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ABSTRACT 
The paper presents a model for size effect in the failure of columns or other compression made 

members made of quasibrittle materials such as concretes, rocks, or composites. The size effect 

is explained by energy release due to transverSe propagation of a band of axial splitting cracks. 

The microslabs of the material between the splitting cracks are considered to buckle and undergo 

post-critical deflections. The failure condition is based on the equality of the energy released from 

the uncracked elastic member and the energy consumed by the axial splitting cracks in the band. 

The analysis leads to a closed-form expression relating the nominal strength of the structure and 

the structures characteristic size. The resulting formulation is compared to the test results on 

model reinforced concrete columns reported previously by Bazant and Kwon (1994). Satisfactory 

match of the test data is achieved. 

INTRODUCTION 
In a number of previous studies, it has been shown that structures made of quasibrittle 

materials such as concrete, rock or composites, exhibit a significant size effect (BaZant, 1993a). 

The nominal strength of structure is not constant, as predicted for materials following yield or 

strength failure criteria, but decreases with an increasing size of structure. The size effect is due 

to fracture or damage phenomena, particularly the fact that these modes of material failure are 

governed by energy release and consume a certain amount of energy which is a material property. 

Previous work has demonstrated that such size effect exists in various tensile and shear failures, 

including diagonal shear failure of reinforced concrete beams, torsional failure, punching shear 

failure, pullout of bars and anchors, and others. In a recent work (BaZant, 1993b), a theoretical 

argument has been presented showing that a deterministic size effect due to energy release should 

also exist in compression failures in which the energy release depends on the structure size, for 

example reinforced concrete columns. The general formulation of the size effect for compression 

failures has been presented, however, detailed formulas for the size effect ha.ve not been derived 
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and comparisons with test results have not been made. To do that, is the objective of the present 

brief conference paper. The detailed analysis will be presented in a forthcoming report and journal 

article (BaZant and Xiang, 1994). o\'" 

Compression failure of brittle jJIf quasibrittle materials has been studied extensively and im

portant results have been achieved (Biot, 1965; Ashby and Hallam, 1986; Batto and Schulson, 

1993; Horii and Nemat-Nasser, 1985, 1986; Kendall, 1978; BaZant, 1967; Bazant et a1. 1991; 

Sammis and Ashby, 1986; Shette et al., 1986). However, attention has been focused primarily on 

the microscopic mechanisms that initiate the compression failure rather than on the final global 

mode of failure and the size effect. 

ANALYSIS OF ENERGY RELEASE 
Consider a prismatic compression member (a column) shown in Fig. I, having length L, 

width D (taken as the characteristic dimension), and unit thickness b = 1. One end cross section 

is fixed. The other is subjected to axial displacement u and rotation () and is loaded by a..xial 

compressive force P of eccentricity e. The initial normal stress in the cross sections before any 

fracturing is 

(1) 

where E = Young's elastic modulus, and x = transverse coordinate measured from the compressed 

face (Fig. 1a). We now assume tha~, at a certain moment of loading, axial cracks of spacing s 

and length h, forming a band as shown in Fig. la,b,c, suddenly appear and the microslabs of the 

material between the axial cracks, behaving as beams of depth 8, lose stability and buckle. Tlus 

can happen in anyone of the three mechanisms shown in Fig. la,b,c. For all of them the present 

type of approximate solution turns out to be identical if the length of the cracks in the pair of 

inclined bands in Fig. lc is denoted as h/2. The critical stress for the microslab buckling shown 

in Fig. la,b,c is, in all cases, 
7r2 Es2 

CTcr = -3h"2 (2) 

The key idea now is the calculation of the change in stored strain energy caused by buckling 

(BaZant, 1993b). On the side of the crack band, there is obviously a zone in which the initial stress 

CTo is reduced. For the sake of simplified analysis we assume that the stress in the shaded triangular 

areas of Fig. 1a,b,c is reduced all the way to IJ'er while outside these areas the initial stress does 

not change. The triangular areas are limited by the so-called "stress diffusion lines" of slope k, 

whose magnitUde is close to 1 (the effective approximate value of k we determine empirically). 

For the analysis of size effect the important fact is that k is a constant if geometrically similar 

columns are considered. In the shaded triangular stress-relief zones, the strain energy density 

before and after fracture is given by the areas of the triangles 0120 and 0340 in Fig. Id, and so 

the loss of strain energy density along a vertical line of horizontal coordinate x (Fig. la) is 

All = IJ'&(x) _ IJ'~(x) 
r 2E 2E 

(3) 

The sit'uation is more complicated in the crack band. The microslabs buckle, and the energy 

associated w~th the postbuckling behavior must be taken into account, which is a key idea of the 

present approach (BaZant, 1993b). The strain energy density before the buckling of microslabs is 

given by the area 0120 in Fig. Ie. The analysis of postbuckling behavior of columns (BaZant and 

Cedolin, 1991, Sec. 1.9 and 5.9) indicates that the stress in the axis of the microslabs follows, 

after. the attainment of the criticalloaci, the straight line 35 which has a very small positive slope 

(precisely equal to CTcr /2). This slope is far smaller than the slope E before buckling and can 

therefore· be neglected. So the postbuckling behavior is approxiIDately a horizontal plateau 35 

in Fig. Ie (however, this is not the same as plastic behavior because unloading proceeds along 

the path 530). Beca.use the roicroslabs remain elastic during buckling, the stress-strain diagram 
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08.'5 is fully reversible and the energy under this diagram is the stored elastic strain energy. The 

triangular area 0340 in Fig. Ie represents the axial strain energy density of the microslabs and 

the rectangular area 35643 represents the bending energy density. The change in strain energy 

density in the microslabs is the difference of areas 0120 and 03560 in Fig. Ie, that is, 

An" = -- - O'N'(X)fc(X ---- O'~(x) [ ) O'!.(X)] 
2E· 2E 

(4) 

where f.c is the axial strain of the microslabs in the crack band after buckling (it is important 

that it is generally not equal to 04 or 02 in Fig.' Ie). 

Integration of (3) and (4) yields the total loss of potential energy at constant'tL and 0: 

Afi=ld 

(O'~(X) _ 0'!.(X»)2k(a_X)dx+l"{0'~(X) [O'er(X)fc(X)- O'!.(i)]}hdx' (5) 
o 2E 2E 0 2E 2E~ , 

; 

where a = horizontal length of the crack band (Fig. la,b,c). This energy must be equal to the 

energy consumed by the formation of the surfaces of all the axial splitting cracks. Assuming that 

there is no other energy dissipation but fracturing, we may write the energy balance criterion of 

fracture mechanics as: 

- [BAn] = !... (Glh~) = !.:GI (6) 
Ba 9,u Ba 8 8 

where G I is the fracture energy of the axial splitting cracks, assumed to be a material property. 

The axial strain in the crack band can be determined from the compatibility condition. Be

cause the end cross sections are assumed to be fixed during buckling (i.e., tL,O = constant), the 

strE'.ss in the blank areas of the column in Fig. la,b,c remains constant, and so the line segment 

GJ in Fig. 1a at any x does not change length. Expressing the change of length of this segment 

on the basis of O'('r, Ee and 0'0 and setting this change, equal to zero, one obtains the following 

compatibility condition 

0'0 (x) 2k O'cr(x) 
fe(X) = Eh [h+2k(a-x») - h(a-x)~ (7) 

It can be shown (Buant, 1993b) that the foregoing equations yield a failure criterion of the 

form 

fe(k, a, 8, h, G I, O'N) = 0, P ( 6e) 
O'N = bfj 1 + D (b = 1) (8) 

in which P = maximum load, and O'N = nominal strength of the compression member. The 

unknown spacing of the axial cracks, 8, can be determined from the condition that load P is 

minimized, which leads to the condition 86fc/868 = O. The value of the diffusion slope k can 

approximately be further estimated as the k-value which gives the exact energy release rate for 

an edge-cracked tensile fracture specimen according to linear elastic fracture mechanics. It can 

further be shown that this condition indicates that II increases with sUe D as D-2
/

6
• In case of 

slender columns which Wldergo global buckling, the effect of slenderness on 0' N can be taken into 

account by one the two concepts proposed in BaZant (1993, Eqs. 45-50). The simpler of these 

two concepts is based on modifying eccentricity e in Eq. 8 on the basis of the magnification factor 

for global buckling of columns (e.g., BaZaut and CedoIin, 1991, Chapter 1). 

Assuming that the ratio a/ D for failures of compression members of various sizes is the same, 

the following relationship between characteristic dimension D and the nominal strength 0' N can 

be deduced from the foregoing formulation. 

D = k(O'o - O'er + O'N)(i1 +11.". -I1N), 

(O'N - O'er) 
(9) 

in which 0'0, O'er = constants, O'er = critical normal compressive stress for the microslab buckling 

= intrinsic compression strength of the material. 
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COMPARISON TO TEST RESULTS 
The present formulation has been compared and calibrated with the test data for failure of 

reduced-scale reinforced concrete columns reported in BaZant and Kwon (1994); see Fig. 2. The 

data points are the experimental results for various column slendernesses A = rle where r = 
radius of gyration of the cross section and e = effective length of the columns. The predictions 

according to the present theory are indicated by the curves. The horizontal asymptote of the 

size effect curve according to the strength theory, and the inclined asymptote according to linear 

elastic fracture mechanics (which has the slope -2/5) are also marked in the figures. As one 

can see, reasonable agreement with the test results can be achieved. It should be noted that the 

existing code procedures for concrete structures give no size effect, which is in disagreement with 

the present test results. 

CONCLUSION 
Compression failure of quasi brittle materials can be described as the propagation of a band of 

axial microcracks. Assuming the axial stress transmitted by the bimd to be limited by buckling 

of the microslabs of the material between the axial splitting cracks, the failure loads can be 

calculated on the basis of the energy rel~ase. This calculation predicts a size effect which is in 

reasonable agreement with available test results. 
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Fig.1 (a-c) compression splitting bands, (d,e) energy release, (1) size effect 
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Fig.2 Reduced scale columns tested and size effect observed, 
with comparison to theory (solid lines, coat. of variation of 
deviation CI) =11% and a/D=.22, h= .93in., G,= .0781b1in) 
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