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Abstract. Edge computing is currently one of the main research topics in the 
field of Internet of Things. Edge computing requires lightweight and computa-
tionally simple algorithms for sensor data analytics. Sensing edge devices are 
often battery powered and have a wireless connection. In designing edge devices 
the energy efficiency needs to be taken into account. Pre-processing the data lo-
cally in the edge device reduces the amount of data and thus decreases the energy 
consumption of  wireless data transmission. Sensor data compression algorithms 
presented in this paper are mainly based on data linearity. Microclimate data is 
near linear in short time window and thus simple linear approximation based 
compression algorithms can achieve rather good compression ratios with low 
computational complexity. Using these kind of simple compression algorithms 
can significantly improve the battery and thus the edge device lifetime. In this 
paper linear approximation based compression algorithms are tested to compress 
microclimate data.  
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1 Introduction 

Edge computing has been one of the most significant research topics in the field of 
Internet of Things during these years. The edge computing means that part of the data 
analysis is carried out in so-called edge devices. The edge devices are devices located 
on the edge of the network. Wireless sensor nodes are one example of typical edge 
devices. The edge devices are often computationally constrained and light devices [1]. 

Edge computing is not going to substitute the cloud computing but it is more like a 
supplement concept in the IoT field. Most of the data analysis has been carried out in 
the cloud and this will be probably the case in the future as well. As the amount of the 
data from the sensing devices is increasing all the time and these sensing devices are 
often battery or energy harvesting powered, the energy efficiency of those so called 
edge devices has become very important. It is known that transmitting data wirelessly 
from the edge device is the most energy-consuming task in these devices. It is more 
energy efficient to conduct some light data analysis or pre-processing locally and thus 



reduce the amount of data needed to send to the cloud. One possible pre-processing task 
for the sensor data is to filter clearly erroneous data and to compress the sensor data. 
The edge computing approach can also help to solve privacy and security issues con-
cerning IoT data and offer minimized latency and improve the quality of service (QoS) 
[2]. 

There are different sensor data compression methods available. The suitability and 
efficiency of different methods depend on the data characteristics. Different methods 
differ in computational complexity, which is an important aspect in edge computing. 
This paper presents basic and light compression algorithms based on data linearity. 
Many environmental values are near linear in small time window. These compression 
algorithms’ compression efficiency is tested for microclimate datasets. Datasets are 
temperature, air pressure and wind speed measurements from the Finnish Meteorolog-
ical Institute’s open data service. 

The microclimate data is often nearly linear in short time window. For example, 
temperature normally changes slowly and if the measurement sampling rate is fast 
enough, the consecutive measurements cannot deviate much from each other [3]. Air 
pressure  normally also changes slowly. Only approaching low pressure such as a thun-
derstorm, the air pressure can drop quickly [4]. Wind speed is slightly different because 
it can stay zero rather long periods. The wind speed also varies quite quickly and it is 
also quite abrupt in nature [3]. In this paper, the wind speed dataset is averaged data 
and thus represents more linear type data. 

The microclimate data is very important for example in different agricultural appli-
cations. Agricultural applications for example for crop protection and to maximize crop 
production [5, 6] have been presented; however, microclimate measurements are im-
portant also in urban environment [7]. 

2 Lightweight Compression Methods for Sensor Data 

In constrained edge devices, it is crucial to optimize resource usage. This means to 
optimize computational capacity, energy consumption and bandwidth usage [8]. These 
devices are often connected to the internet via wireless connection. Wireless transmit-
ting is known to be the most energy-consuming task in these devices, thus it is in many 
cases more energy efficient to carry out data pre-processing and lightweight data ana-
lytics locally and thus reduce the amount of data needed to send via wireless link. A 
very simple method for reducing the amount of data is to compress the data. The other 
method is simply to reduce the sampling frequency of the sensor [3]. The drawback 
here is that information is lost between sampling points. Sampling a sensor is quite low 
energy operation compared to the energy consumption in radio transmission [3]. By 
using an effective and low computational complexity compression algorithm it is pos-
sible to keep radio transmitting rate low and thus keep the energy consumption on a 
low level, yet at the same time keep the accuracy of the higher sampling rate. 

Typically, a simple edge device is a sensor node measuring some environmental 
magnitudes. Typical environmental magnitudes are for example temperature, humidity, 
air pressure and lightness. The measured values are then sent to the cloud and in the 



cloud, the data is combined with other data (for example open data) and together used 
for decision processing. 

2.1 Lossy Methods and Lossless Methods 

Sensor data compression methods are divided in lossy and lossless methods. Many dif-
ferent algorithms are presented for sensor data compression [9, Error! Reference 
source not found.. The suitability of the compression algorithm is dependent on the 
sensor data characteristics. For example, many environmental magnitudes are nearly 
linear in short time scale, and thus some compression algorithms are more suitable for 
this kind of data. Some other type of data may require different types of compression 
algorithms. 

If the reconstruction error accepted is more than zero, it is possible to use lossy com-
pression algorithm. Compression ratio is dependent on accepted reconstruction error. 
Thus, the lossy compression algorithm will lead to loss of the information [11]. The 
advantages of lossy compression algorithms are the effective reduction of the data and 
in many cases, the computational simplicity. The compression and reduction of the data 
is done by eliminating some of the original information [11]. The accepted level of 
reconstruction error is very application dependent. In general, the lossy compression 
algorithms have higher a compression ratio together with lower computational com-
plexity than lossless algorithms [12].  

Many lossy algorithms have some latency and thus are not suitable for real-time 
applications. There are also lossy zero-latency compression algorithms. These com-
pression methods are based on predictive filters (e.g. Kalman filter), which predict the 
data values from previous samples. In this method, the same filter is used in both sides 
of the network (sensor node and the user node where the data is analyzed further), thus 
the same estimation is used in both sides, and the new data is sent only if the value 
differs from the predicted value more than the tolerance level [8]. 

Lossless algorithms are able to reconstruct the original data without an error. The 
lossless methods perform two steps: the statistical model is first generated and then the 
second step uses this statistical model to map the input data to the bit sequences. In 
these bit sequences, the frequently occurred data generates a shorter output than infre-
quently occurred data. The two main encoding algorithms used are Huffman coding 
and arithmetic coding. The Huffman coding is computationally simpler and faster; how-
ever, it gives poor results in compression. Arithmetic coding is more efficient in com-
pression but more complex. In many cases, the lossless algorithms are not suitable be-
cause the compression ratio is poor and computational complexity is higher than in 
lossy algorithms [13]. 

2.2 Lossy Compression Algorithms Based on Linear Approximation 

Lossy data compression algorithms analyzed in this paper are based mainly on piece-
wise linear approximation. Piecewise linear approximation based compression algo-
rithms are based on the fact that many environmental phenomena are near linear in short 



time window [3]. These kinds of phenomena are for example temperature, humidity, 
air pressure and wind speed. 

A simple linear compression model is based on a regression line, which is calculated 
on the minimum of the first three measured values [13]. Least-squares regression line 
is used to approximation of discrete data [14]. In the least-squares regression line, the 
linear model is set to fit a set of data points. The least-squares method minimizes the 
sum of squares of the deviation between the data points and the fitting line thus gives a 
best fit to the data points. This is called a linear regression. A linear function y = ax + 

b has two free parameters, a and b [14]. The general sum of squares of the deviation is 
[14]: 

 𝑆 =  ∑ 𝑦 − (𝑎𝑥 + 𝑏)  (1) 

Minimizing this equation and solving for a and b give [14]: 

 𝑎 = ∑ ∑ ∑∑ ∑  (2) 

 𝑏 = ∑ ∑ ∑ ∑∑ ∑  (3) 

The parameters a and b give the best line fit to the N data points. To use these formulas 
it is needed to sum xk, xk

2, yk, xkyk, and square the sum of xk [14]. If the regression line 
is calculated from the first three measurements, then N is 3. 

If the data is nearly linear, this regression line gives the prediction for the following 
measured data points with a certain error bound e. When the measured data point falls 
out of the error bound ±e, then the new regression line is calculated. Hence, the data 
will be presented in piecewise linear segments. 

There are several different versions of this kind of algorithm presented in literature. 
The algorithm is named here as Linear Regression based Temporal Compression 
(LRbTC). The algorithm is as follows: 

1. Get the next three measured values and calculate the regression line to fit those three 
values. 

2. Store (send) regression line point at time moment of the first measured value used 
to calculate regression line. 

3. Get next measured value and compare it to the regression line. 
4. If the difference is under the error bound e, then go to 3. Else, continue onto the next 

step. 
5. Store (send) the regression line point when the measured value was last time under 

the error bound and go to 1. 

Fig. 1 shows an example of this linear regression based compression for sensor data. 
Original temperature data is marked in blue circle. The regression line is calculated 
from the first three measured values (20, 20.3 and 20.1). Then following measured val-
ues are compared to the regression line value on that time moment. Regression line 
continues until the difference between measured value and regression line exceed the 



error bound e, which is in this example set to 0.5. Regression line is the green line in 
Fig. 1. At time moment 11 the difference between regression line and measured value 
exceeds 0.5, thus the first regression line is set to end at time moment 10. From time 1 
to 10, the compressed data includes only the starting point of the regression line and the 
end point of that line. The next regression line is calculated from the measured values 
in time moments 11 to 13. At time moment 15, the difference exceeds the error bound 
and thus the new line is calculated from the values at time moments 15-17. In 20, the 
difference exceeds again the error bound. The first 19 measured values (time moments 
1 to 19) are compressed to 6 values (three regression lines). 

 
Fig. 1. Linear Regression based Temporal Compression (LRbTC) algorithm example. 

In the example in Fig. 1, the error bound was set to 0.5. Thus, the measured value and 
regression line value should not exceed 0.5. This can anyway happen in time moments 
that are used to calculate the regression line. 

The modified version of the LRbTC (M-LRbTC) algorithm corrects the problem if 
the difference between regression line and the data values used to calculate this regres-
sion line exceed the error bound e. The modified version of the algorithm is as follows: 

1. Get the next three measured values and calculate the regression line to fit those three 
values. 

2. Compare the regression line and three values used to calculate the line.  
3. If the difference is greater than error bound e, then store (send) the first two data 

points and get the next two measurement values and calculate new regression line 
and go to 2, else continue onto the next step. 

4. Get the next measured value and compare it to the regression line. 
5. If the difference is under the error bound e, then go to 4. Else, continue onto the next 

step. 
6. Store (send) the last regression line point when the measured value was under the 

error bound and go to 1. 

Lightweight temporal compression (LTC) was introduced in [3]. It is simple and very 
efficient compression algorithm for microclimate type data in a small enough time win-
dow. LTC’s effectivity to compress data depends on the data characteristics. For linear 



type environmental data, it can obtain up to 20-to-1 compression ratio [3]. Compression 
ratio is also dependent on error bound used. It is recommended to use the sensor man-
ufacturer’s specified accuracy value as the error bound in LTC algorithm [3]. For ex-
ample if the sensor used is a temperature sensor with 0.5 degrees accuracy, it is reason-
able to use 0.5 as the error bound. 

The LTC algorithm is explained in detail in [3, 11, 15, 16] and a modified version in 
[17]. The linear model starts with the first data value as a starting point. The lower line 
and upper line (limit lines) are drawn from the starting point to the next measured value 
±e as seen in Fig. 2 a. The limit lines are tightened from the following values when 
error bound extreme or extremes are inside the previous limit lines as in Fig. 2 b. and 
c. The measured data is discarded from the linear model if the measurement cannot fit 
inside upper line and lower line determined by the previous data with the error bound 
±e. Then the new linear model starts using as a starting point the middle point of the 
upper line and lower line in last time moment included in the linear segment. This pro-
cedure of the algorithm can be seen in Fig. 2 d. 

a)                b) 

c)                d) 

Fig. 2. Lightweight temporal compression (LTC) algorithm. 

The reconstruction error never exceeds the error bound e in the LTC algorithm. The 
LTC algorithm has low computational complexity and thus it is suitable for constrained 
edge devices such as sensor nodes [17]. In Fig. 3, the LTC is compared to previously 
presented linear regression based algorithm. 



 
Fig. 3. LTC compared to the basic linear regression based algorithms. 

The disadvantage of the LTC is that it is not well suited for real-time applications [8] 
and its suitability in general is very application dependent. LTC uses linear interpola-
tion to represent the original signal, and the linear interpolation model is known only 
when the both extremes of the linear part is known. This introduces significant latency 
for the model [8]. The linear regression based algorithms presented previously suffer 
from the same problem.  

2.3 Transform Based Compression Methods 

Discrete Fourier Transform (DFT) is a well-known transform based algorithm. It is 
simple to use for compression by using the Fast Fourier Transform (FFT) algorithm 
[18]. The FFT algorithm expresses the time-series signal in frequency representation. 
By removing the coefficients with less energy, it is possible to reduce the amount of 
data and still keep the information to rebuild the time series data with reasonable re-
construction error. When the FFT is taken over a window of N samples and the first 
sample and last sample differ a lot, the information of discontinuity is spread across the 
frequency spectrum. To prevent this discontinuity it is possible to overlap the windows 
[18]. 

Another well-known transform based algorithm is Discrete Cosine Transform 
(DCT) and Modified Discrete Cosine Transform (MDCT) [12, 18, 19]. It has several 
advantages compared to FFT algorithm [18]. The DCT coefficients are real numbers; 
thus there is no need to deal with complex numbers. This saves memory and is less 
complex. The DCT also has the information concentrated to the few low-frequency 
components and the DCT does not suffer the edge discontinuity problem like FFT. The 
DCT is a well known and widely used compression algorithm for example in image 
compression and for time series type sensor data. 



3 Testing the Algorithms with Real Microclimate Data 

The linear approximation based compression algorithms are tested for microclimate 
type data and compared to the DCT algorithm. The datasets tested here are gathered 
from the Finnish Meteorological Institute’s open data service [20]. Finnish Meteoro-
logical Institute has about 400 observation stations in Finland. Not all the stations have 
the same measured variables. For this research, Salla Naruska station’s data from year 
2018 in 10 minutes time sampling rate was chosen. The variables chosen were temper-
ature, air pressure and wind speed. Salla Naruska measurement station is located in 
eastern Lapland and known as one of the coldest places in Europe. The exact situation 
of the station is: latitude 67.16226, longitude 29.17766 in decimal degrees. The tem-
perature is in Celsius degrees (ºC), air pressure in hectopascals (hPa) and wind speed 
in meters per second (m/s). Th wind speed is measured in 10 minutes average. All var-
iables are measured with one decimal resolution. 

One year measurements in 10 minutes time interval mean 51,961 measurements for 
each variable. Some data was missing; however, the missing points were linearly inter-
polated. In air pressure data in total 102 points were missing, in temperature data 101 
points were missing and in wind speed data 1,077 points were missing. For comparison, 
also the same data in one-hour measurement interval was used. This one-hour interval 
data for the whole year 2018 includes 8,761 measurements points for each magnitude. 
The missing values were also linearly interpolated. 

The compression algorithms chosen were simple linear regression based approxima-
tion algorithm (LRbTC), modified linear regression based algorithms (M-LRbTC) and 
lightweight temporal compression (LTC). Basic discrete cosine transform (DCT) was 
used for comparison. 

The algorithms were tested with MATLAB simulation. LRbTC, M-LRbTC and LTC 
algorithms were programmed in MATLAB by using mainly functions polyfit and pol-

yval. Polyfit function was used for linear regression in LRbTC, and M-LRbTC and to 
create upper and lower lines in LTC instead of equations 2 and 3 [21].  

Discrete cosine transform (DCT) was tested by using the MATLAB built-in function 
dct. In this example, the DCT was used with window of five measured values to calcu-
late DCT. It was then tested with different threshold values to cancel the smallest coef-
ficient values. After rebuilding the signal, the maximum difference (variation) from the 
original values was calculated. 

Algorithms were compared to each other by compression ratio versus reconstruction 
error. The compression ratio (CR) was calculated by: 𝐶𝑅 =     (5) 

Thus, the bigger the CR value is, the more efficient the compression algorithm is. The 
CR varies significantly according the error bound e used. 

Temperature data was tested first. In the total 51,961 measured values the highest 
temperature was +30.4 ºC and the lowest temperature -33.8 ºC. With 10-minute meas-
urement interval, the temperature data is mostly near linear; however, in some extremes 
the temperature changes quite a lot between consecutive measurements.  



LRbTC algorithm showed very big reconstruction errors for tested temperature data, 
which is because when measuring the regression line, the values used to calculate may 
differ from the regression line more than the error bound e used. The data used is with 
10-minute interval and in extremes, the values may differ significantly from measure-
ment moment to the next moment. Higher measurement sampling rate would help the 
situation.  

The modified version of the basic linear regression based algorithm (M-LRbTC) 
works as it is intended. It was tested with different quantity of measurement values to 
calculate the regression line. In Fig. 4, the red line is used with three values to calculate 
the regression line; cyan line is with four values and magenta with five values. 

Fig. 4 illustrates the results for M-LRbTC, LTC and DCT algorithms for temperature 
data. With typical error bound e = 0.5 ºC, the M-LRbTC algorithm can achieve 3.9-4.8 
compression ratio. LTC is significantly more effective with CR = 9.5. DCT was tested 
with five values time window to calculate DCT. DCT compression ratio is significantly 
lower compared to the other tested algorithms. DCT suffers from the small window 
used and it can achieve higher compression ratios with bigger window used. Small time 
window was chosen to be more realistic for sensor data stream. 

 
Fig. 4. Linear approximation based compression algorithms and DCT for temperature data. 

Fig. 5 shows the results for the air pressure data. Air pressure values varied between 
976.4 hPa – 1056.4 hPa. The variation is nearly linear in short time window, however, 
the data includes few clear errors. Three times the air pressure value changes from 
measurement to the next more than it is normally possible. The biggest difference in 
consecutive measurements is 12.7 hPa (in 10 minutes), which is clearly an error. Nor-
mally the air pressure can change up to 5 hPa/hour and only in some very quickly pro-
gressing low pressure it can be more than 5 hPa/hour [4]. The quick changes in air 
pressure data can be due to clear measurement error or for example due to sensor cali-
bration. The results for the air pressure data are similar to the temperature data, except 
the compression ratios are much higher. This indicates that the air pressure data is be-
having very linearly with the 10-minute measurement interval. The LTC algorithm can 
achieve high compression ratios. 



 
Fig. 5. Linear approximation based compression algorithms and DCT for air pressure data. 

In Fig. 6 are the results of the wind speed measurements. Wind speed is measured in 
10-minute average values. Wind speed is a different characteristic compared to the tem-
perature and air pressure data. Wind speed can remain quite a long period in 0 m/s. 
Wind speed can also change quickly and quite significantly; however, here the 10-mi-
nute average measurement averages the results significantly. The compression ratios 
for wind speed data are on the same level as for the temperature data. 

 
Fig. 6. Linear approximation based compression algorithms and DCT for wind speed data. 

In every comparison, it can be seen that LTC is the most effective compression method. 
M-LRbTC also works well and it is a very simple algorithm and easy to apply. Table 1 
illustrates a comparison of the compression algorithms between two different datasets 
with error bound e set to 0.5 for each quantity. The datasets are the same 10-minute 
interval sets as used previously and also with 1 hour measurement interval. It can be 
seen in table 1 that all compression algorithms are significantly more effective for 10-
minute sampling rate data. This is because with 10-minute sampling rate, the data be-
haves more linearly.  



Table 1. Comparison of the compression ratios for 10 min and 1 hour interval datasets. 

Compression  
algorithm 

Temperature (e = 0.5 °C)  Air pressure (e = 0.5 hPa) Wind speed 
(e = 0.5 m/s) 

10 min 1 hour 10 min 1 hour 10 min 1 hour 
M-LRbTC, 3 values 3.9 1.85 8.94 3.05 2.62 1.88 
M-LRbTC, 4 values 4.46 1.95 9.94 3.45 3.01 2.04 
M-LRbTC, 5 values 4.78 1.86 10.75 3.79 3.18 1.97 
LTC 9.49 3.19 28.22 8.28 5.09 3.03 
DCT 3.07 1.75 4.63 2.72 2.6 1.8 

 
The disadvantage in these linear approximation based algorithms is the latency. These 
methods are not directly suitable for real-time applications. LRbTC based methods are 
possible to modify to work better for almost real-time operations: After calculating the 
new regression line, the first point of the line and line coefficients can be sent. The 
receiver can use that information until the new point and line are received. Thus, the 
latency is in maximum when the new regression line is calculated, and it depends on 
how many point data is used for calculating the regression line. 

4 Conclusions and Future Work 

Compression algorithms were tested with some real measurement data. In this case, the 
environmental microclimate data such as temperature, air pressure and wind speed were 
used. Many environmental quantities are near linear in nature at least if the observation 
window is short. Linear approximation based compression algorithms benefit from this 
environmental data behavior. In this research, it was shown that these simple compres-
sion algorithms are rather efficient for this kind of data. The performance of compres-
sion algorithms for compression compared to reconstruction error was the main prop-
erty to compare. The next step will be to test these algorithms in edge devices and to 
take into account the computational complexity of the algorithms. 
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