1|
2/λ1 ≥ |hhhHϕϕϕ2|

2/λ2 ≥ · · · ≥ |hhhHϕϕϕL|
2/λL then

the preprocessing matrix, PPP = [ϕϕϕ1,ϕϕϕ2, · · · ,ϕϕϕU ], will consist

of the eigenvectors corresponding to the first U values of

|hhhHϕϕϕi|
2/λi.

C. Taylor Polynomial Approximation

The above two algorithms require the computation of the

eigenvalues and eigenvectors which can be difficult to imple-

ment in real time applications [21, 30–32]. In some applica-

tions, computational complexity of calculating the eigenvalues

will be similar to computing the inverse of the autocorrelation

matrix. In such cases, eigen-decomposition based techniques

cannot reduce the detection complexity. However, the Krylov

subspace methods can be used to minimize the MSE, as

they do not depend on the eigen-decomposition of the auto-

correlation matrix RRR [21].

Taylor Polynomial Approximation (TPA) [16], Cayley-

Hamilton (CH) [21], power of R (POR) [21], multi-

stage Wiener Filter (MSWF) [30–32], conjugate-gradient

reduced-rank filter (CGRRF) [21] and auxiliary vector filters

(AVF) [33, 34], all use Krylov subspace to design the prepro-

cessing matrix. TPA is understood as a modified implemen-

tation of the MSWF [30]. Furthermore, in [21], TPA, POR,

MSWF and CGRRF are called exact methods which were

proven to be mathematically equivalent, and result in identical

BER performance. It has been shown in [34] that AVF is

equivalent to CH and MSWF. Despite the fact that all the

methods are mathematically equivalent, TPA has the simplest

implementation [21]. Therefore, TPA is only considered in this

contribution.

The Taylor expansion of RRR−1 can be expressed as

RRR−1 = µ(µRRR)−1 = µ[III − (III − µRRR)]−1

= µ

∞
∑

i=0

(III − µRRR)i, (37)

where µ must satisfy 0 < µ < λmax where λmax corresponds

to maximum eigenvalue of RRR. Using the first U values of (37),

we obtain

RRR−1 ≈ µ

U
∑

i=0

(III − µRRR)i

= a0III + a1RRR+ · · ·+ aU−1RRR
U−1. (38)

The coefficients ai are chosen to minimize the MSE [21]. In

the context of the TPA-assisted reduced-rank MMSE detection,

the preprocessing matrix PPP can be finally expressed as

PPP = [hhh,RRRhhh, · · · ,RRRU−1hhh]. (39)

D. Remarks: Adaptive Detection

When the destination node does not have the exact knowl-

edge of the channel and the correlation matrix, adaptive

detection can be used for reduced-rank techniques. MSWF

can be implemented adaptively as mentioned in [30, 31]. Since

the exact knowledge of the correlation matrix and the cross-

correlation vector is not available at the destination, MSWF

suffers performance degradation, with respect to the ideal

MMSE detector. In order to improve performance, joint itera-

tive optimization (JIO) methods have been recently proposed

in [35, 36]. These JIO methods outperform the MSWF and the

complexity depends on the choice of the adaptation algorithm.
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Table I
COMPUTATIONAL COMPLEXITY.

Number of operations per symbol
Algorithm Additions Multiplications

Ideal MMSE detector L3/3 + L2 + L L3/3 + L2 + 2L
CS-based MMSE detector 3U2L+ 17U3/3 + LU + log2 U − L− 3U 3U2L+ 17U3/3 + 5U2 + UL+ U
PC-based MMSE detector L3/6 + U3/3 + 2UL+ U2 + U log2 L+ L+ U L3/6 + U3/3 + 2UL+ U2 + L+ U
CSM-based MMSE detector L3/6 + U3/3 + 2UL+ U2 + U log2 L+ 2L+ U L3/6 + U3/3 + 2UL+ U2 + 4L+ U
TPA-based MMSE detector U3/3 + (U − 1)L2 + 2UL+ U2 + L U3/3 + (U − 1)L2 + 2UL+ U2 + L

For an LMS version, the JIO method is computationally

simpler than the MSWF, whereas for an RLS version, the JIO

method has a cost comparable to the MSWF. Furthermore, in

order to reduce the complexity of JIO methods, joint itera-

tive interpolation, decimation, and filtering (JIDF) has been

proposed in [37]. JIDF has a better performance as compared

to JIO [37]. However, since we assume the destination has

complete channel knowledge, it becomes unnecessary to apply

adaptive techniques in this paper.

VII. COMPLEXITY CALCULATIONS AND ANALYSIS

This section demonstrates the computational complexity of

each detector in a cooperative communication system. The

computational complexity is measured in terms of the number

of additions and multiplications required to detect a bit. The

complexity of ideal MMSE detector, with a preprocessing ma-

trix based on CS, PC, CSM and TPA techniques is summarized

in Table I. For simplicity of calculation, only the dominant

complexity terms are considered. Also, we ignore the amount

of computation required for channel estimation in the ideal

MMSE detector. For the CS-based detector we assume that the

selected window is always the optimal one that maximizes the

SNR. Therefore, the complexity of choosing the best window

is not incorporated in the analysis. Furthermore, for calculation

of the computational complexity the following assumptions are

employed based on [28, 29].

• Multiplication of an (M × N) matrix with an (N × L)
requires M(N−1)L additions and MNL multiplications.

• Computing the inverse of an (M ×M) matrix by using

Cholesky decomposition requires M3/6 additions and

M3/6 multiplications.

• Arranging the maximum eigenvalues of a matrix requires

log2 M operations where M is the size of the matrix.

From Table I, it can be observed that the complexity of

these techniques can be much lower than the ideal MMSE

detector especially when U is small. However, as U increases,

the complexity of these techniques gradually increases, and

eventually exceeds that of the ideal MMSE detector. Further

analysis of the complexity will be carried out in the upcoming

section.

VIII. SIMULATION RESULTS AND DISCUSSION

In this section, the BER performance for the proposed

WSN system with L = 10 sensors is investigated. In our

simulations, the channel gains were assumed to obey the

Rayleigh distribution. The transmitted signal is assumed to

have unit power and the destination and all the sensors have

the same noise power. All the sensors are synchronized and

complete channel knowledge is available.

A. BER Performance

Fig. 3 shows the BER performance as a function of the SNR

per bit. The BER performance of the detection when involving

all participating sensors is shown as a bench mark. It can be

observed that the CS- and the optimized channel shortener

(OCS)-based technique achieve the same BER performance for

U = 1. The reason of achieving the same BER performance

for U = 1 is that both schemes select the best sensor among L.

However, for U ≥ 2, our proposed OCS outperforms the CS by

more than 1dB. A difference of more than 3dB can be observed

as compared to all participating sensors for U = 3. The CS-

and OCS-based techniques have a similar slope as that of all

participating sensors. Therefore, the CS- based, OCS-based

and all participating sensors have the same diversity order.

The diversity order of the system is 10 as L = 10 sensors are

deployed. It has already been proved in the literature that the

best relay achieves full diversity order.
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Figure 3. Channel Shortening: BER performance of wireless sensor
networks when the sensors employ variable-gain amplification factor.

Fig. 4 compares the BER performance when communicating

with variable-gain sensors using the OCS-, PC-, CSM- and

TPA-based preprocessing matrix. It can be observed that for
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Figure 4. Comparison: BER performance of several detectors in wireless
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Figure 5. Comparison: BER performance of several detectors in wireless
sensor networks when using fixed-gain amplification factor.

a given size of U , the TPA-based technique significantly

outperforms the PC-, CSM-, and OCS-assisted techniques.

The PCA-based technique is the worst in terms of BER

performance among the three proposed schemes. It can also

be observed that OCS-based scheme outperforms the PC-

and CSM-based schemes at higher SNRs. However, the BER

performance of the OCS-based scheme is worse among all

the considered schemes for low SNRs. It means that the PC-

and CSM-based techniques lose their diversity order when

reducing the size. For instance, the diversity order of PC- and

CSM- based schemes for U = 1 matches our analytic result

which is addressed in the appendix.

Finally, in Fig. 5, we compare the BER performance of

WSNs when using fixed-gain amplification factor. It can be

observed that the TPA-based scheme is equivalent to all partic-

ipating sensors for U = 1. TPA-based technique also performs

better than the PC-, CSM- and OCS-assisted schemes. The

PC-based scheme is equivalent to the CSM-assisted scheme

in terms of BER performance. It can also be observed that the

BER performances of all these schemes are much superior to

the OCS-based scheme. Moreover, the slopes for all schemes

are the same, therefore, the system will have a diversity order

of L = 10. We have tried to address this diversity order for

PC- and CSM-based scheme in the appendix.
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Figure 6. Number of operations versus the selected size U .

B. Complexity Analysis

In Fig. 6, the number of operations is plotted with respect

to selected size of U . It can be observed that, as U increases,

more operations are required to detect a bit. The complexity of

the CS-based scheme increases quadratically and is more than

that of the TPA-based scheme. The complexity of the PC- and

CSM-based schemes is similar. For high U , the complexity of

PC- and CSM-based techniques is lower than that of the CS-

and TPA-based techniques.

Finally, Table II presents the computation saving versus

difference in SNR as compared to the ideal MMSE detector at

BER of 10−4. Firstly, increasing the value of U decreases the

computational saving and the difference in SNR. Secondly,

for U = 3, OCS-based preprocessing matrix neither gives

any computational saving nor the difference in SNR gets

close to the ideal MMSE detector. Therefore, if the selection

is more than 3 sensors, it is better to deploy ideal MMSE

detection as compared to the OCS-based detector. Thirdly, the

complexity saving of PC-based preprocessing matrix becomes

larger than that of CSM-based preprocessing matrix, although

this advantage in complexity saving results in more difference

in SNR as compared to ideal MMSE detector. Finally, it can

be concluded that designing TPA-based preprocessing matrix

gives us more computational saving as well as less difference

in SNR as compared to all the other considered techniques.



8

Table II
COMPUTATION SAVED VS DIFFERENCE IN SNR AS COMPARED TO THE

IDEAL MMSE DETECTOR AT BER OF 10−4 .

Preprocessing Computation Difference Difference
Based Saved in SNR in SNR

Detector w.r.t ideal with fixed with variable
MMSE gain sensors gain sensors

U=1 91.05% 4.85 5.6
OCS U=2 59.66% 2.25 3.3

U=3 0% 1.25 2

U=1 54.74% 0.25 6.3
PC U=2 48.42% 0.0 1.8

U=3 40.76% 0.0 0.8

U=1 50.23% 0.05 4.85
CSM U=2 43.91% 0.0 1.3

U=3 36.24% 0.0 0.6

U=1 92.93% 0.0 1.9
TPA U=2 64.66% 0.0 0.3

U=3 35.04% 0.0 0.0

IX. CONCLUSIONS

In this paper, channel-shortening (CS) and rank-reduction

techniques have been proposed for cooperative WSNs to

reduce the complexity of the ideal MMSE detector while

maintaining the BER performance. The proposed CS technique

outperforms the previously known CS techniques by more

than 1dB when U ≥ 2. The performance and complexity

of the proposed reduced-rank techniques are superior to the

CS technique when deploying fixed-gain amplification factor.

However, a tradeoff can be observed between the complexity

and BER performance when the sensors utilize variable-gain

amplification factor. The cross spectral metric (CSM)-based

technique outperforms the principal component (PC)-based

technique in terms of BER, but with a modest increase

in complexity. While, the Taylor polynomial approximation

(TPA)-based technique reaches the same BER performance

as the ideal MMSE for U = 3. Our future research will

concentrate on implementing adaptive rank-reduction schemes

when the channel knowledge is not available.

APPENDIX

In this appendix, we carry out a case study for the diversity

order of PCA- and CSM-based rank reduction using U = 1.

The correlation matrix can be given as RRR = hhhhhhH +ΣΣΣ and we

can asymptotically approximate RRR
.
= hhhhhhH as the SNR goes

to infinity (i.e., σ2
1 , σ

2
2 → 0), where

.
= denotes asymptotic

value in high SNR. Then, the eigenvector corresponding to the

maximum eigenvalue is approximately ϕϕϕ1
.
= hhh which is the

preprocessing matrix PPP when U = 1 in PCA-based reduced

rank technique (it is also a preprocessing vector in TPA-based

technique with U = 1.). Multiplying this preprocessing vector

by the received signal, the output signal can be given as

PPPHyyy = ϕϕϕH
1 yyy = hhhH(hhhb+nnn), (40)

and the received SNR can be computed as

γ
.
=

(

∑L
ℓ=1

|hℓ|
2

)2

∑L
ℓ σ2

ℓ |hℓ|2
. (41)

The diversity order of the received SNR can be defined as [39]

d = lim
ρ→∞

−
log(Fγ(x))

log ρ
, (42)

where ρ denotes the SNR and Fγ(x) is the cumulative distri-

bution function (CDF) of γ. Without loss of generality, we set

ρ = 1

σ2 by assuming σ2
Rℓ

= σ2
Dℓ

= σ2 and ES = ERℓ
= 1

for all ℓ = 1, 2, . . . , L. Then, let us look at the diversity order

for fixed- and variable-gain amplifications. Throughout this

appendix, the diversity gain is calculated with the help of the

CDF of the received SNR which is equivalent to the outage

probability of the received SNR.

A. Fixed-Gain Amplification

Applying fixed-gain amplification factor in high SNR, i.e.,

ζ2Rℓ

.
= 1, and substituting it and σ2

ℓ
.
= σ2(|hRℓD|2 + 1) into

(41) yields

γf
.
=

(

∑L
ℓ=1

|hSRℓ
|2|hRℓD|2

)2

σ2
∑L

ℓ=1
|hSRℓ

|2|hRℓD|2(|hRℓD|2 + 1)
. (43)

It is also intractable to compute the exact CDF of γf and we

first find the tractable lower bound of γf . The lower bound on

the diversity order in terms of SNR will emphasize that the

system will have at least the diversity order of lower bound

of γf . Intuitively, γf is bounded by γf,lb which is represented

as

γf >

∑L
ℓ=1

|hSRℓ
|2|hRℓD|2

σ2 maxℓ |hRℓD|2 + 1

>
minℓ |hRℓD|2

maxℓ |hRℓD|2 + 1
·

L
∑

ℓ=1

|hSRℓ
|2ρ , γf,lb. (44)

Defining two random variables, X =
minℓ |hRℓD

|2

maxℓ |hRℓD
|2+1

and

Y =
∑L

ℓ=1
|hSRℓ

|2ρ, we can easily observe that the random

variable X is irrelevant of ρ and Y is the central chi-square

random variable with 2L degrees of freedom with probability

density function (PDF) [40]

fY (y) =
1

(L− 1)!ρL
yL−1e−y/ρ. (45)

By substituting the Taylor expansion of e−y/ρ =
∑∞

ℓ=0
(−y/ρ)ℓ into the above PDF, the CDF can be

represented as

FY (y) =
yL

L!
ρ−L + o(ρ−L). (46)

The CDF of γf,lb can be represented as

Fγf,lb
(x) = EX [FY (x/X)]

=
xL

L!
E

[

1

XL

]

ρ−L + o(ρ−L). (47)

Finally, the diversity order of γf is given by

df ≥ lim
ρ→∞

−
log
(

ρ−L
(

xL

L!
E
[

1

XL

]

+ o(1)
))

log ρ
= L. (48)
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It is straightforward to achieve a diversity order of L at

maximum with L independent channels and therefore we

conclude that df = L. Hence, full diversity is achieved when

employing fixed gain amplification even with U = 1.

B. Variable-Gain Amplification

Applying variable-gain amplification factor in high SNR,

i.e., ζ2Rℓ

.
= 1/|hSRℓ

|2, and substituting it and σ2
ℓ

.
=

σ2(|hRℓD|2/|hSRℓ
|2 + 1) into (41) yields

γv
.
=

(

∑L
ℓ=1

|hRℓD|2
)2

σ2
∑L

ℓ=1
|hRℓD|2(|hRℓD|2/|hSRℓ

|2 + 1)
. (49)

Due to the intractability of the exact CDF of γv , we should

find the upper-bound of γv which does not affect the diversity

order of γv . By omitting some parts of denominator, γv is

upper-bounded such that

γv <

(

∑L
ℓ=1

|hRℓD|2
)2

σ2
∑L

ℓ=1
|hRℓD|4/|hSRℓ

|2
. (50)

Using the inequality,
∑L

ℓ=1
|hRℓD|4/|hSRℓ

|2 > |hRkD|4/|hSRk
|2

for any k, γv is further bounded as

γv < min
ℓ

(

L
∑

k=1

|hRkD|2/|hRℓD|2

)2

· |hSRℓ
|2ρ = γv,ub. (51)

Defining Xℓ =
(

∑L
k=1

|hRkD|2/|hRℓD|2
)2

and Yℓ =

|hSRℓ
|2ρ temporarily, we can say that Xℓ is irrelevant of the

SNR ρ and Yℓ is exponentially distributed with Yℓ ∼ χ2
2(ρ).

The CDF of γv,ub can be represented as

Fγv,ub
(x) =

L
∑

ℓ=1

Pr
[

XℓYℓ < x|XℓYℓ < min
k ̸=ℓ

XkYk

]

× Pr
[

XℓYℓ < min
k ̸=ℓ

XkYk

]

= Pr
[

XℓYℓ < x
∣

∣

∣
XℓYℓ < min

k ̸=ℓ
XkYk

]

,

> Pr[XℓYℓ < x], (52)

where the second equality holds because both probabilities in

summation are equally probable over ℓ = 1, 2, . . . , L. This

conditional CDF is cumbersome to calculate because of the

correlation between random variables in order over ℓ. By

omitting the condition, the third inequality holds. By using the

Taylor expansion of the CDF of Yℓ, FYℓ
(y) = 1 − e−y/ρ =

−
∑∞

k=1
(−y/ρ)k, the probability in (52) is represented as

Pr[XℓYℓ < x] = EXℓ

[

FYℓ
(x/Xℓ)

]

= E

[

x

Xℓ

]

ρ−1 + o(ρ−1). (53)

Finally, the diversity order of γv is given by

dv ≤ lim
ρ→∞

−
log(Fγv,ub

(x))

log ρ

≤ lim
ρ→∞

−
log
(

ρ−1

(

E
[

x
Xℓ

]

+ o(1)
))

log ρ
= 1. (54)

It is straightforward to achieve at least the diversity order

of 1 like a single channel scenario and therefore we say

dv = 1 here. When variable-gain amplification factor is used

in case that U = 1, a loss in diversity order can be observed

as compared to fixed-gain amplification factor which was

discussed in the previous section.
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