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ABSTRACT

Given a color image that was quantized in some hidden color space
(termed compression color space) during previous JPEG compres-
sion, we aim to estimate this unknown compression color space
from the image. This knowledge is potentially useful for color im-
age enhancement and JPEG re-compression.

JPEG quantizes the discrete cosine transform (DCT) coeffi-
cients of each color plane independently during compression. Con-
sequently, the DCT coefficients of such a color image conform to
a lattice. We exploit this special geometry using the lattice reduc-
tion algorithm used in cryptography to estimate the compression
color space. Simulations verify that the proposed algorithm yields
accurate compression space estimates.

1. MOTIVATION

Color images can be expressed in many equivalent representations
or color spaces [2]. Each color space requires three independent
values to describe a color, eg., the RGB color space expresses each
color in terms of its red, green and blue components. Most color
spaces are related to each other by linear transformations that is
captured by a �� � matrix.

JPEG is a commonly used standard to compress still color im-
ages [1] (see Figure 1). However, the choice of the color space in
which quantization is performed during JPEG compression (hence-
forth termed as the compression color space) is not standardized;
this choice can vary in different JPEG implementations. The
knowledge of the compression color space used during previous
JPEG compression is often lost in its current uncompressed rep-
resentation. For example, a display or a printing driver is just
handed the bitmap of the uncompressed image with no information
about the compression color space. To enhance or re-compress such
color images, knowledge of the compression color space would be
useful[3].

In this paper, we address the following problem: given a color
image that is currently represented in some arbitrary color space
���, but was quantized in some unknown color space ��� dur-
ing previous JPEG compression, estimate the linear transformation
relating the ��� color space to the ��� color space.

2. PROBLEM GEOMETRY

The coefficients of an image subjected previously to JPEG com-
pression conform to a regular geometric structure, which can be
exploited to estimate the compression color space. The inherent
geometry can be understood by analyzing the operations that a pre-
viously JPEG-compressed image is subjected to.
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2.1. JPEG compression, decompression, and transformation

Consider a color image that is currently represented in the ���
color space (see Figure 1). Assume that ��� is the compression
color space used by JPEG (see Figure 1). The compression color
space ��� is assumed to be unknown. Such a color image under-
goes the following operations to reach its current representation in
the ��� color space.

� JPEG compression: JPEG performs the following opera-
tions on each color plane � , �, and � independently:

1. Take the DCT of each 8�8 block in the chosen plane.

2. Let � denote one of the 64 resulting DCT coeffi-
cients, and �� denote the corresponding quantization
step size. Quantize the ��� DCT coefficient of each
8�8 block from Step 1 to the closest integer multi-
ple of ��. Let 	� denote the ��� DCT coefficient of
one such block. Then, 	� is quantized to 
���, where
�	������ ��� � 
� 
 �	����� � ���� 
� � ZZ.

The compressed image is stored by retaining the quantized
DCT coefficients of each color plane. Sometimes sub-
sampling is also employed after Step 2 to achieve further
compression [1]. However, in this paper, we have assumed
that sub-sampling is not performed.

� JPEG decompression:
1. Take the inverse DCT of the 8�8 blocks of quantized

coefficients.
2. Round-off resulting pixel values to the nearest integer

so that they lie in the 0–255 range.

� Color transformation: To be represented in the current
��� representation, the image would undergo a transfor-
mation (assumed to be linear) from ��� to ��� space.

2.2. Ideal geometry of previously JPEG-compressed image

Consider an arbitrary � � � color image block that the DCT acts
on during JPEG compression in the ��� space. Let 	�� , 	�� , and
	�� denote the respective ��� frequency DCT coefficients of the � ,
�, and � planes in the chosen � � � color image block. JPEG
quantizes the DCT coefficients of the each plane independently to

�
� �

�
� ,
�

� �
�
� , and 
�

� �
�
� , where the notations follow from Step 2

in JPEG compression described in Section 2.1. All the ��� DCT fre-
quency coefficients from the different ��� blocks in the image are
subjected to the same quantization step size (��� , ��� , and ��� for the
� , �, and � planes respectively). Consider the 3-dimensional (3-
d) vector of quantized DCT coefficients �
�

� �
�
� 
�

� �
�
� 
�

� �
�
� 	� .

Due to independent quantization of each plane, all such 3-d vectors
of ��� frequency DCT coefficients lie on a rectangular box grid with
edge-lengths equal to the quantization step sizes (see Figure 2).
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If this compressed image is now represented in some other
color space ��� using some linear transformation from ���
(see Figure 2), then the corresponding 3-d vectors of DCT coef-
ficients in the ��� space do not lie on a rectangular box grid, but
on a parallelepiped1 grid, assuming that no round-off is performed
during JPEG decompression in the ��� space. The edges of the
parallelepiped are determined by the column vectors of the � � �
color transform from ��� to ���, which we henceforth denote
by � . Typically, the only color space in which the 3-d vectors of
DCT coefficients lie on a rectangular box grid for each DCT fre-
quency is the ��� color space. Thus, the geometry of the DCT
coefficients can be exploited to determine the compression color
space ��� from the image represented in the ��� color space.

2.3. Round-off errors perturb coefficient geometry

Round-offs employed during JPEG decompression (see Figure 1
and Step 2 in JPEG decompression in Section 2.1) perturb the DCT
coefficient values. Consequently, the 3-d vectors of DCT coef-
ficients in the ��� color space representation lie only approxi-
mately on the rectangular-box grid (see Figure 2). Let �� denote the
3-d error vector between the vector of DCT coefficients before and
after round-off. Then, from [3], the perturbations in the 3-d DCT
coefficient vectors in the ��� space can be statistically modeled
by a truncated 3-d Gaussian

� � ��� � 
����
� ������ where �� � ���� �	��

where � ��� denote the probability density function (PDF) of ��,
and ���� �	� denotes the cube centered at the origin with edge-
length �� that supports of the truncated Gaussian. � changes with
the different DCT frequencies; the maximum value for � is � [3].

After transformation from the ��� space to ��� space, the
3-d perturbation error vector ���	
 in the ��� space is given by
���	
 � � ��. Hence,

� � ���	
� � 
����
���� ���	
�
��� ���	
 � � �����	��

where � �����	� denotes the cube ���� �	� transformed by the
color transform � . The exact PDF is dependent on the unknown
transformation � , which is inconvenient. We approximate the PDF
for the perturbation error vector ���	
 in the ��� space as a
truncated Gaussian with increased support as

� � ���	
� � 
����
� ���	
�
���

���	
 � ���� �	�� (1)

Though this approximation is coarse, we will see that we still obtain
satisfactory estimation results.

3. LATTICE REDUCTION ALGORITHM

Lattices are regular arrangements of points in space, whose study
arises in both number theory and crystallography. Consider
an ordered set of � vectors ��� ��� � � � ��. Then a lattice �
spanned by these vectors consists of all integral linear combina-
tions ���� � ���� � � � �� ����� �� � ZZ.

The structure in Figures 2(a) and (b) are both examples of 3-
d lattices. Our need to exploit the lattice structure offered by the
problem prompts us to invoke lattice reduction algorithms discov-
ered in field of number theory. Given a set of vectors such as the
��’s that lie on a lattice, the goal of lattice reduction is to find an
ordered set of basis vectors for the lattice from the ��’s such that
the basis vectors are [4]

1A solid with six faces, each of which is a parallelogram

1. maximally orthogonal,

2. has the shortest basis vectors first in the ordered set.

A major breakthrough in this long-time open problem was the dis-
covery of the LLL algorithm [5] to perform lattice reduction in
polynomial time. LLL algorithms have since proved invaluable in
many areas of mathematics and computer science, especially in al-
gorithmic number theory and cryptology [6, 4]. Lattice reduction
is achieved by using a sequence of very simple operations on the
vectors ��’s. These operations are

1. Change the order of the basis vectors.

2. Add to one of the vectors �� an integral multiple of another
vector �� . Note that the vectors resulting from such integral
operations still lie on the same lattice.

3. Delete any resulting zero vectors.

4. LATTICE REDUCTION FOR COMPRESSION SPACE
ESTIMATION

In the absence of round-off errors, 3-d vectors of ��� color space
DCT coefficients would exactly lie on a lattice. Hence the LLL
algorithm applied to these 3-d vectors would provide a set of al-
most orthogonal basis vectors that spans the parallelepiped lattice
in Figure 2 (b). However, 3-d vectors of DCT coefficients are per-
turbed from the exact lattice locations due to round-off. Since the
perturbation errors in the DCT coefficient vectors get amplified dur-
ing the arithmetic operations used by the LLL algorithm, a direct
implementation of the LLL algorithm is not feasible to estimate the
desired basis vectors that span the approximate parallelepiped. For-
tunately, since there are many � � � blocks in the image, we often
have many realizations of 3-d DCT vectors that belong to the same
parallelepiped lattice location. This provides us with an opportu-
nity to mitigate the noise in the 3-d DCT vectors, thereby resulting
in a more robust lattice estimation algorithm.

We propose the following lattice estimation algorithm to fuse
our knowledge about the statistics of the round-off noise with the
LLL algorithm. The steps in the algorithm are as follows:

1. Choose a DCT frequency. Take the 3-d histogram of the 3-d
DCT coefficient vectors from the different �� � blocks.

2. Sort the locations of the histogram bins in descending order
of the histogram values obtained in Step 1. This ensures that
the LLL algorithm is initiated with the least noisy vector.

3. Choose the first location vector on the sorted list that lies
outside the cube ���� �	� as a basis vector to the lattice. Any
vector within the cube ���� �	� could potentially be a noisy
realization of origin �� � �	� , and is hence ignored.

4. Choose the next location vector. If there are no more vectors
left in the list, then exit.

5. Calculate the error vector between the currently chosen vec-
tor and the closest vector that lies on the lattice spanned by
the current set of basis vectors. The calculation of the error
vector invokes a slight variant of the LLL algorithm.

6. If the error vector calculated in Step 5 lies outside the cube
���� �	�, then the currently chosen vector does not lie in the
span of the current set of basis vectors. Hence add the cur-
rently chosen vector to list of basis vectors. Perform LLL on
this set of basis vectors. Go to Step 4.

7. If the error vector lies inside the cube ���� �	�, then the cur-
rently chosen vector lies in the span of the current set of ba-
sis vectors. Add the current vector to the list of vectors that
have already lie in the span of the current basis, and massage
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the basis vectors to minimize the cumulative probability of
error (see Appendix A for details). Go to Step 4.

For each DCT frequency, the above algorithm yields a set of basis
vectors for lattice that the 3-d vector of the respective DCT coeffi-
cients approximately lie on.

Since any set of lattice basis vectors is not unique, the final
piece in the puzzle is the deduction of the color transform from the
estimated lattice basis vectors from the different DCT frequencies.
Let �� be the estimated set of lattice basis vectors for DCT fre-
quency �. Then�� � � ���	��, where ���	 is a diagonal matrix with
entries given by the respective quantization step sizes used during
compression in the ��� space. �� is a unit-determinant matrix
with integer entries to account for the non-uniqueness of lattice ba-
sis vectors. An estimate of any scaled version of the color trans-
form matrix � such as � ���	 would solve our problem, since the
color transform matrix is assumed to have unit-norm column vec-
tors. Hence we need to estimate and undo the effect of �� from ��

to obtain the color transform estimate. Let �� � � ��� 	�� be esti-
mated set of lattice basis vectors for DCT frequency �. We observe
that ����

��

� �������
��

� � is a diagonal matrix. ���� and ���� and
also integer matrices; hence we can undo the effects of �� and ��

from �� and �� respectively by trying different integer addition
and subtraction operations on the columns of �� and �� , so that
����

��

� �������
��

� � is diagonal. With heuristics, this search can
be performed very efficiently to obtain the desired color transform
estimate.

5. RESULTS

To verify our proposed algorithm, we used a test color image that
was quantized in the ITU.BT-601 YCbCr space during JPEG com-
pression with quality factor 70. The Cb and Cr planes were not
sub-sampled by JPEG. The uncompressed image was then trans-
formed to the RGB space. Our algorithm operated on the this image
to estimate the color transform from ITU.BT-601 YCbCr to RGB.

The actual transform � from ITU.BT-601 YCbCr to RGB with
columns normalized to unity is

� �

�
������� ������ ������
������ ������� �������
������ ������ �����


�
� (2)

The lattices estimated by our proposed algorithm for the DCT fre-
quencies ��� �	 and ��� �	 respectively were
�
����� ������ �
���
���� ���
 ������
���� ���� �����

�
� and

�
����� ������ �����
���� ����� ������
���� ���� �����

�
� �

Though the first two columns of the two matrices above are scaled
versions of each other, the third column is not. This is easily fixed
by adding the first columns to the respective third columns. The
aligned lattice basis for the DCT frequencies ��� �	 and ��� �	 re-
spectively become
�
����� ������ ����
���� ���
 �����
���� ���� �����

�
� and

�
����� ������ �����
���� ����� �����
���� ���� �����

�
� �

The estimated color space �� obtained by normalizing the above
matrices and averaging them is

�� �

�
������� ������ ������
������ ������� �������
������ ������ �������

�
� � (3)

We can see that the estimated transform �� compares extremely well
with the original color transform � . Columns � and � of �� have
been interchanged, and the signs have been reversed to compare
with � ; however, the ordering and sign-changes are insignificant in
practice.

6. CONCLUSIONS

In this paper, we estimate the unknown compression color space
used during previous JPEG compression. This estimation is poten-
tially important to enhance and re-compress such previously JPEG-
compressed color images.

Our problem analysis shows that the image DCT coefficients of
a previously JPEG-compressed image conform to an approximate
lattice that can be exploited to determine the unknown compression
color space. To estimate this geometry, we propose an estimation
algorithm that fuses statistical noise reduction with the novel and
powerful lattice reduction algorithm from number theory. The al-
gorithm accurately estimates the desired compression color space
during simulations.

We are currently working on incorporating the effects of sub-
sampling into the estimation framework.

Appendix A: Updating the basis vectors

In this appendix, we update the estimated basis vectors by exploit-
ing the multiple noisy realizations to mitigate the noise in the esti-
mate. Let �
 denote the current set of lattice-reduced basis column
vectors. Let � denote the matrix of 3-d DCT column vectors that
have already been sorted through (see Step 7 in the proposed algo-
rithm). Since all the vectors in � lie close to the lattice spanned by
�
 , we can write � � �
���, where � is a matrix with integral
entries, and � is the matrix of the perturbation vectors. Assuming
each perturbation vector is independent of each other, and ignoring
the finite support of the PDF in (1), we have

� ��� � 
����
����� (4)

� 
����
�� ��
��
��� (5)

where ���� denotes the sum of squares of all entries in the ma-
trix. The basis vectors are updated by differentiating the exponent
�� ��
��

� with respect to the �
 and setting it to zero. The up-
dated basis vectors minimize the error probability in (4) assuming
that the estimate of the integer matrix � is exact.
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Fig. 1. JPEG compression, decompression, and color transformation: Assume that a JPEG implementation chooses some arbitrary color
space ��� to perform compression. Then, JPEG operates independently on the three color planes � , �, and �. During compression,
JPEG first takes the discrete cosine transform (DCT) of 8�8 blocks in each plane, and second, quantizes each DCT coefficient to an integer
multiple of some chosen quantization step size. The decompression algorithm first takes the inverse DCT, and second, rounds-off the pixel
values to the nearest integer so that they lie between the conventional 0-255 range. Any decompressed image is often linearly transformed
and represented in some arbitrary color space, say ���. Often, the knowledge of the compression color space ��� is lost. In this paper,
we seek to estimate the color transform from the compression color space ��� to the current color space ���.

(a) (b)

(c) (d)

Fig. 2. Lattice structures in the previously JPEG-compressed color image: (a) DCT coefficient geometry in the compression color space
��� assuming the absence of round-off during JPEG decompression. All the 3-d vectors of DCT coefficients from the different ��� image
blocks but same DCT frequency lie exactly on the vertices of a rectangular box. Each 3-d vector is denoted by a small circle in the figure.
(b) DCT coefficient geometry in the observed color space ��� assuming round-off errors are absent. The 3-d vectors of DCT coefficients
lies exactly on the vertices of a parallelepiped grid (formally termed as a lattice), whose edges are determined by the column vectors of
the matrix transformation from the ��� to the ��� color space. Given these 3-d DCT coefficient vectors, the LLL algorithm [5] yields
vectors that form the edges of the parallelepiped grid. (c) DCT coefficient geometry in the compression color space ��� assuming the
presence of round-off during decompression. The 3-d vectors of DCT coefficients are slightly perturbed from the vertices of the rectangular-
box grid. (d) DCT coefficient geometry in the observed color space ��� assuming round-off errors are present. The 3-d vectors of DCT
coefficients are slightly perturbed from the vertices of the parallelepiped grid locations. Our proposed algorithm accurately estimates the
vectors forming the edges of the parallelepiped grid from the perturbed 3-d DCT coefficient vectors.
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