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Abstract

In this paper, we propose an improved generative adversarial network (GAN) for image compression artifacts

reduction task (artifacts reduction by GANs, ARGAN). The lossy compression leads to quite complicated

compression artifacts, especially blocking artifacts and ringing effects. To handle this problem, we choose

generative adversarial networks as an effective solution to reduce diverse compression artifacts. The structure of “U-

NET” style is adopted as the generative network in the GAN. A discriminator network is designed in a convolutional

manner to differentiate the restored images from the ground truth distribution. This approach can help improve

the performance because the adversarial loss aggressively encourages the output image to be close to the

distribution of the ground truth. Our method not only learns an end-to-end mapping from input degraded image

to corresponding restored image, but also learns a loss function to train this mapping. Benefit from the improved

GANs, we can achieve desired results without hand-engineering the loss functions. The experiments show that our

method achieves better performance than the state-of-the-art methods.
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1 Introduction

Image restoration technology has become one of the most

important applications in computer vision and computer

graphics and attracted increasing attention in the field of

digital image processing, such as image haze removal [1],

image super-resolution [2–4], image deblur [5, 6], and

image understanding [7]. Image compression artifacts re-

duction aims at recovering a sharp image from the de-

graded image which is formed by JPEG compression or

other causes. JPEG compression is a kind of lossy com-

pression method that uses inaccurate approximations for

representing the encoded content. Although JPEG com-

pression is very common in our daily life, it may lead to

quite complicated compression artifacts, especially block-

ing artifacts and ringing effects which not only decrease

the perceptual visual quality, but also introduce obstruc-

tion to other low-level image processing routines.

In this paper, we use a deep learning-based approach

for image compression artifacts reduction. More

specifically, we propose a principled and efficient genera-

tive adversarial network (GAN) for this task. We denote

the proposed networks as artifacts reduction by GANs

(ARGAN) which was inspired from the GANs [8]. Simi-

lar to the standard GANs, ARGAN also consists of two

feed-forward convolutional neural networks (CNNs), the

generative network G and the discriminative network D.

The purpose of the generative network G is to generate

reasonable results from the input degraded images. The

goal of the discriminative network D is to discover the

discrepancy between the generated image and the corre-

sponding ground-truth image. Our proposed method

differs from the existing traditional [9] or other deep

learning-based approaches [10]. The traditional ap-

proaches need to extract the features of the images

manually. The deep learning-based approaches are usu-

ally based on CNN. We are the first to use (GANs) for

image compression artifacts reduction.

There are two main contributions in our work:

(1) We are the first to use an end-to-end generative ad-

versarial network (GAN) for image compression ar-

tifacts reduction. The experiments show that our

method achieves better performance than the state-
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of-the-art methods [9–11]. In this paper, we focus

on the restoration of the luminance channel (in

YCrCb space) as in [10], and the network is spe-

cially designed for this task.

(2) We demonstrate that generative adversarial

networks are useful in the image compression

artifacts reduction task and can achieve better

quality than the traditional or other deep learning-

based methods. Our method directly learns an end-

to-end mapping which can effectively estimate the

reasonable results from input degraded images and

make the restored image more real.

2 Related works

Various methods have been proposed to reduce image

compression artifacts. Early works, such as sparsity-based

image restoration approaches [12, 13], are proposed to pro-

duce sharpened images. Now in the field of image compres-

sion artifacts reduction, the existing popular methods can

be roughly divided into two categories including

deblocking-oriented and deep learning-based approaches.

The goal of the deblocking-oriented algorithms is to elimin-

ate ringing and blocking artifacts. Shape-adaptive discrete

cosine transform (SA-DCT) [9] is widely considered as the

state-of-the-art deblocking-oriented algorithm, but like

many other deblocking-oriented algorithms, it may produce

vague effects and is not able to maintain the sharp edges of

the original images. Recently, Wu [14] proposed wavelet

transform for blocking artifact reduction based on Meyer

algorithm.

Neural networks and deep learning currently provide the

best solutions to many problems [10, 11, 15–17]. In recent

years, deep learning has been increasingly improved in its

ability to provide accurate recognition and prediction. The

image compression artifacts reduction technology thus

made a breakthrough making use of the recent progresses

in deep learning. Dong et al. [10] applied deep learning to

the task of image restoration, where a simple model con-

sisting of four convolution layers was designed for image

compression artifacts reduction. With the improvement in

GPU performance and optimization algorithms, researchers

started to train larger and deeper neural networks.

Wang et al. [11] proposed a Deep Dual-Domain based

fast restoration model to remove artifacts of

JPEG-compressed images. It leverages the large learning

capacity of deep networks. Extensive experiments verify

the superiority of the proposed D3 model over several

state-of-the-art methods. Soon after, Wang et al. [15]

proposed an intensity-guided CNN (IG-Net) model,

which learns an end-to-end mapping between the inten-

sity image and distorted depth map to the uncompressed

depth map.

Convolutional neural networks are one of the most

important methods in deep learning, which are widely

used in the field of computer vision. In recent years, the

convolutional neural networks (CNNs) are trained in the

supervised manner for various image-related tasks, such

as object detection [18, 19] By penalizing the discrep-

ancy between the output image and ground-truth image,

optimal CNNs can be trained to discover the mapping

from the input image to the reasonable output image.

These various CNN models mainly differ in the network

construction and loss function design. One of the most

straightforward methods is to pixel-wisely evaluate the

output images [2, 3, 10], e.g., using L2 (or L1) norm to

calculate the distance between the output and

ground-truth images in the pixel space. However, this

method may generate blurred results which could make

the output images look unsatisfactory.

Fortunately, there are a large body of successful appli-

cations based on generative adversarial networks (GANs)

(e.g., SRGAN [4], DCGAN [20], Pix2Pix [21]) since

Goodfellow et al. [8] first officially proposed GANs in

2014. GANs perform an adversarial process alternating

between identifying and faking, and the generative ad-

versarial losses are formulated to evaluate the discrep-

ancy between the generated distribution and the real

data distribution. A lot of researches show that genera-

tive adversarial losses are beneficial for generating more

“realistic” images. Inspired by the success of generative

adversarial networks (GANs) on image-to-image transla-

tion [21, 22], we designed an efficient GAN network for

compression artifacts reduction. In this paper, we show

that the proposed networks are effective on our image

task. Experiments show that our method outperforms

current state-of-the-art methods [9–11] both percep-

tually and quantitatively.

3 Method

In this section, we will introduce the proposed genera-

tive adversarial networks for image compression artifacts

reduction. First, the generative adversarial losses of

ARGAN are described. Then, an overview of the pro-

posed method and the details of our networks are

illustrated.

3.1 Generative adversarial loss

GAN-based models have been widely used in learning

generative model due to their success in image gener-

ation. GAN was proposed to solve the disadvantages of

other generative models. Instead of maximizing the pos-

sibility, GAN introduces the theory of adversarial learn-

ing between the generator and the discriminator. This

adversarial process gives GAN obvious advantages over

the other generative models. Moreover, GAN can sample

the generated data in a simple way unlike other models

in which the sampling is computationally slow and not

accurate. For these advantages, GAN gained our
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attention, and this is the original intention for us to use

the framework of GAN. We therefore adapt the GAN

learning strategy to tackle the problem of image com-

pression artifacts. More specifically, the proposed

ARGAN consists of two feed-forward convolutional

neural networks (CNNs): the generative network G and

the discriminative network D. The reason why we use

CNN is that it can greatly stabilize GAN training.

ARGAN suggests an architecture guideline in which the

generator is composed of a CNN and a transposed

CNN, and the discriminator is composed of a CNN with

an output dimension 1. Batch normalization, rectified

linear unit (ReLU) and leaky rectified linear unit (Lea-

kyReLU) activation functions are utilized for the gener-

ator and the discriminator to help stabilize the GAN

training. The purpose of the generative network G is to

generate reasonable result G(x) from input image x.

Meanwhile, each input image x has a corresponding

ground-truth image y. G(x) is encouraged to have the

same data distribution with the ground-truth image y.

The goal of the discriminative network D is to discover

the discrepancy between the data distribution of gener-

ated image and the corresponding ground-truth image.

G and D compete with each other to achieve their re-

spective purposes, thus generating the term adversarial.

The generative adversarial loss can be expressed as:

min
G

max
D

Ey logD yð Þ½ � þ Ex log 1−D G xð Þð Þð Þ½ � ð1Þ

The loss function is a binary cross entropy function

that is commonly used in binary classification problems.

Where in Eq. 1, x is the input degraded image which has

a corresponding ground-truth image y. G tries to

minimize the loss, whereas the adversarial D tries to

maximize it.

Some recent works have found that it is desirable to

mix the generative adversarial loss with other traditional

loss, such as L1 [21] or L2 [23] distance. We also con-

sider this trick, but here, L2 distance is adopted rather

than L1 distance because L2 distance encourages G to

explore the mapping from the input image to its ground

truth and therefore make images more realistic:

LL2 Gð Þ ¼ Ex;y y−G xð Þk k22
� �

ð2Þ

Above all, the loss function of generative network LG
and the loss function of discriminative network LD are

formally defined as:

LG ¼ log 1−D G xð Þð Þð Þ þ λ y−G xð Þð Þ2 ð3Þ

LD ¼ − log D yð Þð Þ− log 1−D G xð Þð Þð Þ ð4Þ

The purpose of the discriminative network D is to dis-

tinguish real or fake data. From D’s perspective, if a sam-

ple comes from real data, D will maximize its output.

While, if a sample comes from G, D will minimize its

output. Thus, the overall aim is to minimize Eq. 4. Sim-

ultaneously, G wants to confuse D, so it tries to

maximize D’s output when a fake sample is presented to

D, that is, to minimize Eq. 3 where x is the

input-degraded image whose corresponding

ground-truth image is y and λ is the hyper parameter.

3.2 Architecture of networks

The architecture of the proposed ARGAN is based on

two deep convolutional neural networks, namely the

generative network G and discriminative network D,

whose combined efforts aim at obtaining a sharp image

for a given input image. Figure 1 shows the architecture

of the proposed ARGAN.

3.2.1 Generative network

The generative network G is designed for generating a

sharp image by reducing the image compression artifacts

given the input image. The structure of generative net-

work is inspired by the configuration of “U-Net” [24]

which is an encoder-decoder with skip connections be-

tween mirrored layers in the encoder and decoder

stacks. This kind of structure allows the same size of the

input and output image, and the local and global infor-

mation of the image can be taken into account at the

same time. This is the reason why we adopted the struc-

ture of “U-NET” as the generative network in the

ARGAN. The network G firstly encodes the input image

into high-dimensional representation, utilizing a stack of

convolution-batch normalization-LeakyReLU layers, and

then the rest of deconvolution-batch

normalization-ReLU layers will decode the output image.

The details of the generative network G are demon-

strated in the Table 1.

3.2.2 Discriminative network

The discriminative network D is proposed to compute

the discrepancy between the data distribution of the

generated images and the ground-truth images. The out-

put of the discriminative network D represents the pos-

sibility that the input image comes from the real-world

dataset (true) rather than from the generative network

(fake). All the convolution layers use LeakyReLU activa-

tions, with the exception of the final layer, which adopts

a sigmoid activation. The details of the network D are

listed in the Table 2.

4 Results and discussion experiments

4.1 Experiment settings

We use the VOC2012 dataset [25], which includes

16,700 images, as our training set. We trained our net-

work models (in 1,500,000 iterations with a batch size of

64) on one NVIDIA GTX970 GPU using Pytorch. The
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weights of the networks are trained from scratch. Train-

ing images are random cropped into 64 × 64 sub-images

during each batch. In the training phase, we follow [21]

and use an Adam solver with a learning rate of 0.0002

and an initial momentum of 0.5. After one update of the

discriminative network D, the generative network G will

also be updated one time.

We compare our method with several state-of-the-art

algorithms, including the deblocking oriented method

SA-DCT [9] and the deep model ARCNN [10], D3 [11],

on restoring JPEG-compressed images. Following [8], we

adopt standard JPEG compression and set JPEG quality

q = 10, 20, 30, 40 (from low quality to high quality) in

JPEG encoder. With the test datasets LIVE1 [26] and the

5 test images in [9], the PSNR, SSIM [27] measurements

are applied for quality assessment. In this paper, our

method is only applied on the luminance channel as

same as [10] (Y channel in YcbCr color space), and

PSNR is evaluated on the Y channel. The PSNR can be

defined as:

MSE ¼ 1

mn

X

m−1

i¼0

X

n−1

j¼0

I i; jð Þ−K i; jð Þk k2 ð5Þ

Table 2 The details of the discriminative network D

Discriminative network D

Input: G(x) or ground truth, size = 64 × 64

[Conv 1] Conv (4, 4, 64), stride = 2, padding = 1; BatchNorm; LeakyReLU;

[Conv 2] Conv (4, 4, 128), stride = 2, padding = 1; BatchNorm;
LeakyReLU;

[Conv 3] Conv (4, 4, 256), stride = 2, padding = 1; BatchNorm;
LeakyReLU;

[Conv 4] Conv (4, 4, 512), stride = 2, padding = 1; BatchNorm;
LeakyReLU;

[Conv 5] Conv (4, 4, 1), stride = 1, padding = 0; Sigmoid

Output: size = 1 × 1

Table 1 The details of the generative network G

Generative network G

Input: x, size = 64 × 64

[Conv 1] Conv (3, 3, 64), stride = 2, padding = 1; LeakyReLU;

[Conv 2] Conv (4, 4, 128), stride = 2, padding = 1; BatchNorm;
LeakyReLU;

[Conv 3] Conv (4, 4, 256), stride = 2, padding = 1; BatchNorm;
LeakyReLU;

[Conv 4] Conv (4, 4, 512), stride = 2, padding = 1; BatchNorm; ReLU;

[DeConv1] DeConv (4, 4, 256), stride = 2, padding = 1; BatchNorm;
ReLU;

[DeConv2] DeConv (4, 4, 128), stride = 2, padding = 1; BatchNorm;
ReLU;

[DeConv3] DeConv (4, 4, 64), stride = 2, padding = 1; BatchNorm; ReLU;

[DeConv4] DeConv (4, 4, 3), stride = 2, padding = 1

Output: G(x), size = 64 × 64

Fig. 1 Architecture of the proposed ARGAN
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PSNR ¼ 10 � log10
MAX2

I

MSE

� �

¼ 20 � log10
MAXI
ffiffiffiffiffiffiffiffiffiffi

MSE
p

� �

ð6Þ

where I is the ground-truth image and K is the restored

image. The size of the I and K are both m × n, and the

MAXI is the gray level of the image. Generally speaking,

the better the image quality, the larger the value of

PSNR.

The SSIM can be defined as:

SSIM I;Kð Þ ¼ 2μIμK þ c1ð Þ σ IK þ c2ð Þ
μ2I þ μ2K þ c1
� �

σ2I þ σ2K þ c2
� � ð7Þ

where I is the ground-truth image and K is the restored

image and μI and μK are the average value of I and K, re-

spectively. σI and σK are the standard deviation of I and

K, respectively. σIK is the covariance, and c1 and c2 are

Fig. 2 The results of the ARCNN and ARGAN
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constants. When I = K, the SSIM usually approximately

to be 1.

4.2 Intuitive visual comparison

Figure 2 gives the comparative results of our method

and the state-of-the-art algorithm ARCNN [10]. As

shown in Fig. 2, our method obtains the highest image

recovery quality (q = 10) and the best PSNR and SSIM

scores.

4.3 Quantitative comparisons

In order to prove the efficiency of our proposed method,

we compare ARGAN with three methods: SA-DCT [9],

which is widely considered as the state-of-the-art

deblocking-oriented algorithm; ARCNN [10], an efficient

deep learning-based method for image compression arti-

facts reduction; D3 (Deep Dual-Domain based fast res-

toration) model [11]. Using the exactly the same dataset,

we directly use the results of ARCNN in the original

paper. We trained and tested D3 model according to

their paper [11]. As shown in Table 3, our method al-

ways yields the highest scores. The results show that the

results of the proposed ARGAN are superior to the

other algorithms. We have also conducted an evaluation

on five test images used in [9]. The results also show

that ARGAN achieves the highest performance. The re-

sults are listed in Table 4.

5 Discussion

We have presented corresponding experimental results

in the above section. The proposed method is compared

with several state of the arts, e.g., JPEG, SA-DCT [9],

and the deep model ARCNN [10], D3 (Deep

Dual-Domain based fast restoration) model [11]. We can

see that the proposed method is extremely effective in

dealing with various compression artifacts.

Subjectively speaking, the performance improvement

owes to the following aspects. Firstly, we modified the

generative model to be the “U-Net” [24] instead of the

standard CNN within the inner structure of GANs. Ac-

cordingly, utilizing a stack of convolution-batch

normalization-LeakyReLU layers makes the model more

effective.

This paper provides the research theory for the image

compression artifacts reduction by modified GANs. Even

with complicated working conditions on the scene, the

performance is improved consistently and greatly. More-

over, we designed a customized network to further im-

prove the PSNR and SSIM. In the further work, we hope

to reduce the computational load and increase the effi-

ciency of the model. A structure-optimized GANs can

improved neural network and may help us to solve this

problem. This issue will be our future work.

6 Conclusion

In this paper, image compression artifacts reduction is

achieved by generative adversarial networks, and we

make sufficient comparisons with SA-DCT [9], ARCNN

[10], and D3 [11], respectively. The results show that the

proposed ARGAN is effective in removing various com-

pression artifacts. The detail information maintains bet-

ter, making the images look clearer.
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