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ABSTRACT

We describe a compression method for three-dimensional animation sequences that has notable advantages over existing
techniques. We first aggregate the frame data by similarity and reorganize them into clusters, which results in the sequence
split into several motion fragments of varying lengths. To minimize the number of clusters and obtain optimal clustering,
we perform frame alignment, which eliminates the “global” rigid transformation from each frame data and use only “pose”
when evaluating the similarity between frames. We then apply principal component analysis for each cluster, from which
we get coordinates of corresponding frames in a reduced dimension. Because similar frames are considered, the number of
coefficients required for each frame becomes smaller; thus, we obtain better dimension reduction for a given reconstruction
error. Further, we perform intracluster compression based on linear coding. Because every motion fragment presents similar
frames, conventional linear predictive coding can be replaced by key frame-based linear coding to achieve minimal
reconstruction error. Results show that our method can obtain a high compression ratio, with a limited reconstruction error.
Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With an abundance of animation techniques available
today, efficient compression of animation data has been
under intense investigation in Computer Graphics research
community. A large portion of the animation data is so
called frame data, which are essentially a set of vertex
coordinates describing the geometry at each frame, stored
as series of consecutive frames. Often, vertex-to-vertex
correspondence is assumed to be known among the frames,
which is usually the case. And when the data is in the form
of animating mesh, face connectivity (topology) is
assumed to stay constant. This explains why most of the
existing works concentrate on the compression of vertex
data only.

In this work, we present an alternative approach to
the compression of three-dimensional (3D) animation
sequence. Our work is motivated by the fact that animation
sequences often tend to exhibit repetition of similar
motions. To illustrate this, we provide a two-dimensional
representation of a “horse” mesh sequence in Figure 1,
Copyright © 2013 John Wiley & Sons, Ltd.
which we obtained from the webpage of Sumner and
Popović [1]. The projection in the two-dimensional embed-
ded space has been obtained by applying multidimensional
scaling [2] to the frame data. We observe that closely
located frames in the embedded space are not always
temporal neighbours. For instance, frames 8 and 31 exhibit
the same pose, as well as frames 18 and 42. In addition, all
these frames are closely located in the embedded space,
although some of them are 36 frames apart in the frame
domain. Consequently, we develop our method that
exploits such postural coherence that is globally presented
in the time domain, instead of searching for local coher-
ences. We do so by clustering the frames according to their
pose similarity and by removing the postural redundancy
within each cluster. Despite the nonnegligible overhead
of clustering, this allows to obtain high level of sparsity
for each frame, leading us towards more effective compres-
sion as a whole. This simple, alternative change in notion
becomes particularly beneficial (i.e., increased compres-
sion ratio) as the number of frames becomes large.

There are three main features of our work.
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Figure 1. Frame data fi from an animation sequence is represented as yi in a reduced space by using multidimensional scaling. Frames
that are temporally apart can overlap or come close together, as is the case with frames 8, 20, 33, and 45.
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(1) We extend the notion of temporal coherence to
postural coherence, which we exploit by frame clus-
tering and by performing per-cluster compression.

(2) Principal component analysis (PCA) and its variants
have been successfully used in animation compres-
sion, which is also adopted here. Contrary to previ-
ous approaches, however, we reorganize the frame
data into clusters according to aforementioned pose
similarity and apply PCA on each cluster. The ani-
mation sequence then can be compressed more
efficiently with lesser PC components.

(3) We further perform intracluster compression by
exploiting temporal coherence.

Instead of coding each motion fragment independently,
we use linear predictive coding (LPC) to code the first
motion fragment and reuse the once-specified frames to
conduct key frame-based linear coding for the remaining
fragments in the cluster. Because fragments belonging to
a same cluster exhibit similar poses, the key frame-based
linear coding allows us to achieve minimal reconstruction
error. This has been justified by our experimental results.

The paper is organized as follows: We review previous
works on compression in Section 2. After providing an
overview of the proposed method in Section 3, we describe
in detail the two main parts of our compression method in
Sections 4 and 5. Then, we briefly describe the decoding
procedure in Section 6. After demonstrating results as well
as comparison with a number of existing works in Section
8, we conclude the paper in Section 9.
2. PREVIOUS WORKS

The research works on compression has been published
mostly during last 6 years. We classify them into five
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categories depending on which technique they use:
PCA-based compression, skinning method, scalable com-
pression, connectivity-based compression, wavelet-based
compression and octree-based compression.

The first category includes all the methods based on the
PCA. The purpose of this method is to transform the data into

a new basis with eigenvectors and where the coordinates are
linearly independent. These eigenvectors form a new basis in

which the vectors are linearly uncorrelated. The compression

is achieved by removing the eigenvectors whose eigenvalues

are negligible compared with the other ones.
In the seminal work by Alexa et al. [3], the PCA has

been used to build compact representation of an animation
sequence. The PCA of a matrix A where each column of
the matrix is the geometry of one frame, that is, mesh-
vertices are directly stacked into a single vector of length
3V, where V is the number of vertices in the mesh, yields
a set of eigenvectors (eigenframes).

The PCA method has been reused multiple times in com-
bination with other compression techniques. Whereas one of
the earliest works by Alexa et al. [3] uses PCA on frame data
to exploit spatial coherence, most of the existing techniques
apply the PCA on the vertex trajectories (temporal coher-
ence). The result is a set of eigentrajectories with their corre-
sponding principal component (PC) coefficients. Karni et al.
[4] proposed to combine the PCA with the LPC to compress
the PC coefficients. Vása et al. [5] have worked on the com-
pression of the eigenvectors.

A large amount of work has also been carried out on the
spatial clustering combined with the PCA. The idea is to
cluster the vertices such that those belonging to the same
cluster have similar trajectories. The PCA is then applied
on each cluster independently; the number of PCs in each
cluster required for describing the motion is usually much
smaller than the number of PCs without clustering. This
technique greatly improves the efficiency of the PCA
. Anim. Virtual Worlds 2013; 24:365–375 © 2013 John Wiley & Sons, Ltd.
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compression. Sattler and his colleagues [6] were one of the
first to propose the clustered PCA. Later, Ramanathan
et al. [7] have worked on methods to find the optimal
clustering that gives the best compression ratio.

The driving idea of skinning-based compression [8,9] is to
take advantage of the fact that some of vertices have rigid
motion. The mesh is clustered into segments whose motions
are described with a 3D affine transformation matrix. This
technique has been combined with the context-based adaptive
binary arithmetic coding [10] approach to provide high com-
pression ratio. This method has been promoted within the
MPEG-4 standard [11]. The main advantage of this method
is that it is particularly efficient for compressing dynamic
meshes that represent articulated shapes such as human
bodies or animals. On the other hand, they perform less effi-
ciently for highly flexible mesh such as a flowing flag.

Some researchers [12] have worked on scalable com-
pression by using a multiresolution scheme. The idea is
to relate the geometry and the connectivity to create differ-
ent levels of resolution. This set of methods makes use of
the mesh topology, and they are useful in some specific
context where different levels of resolution are required.
For instance, the same compressed file could be sent to a
mobile phone for low resolution display and a high-end
computer where high resolution is preferred.

Ibarria et al. [13], Stefanoski et al. [14], Amjoun et al. [15]
and Vá�sa et al. [16] have worked on the connectivity-
based compression. The driving idea is to exploit the
connectivity of the mesh. In particular, these methods find
the motion redundancy among vertices by looking at their
connectivity. Unlike these approaches, our method does
not require the mesh connectivity. It can be used to
compress animated point clouds.
3. OVERVIEW

3.1. Animation Data

An animating mesh is a sequence of vectors f1, . . ., fF in
which ft represents one static mesh, often called “frame”
or “pose”, at time t (1≤ t≤F). A frame vector ft is com-
posed of the vertices coordinates of the mesh, which we
represent as a column vector(x-, y-, and z-coordinates of
all the vertices in an order of their indices):

ft ¼

vt1;x
vt1;y
vt1;z
⋮
vtV ;z

2
66664

3
77775

The animation of the dynamic mesh is represented with
a matrix A whose columns are the frames of the animation.
Let V be the number of vertices of the mesh and F the num-
ber of frames in the animation. The matrix A that contains
the entire animation is defined as follows:
Comp. Anim. Virtual Worlds 2013; 24:365–375 © 2013 John Wiley & Sons
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A ¼ f1 . . . fF½ �

A is composed of 3V rows and F columns. Note that
this matrix does not contain any information about the ver-
tex connectivity. The purpose of our method is to compress
the geometry only; the connectivity compression should be
carried out separately using an existing approach [17].
Thus, our method is equally suitable for vertex animation
data, such as marker data acquired from motion capture.

3.2. Main Idea

One of the main ideas of this paper is to cluster the frames
according to their pose similarity and compress each
cluster by using PCA in search of a smaller number of
eigenbasis required (i) for each cluster and (ii) as a whole.
In some sense, this idea can be seen as a temporal version
of clustering-based compression [6]. To our knowledge, no
previous work has addressed such an approach.

Later in this paper, experimental results show that our
method is particularly beneficial when the number of frames
is larger than the number of vertices and when the animation
data contain repetitive motion over the sequence. We remark
that this is usually the case, if not always, with most of the
physically based or synthetic animation that are commonly
practiced in various applications.

3.3. The Proposed Approach

Figure 2 illustrates an overview of our approach. The
encoder is composed of three main parts: pose-similarity
clustering followed by intracluster compression and frame
coding.

Pose-similarity clustering: our technique is to group the
frames whose poses are similar. Two frames are said to be
similar if the Euclidean distance between the two frame
vectors is small. A motion data is typically composed of
a rigid motion and a pose deformation. To avoid the rigid
motion to interfere in the clustering, we process the motion
data so as to separate the rigid motion from the pose before
the clustering step. Note that the frames belonging to the
same cluster may not be contiguous. The detail description
of the pose-similarity clustering is given in Section 4.

Intracluster compression: the second step of our method
is to compress the animation data inside each cluster. Simi-
larly to many previous works, our compression makes use
of the PCA. The PCA method uses an orthogonal transfor-
mation to convert a set of observations of possibly correlated
variables into a set of values of uncorrelated variables called
PCs. One advantage of the PCA is to provide a compact
representation of multidimensional data.
, Ltd.
After applying the PCA on each cluster separately, a

cluster is coded with a set of eigenvectors and a sparse
representation (PC coefficients) of all the frames belonging
to it. Because the clustering of frames based on pose simi-
larity suggests a high degree of correlation among the
367



Rigid motion 
data

Transmission
(LPC+LCPS)Frame data 

(vertex coords)

Pose-
similarity 
clustering

Cluster 1

Cluster 2

Cluster K

. . .

Intra-cluster 
compression

ENCODER DECODER

Intra-cluster 
frame 

reconstruction

Combination 
with the rigid 

motion
Per-frame

cluster index

Motion 
decomposition

Compression of 
per-frame rigid 

motion

Frame ordering

Pose data

Reconstructed
frame data

Figure 2. Overview of the method.
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frames within cluster, the frames can be represented with a
small subset of PC coefficients without degrading much the
vertex trajectories. This step is described in Section 5.

Linear coding and linear coding based on pose similarity
(LCPS): to further compress the data inside each cluster, we
propose a linear coding based on pose similarity. The driving
idea is to exploit the pose similarity that exists among frames
within a cluster. The first fragments are compressed using
existing techniques, and the subsequent fragments are repre-
sented as a weighted combination of the first frames. This
step is described in Section 6.

Finally, we note that our method does not depend on the
mesh connectivity. It can be used to compress any motion
data with repetitive patterns (point clouds, rotation values,
colors values, etc.).
4. POSE-SIMILARITY CLUSTERING

Our algorithm, instead of looking for coherencies in the
local neighbourhood like many others, searches for pose
coherence independently from temporal coherency. Intui-
tively, we would like to aggregate frames of similar pose
into a cluster and compress them separately. Thanks to
the within-cluster pose similarity, we expect to reduce the
number of basis vectors required for each cluster and thus
obtain better compression ratio. To measure the postural
similarity among frames, we want to adopt a simple
method based on vertex distances. However, rigid motion
of the object may make this method obsolete in practice.
Consider a character’ walking animation sequence, for in-
stance. The walking trajectory may contain arbitrary turns
and orientation changes, making the global animation very
complex. Now, if we can separate the global positions and
orientations of the character from the articulated motion or
“pose,” we can easily see that the animated poses are more
or less cyclic. For this reason, we propose to conduct frame
alignment prior to clustering, by finding the rigid motion
(translation and rotation transformation) that aligns each
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frame with the reference (first) one. As a result, we can in-
crease the within-cluster similarity and thus, achieve
highest compression ratio.

4.1. Frame Alignment

For every frame t, we compute the rotationRt and the transla-
tion Tt with respect to the first one by using the method by
Goryn and Hein [18]. All vertex coordinates of the frame,
vt, are then transformed with Rt and Tt, as follows:

pt1;x
pt1;y
pt1;z

2
4

3
5 ¼ Rt�

vt1;x
vt1;y
vt1;z

2
4

3
5þ Tt

. . .
ptV ;x
ptV ;y
ptV ;z

2
4

3
5 ¼ Rt�

vtV ;x
vtV ;y
vtV ;z

2
4

3
5þ Tt

After the rigid transformation, all frames are placed in geo-
metric centroid of the first one, that is, all frames share the
same centroid. In addition, they have similar orientations. At
this point, a frame at time t is represented by

f t ¼

pt1;x
pt1;y
pt1;z
⋮
ptV ;z

2
66664

3
77775

These rigid transformations are represented with six
coefficients, three for the translation and three for the rotation.
These coefficients are compressed separately from the verti-
ces using the LPC.

4.2. Frame Clustering

In case of cyclic or repetitive motion, the animation data
tend to exhibit a similar sequence of deformations several
times. Subsequently, similar frames can be found at differ-
ent time ranges, and they are not necessarily adjacent to
. Anim. Virtual Worlds 2013; 24:365–375 © 2013 John Wiley & Sons, Ltd.
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one another. Our strategy is to cluster the frames such that
frames with similar pose are put into the same cluster. Sim-
ple Euclidian distance ‖fj� fi‖ is used to measure the pose
similarity between two frame vectors fi and fj.

We use k-means algorithm [19] to cluster the frame data
into a number of clusters, so that the within-cluster varia-
tion is minimized. Given a set of frames (f1, f2, . . ., fF),
where each frame is a 3V-dimensional real vector, the
k-means clustering aims to partition the F frames into
k sets (k≤F) S = {S1, S2, . . ., Sk} so as to minimize
the within-cluster sum of squares:

argmin
S

Xk
i¼1

X
f2S

f j � mi

�� ��;

where mi is the mean of frame vectors in Si. The initial-
ization method of our implementation of the k-means
clustering is the random partition. The choice of the
number of clusters is an important factor of the compression
ratio. This is explained in Section 8.2.

We have tried other clustering methods, such as
clustered PCA as proposed by Sattler et al. [6] and the
mean-shift clustering. The main idea is to cluster the
frames so that the frame coordinates in each cluster are
calculated with the smallest possible number of PCs. Its
main drawback is its large computation time because the
method requires computing the PCA a multiple times.
Moreover, the clustered-PCA method did not give notice-
ably better compression results, although it gave slightly
smaller KG error. k-means and mean-shift clustering show
similar computation time and performance. However, its
computation time is about 100 times that of the k-means
clustering. Because the k-means algorithm provides easier
control on the number of clusters than the mean-shift clus-
tering, it has been finally used in this work.

The number of clusters has been fixed manually,
between two and four. As we will see in Section 8, the
number of clusters is one factor of the compression perfor-
mance. Automatically finding the optimal number of
clusters is left as a future work.

After the clustering, the cluster indices of each frame in
the animation sequence are stored (“per-frame cluster
index” in Figure 3). This index is used to correctly reorder
the frames at the decoding phase.
5. INTRACLUSTER COMPRESSION

Now that the sequence has been segmented into a number
of clusters, we now focus on the problem of compressing
the frame vectors in each cluster, which is based on PCA.

5.1. Principal Component Analysis on the
Frame Vectors

As a result of the pose-similarity clustering, the original an-
imation sequence is decomposed into a number of motion
Comp. Anim. Virtual Worlds 2013; 24:365–375 © 2013 John Wiley & Sons, Ltd
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fragments, each belonging to a frame cluster. A motion
fragment is a set of frames that are contiguous and belong
to the same cluster.

From each frame cluster c (c= 1, . . ., K) that consists of
lc frames, we build a 3V� lc matrix Fc. We apply singular
value decomposition to Fc to compute the eigenvectors and
eigenvalues of Fc�FT

c . The original frame vectors are then
represented by their PC coefficients that are obtained by
projecting them onto their new basis, yielding a matrix of
coefficientsWc ¼ BT

c Fc, whereBT
c is composed of columns

of eigenvectors (PCs), sorted in a decreasing order of
corresponding eigenvalues. Trimming both the coefficients
of Wc and the eigenvectors of BT

c allows us to effectively
reduce the number of floating-point numbers required to
represent each frame. That is, by taking only the first

rc PCs, we represent each cluster by eBT

c and fWc . eBT

c is

the set of the first rc PCs and fWc is a matrix rc� lc whose
columns are the first rc PC coefficients of each frame
belonging to the cluster c.

fWc ¼ ew1; . . . ; ewt ; . . . ; ewlc½ � ¼
w1
1 w1

t w1
lc

⋮ ⋮ ⋮
wr
1 wr

t wr
lc

2
4

3
5

Consequently, each frame vector ft is coded by a set of
PC coefficients ewt .

Note that the number of PCs rc differs from one cluster
to another. We determine the number of PCs (eigenframes)
in such a way that the variation of the frame vectors inside
a cluster covered by the PC’s is more than a threshold
(99%, for instance). This threshold value is adjusted
according to the user-specified error (Section 8 for the
definition of error).

5.2. Cost Analysis

The main drawback of PCA-based methods is the significant
computation time required for computing the PCs and the PC
coefficients. In our Matlab [20] implementation of PCA, we
calculate the eigenvectors (and eigenvalues) of the covariance
matrixAAT, which is am�m symmetricmatrix. Given the ei-
genvectors, sparse representation of each frame is obtained by
projecting itself onto each of them. The total number of oper-
ations for these calculations is:

O m2n
� � ¼ k�m2nþ k

0 �n3 (1)

When the sequence is clustered into c clusters, the
number of operations summed over all c clusters is
given by

c k�m2
X

ni
� �

þ k
0X

n3i

� �
< k�m2nþ k

0 �n3

We see that the number of operations is slightly reduced
with clustering, but only by some constant factor. In Table
2, we show experimental results with different number of
369.
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Figure 3. In pose-similarity clustering, frames with similar poses are clustered together.
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clusters and PCs chosen, along with the corresponding com-
pression ratio and the reconstruction error.

Finally, we use a uniform quantization to encode the
selected PCs of each cluster. Quantization is the process
of mapping a large set of input values to a smaller set.
The number of possible output values is defined by the
number of quantization bits q. The output values are gener-
ated by regularly sampling by 2q times the input range.
Smaller number of quantization bits reduces the size of
the compressed data but increases the quantization error.
In our experiments, the value q is between 8 and 16.
1 motion fragment Subsequent motion fragments

iw

j

tw

Figure 4. Motion fragments are represented in the principal
component coefficient space. In our intracluster compression,
the first motion fragment in the cluster is encoded by using
the classical linear predictive coding. Subsequent fragments
use previously encoded frames as interpolating frames. ewt is

represented as a weighted combination of ewi and ewj .
6. PREDICTIVE CODING

Now that we have built a set of pose clusters and the
sparse representation of frame data for each cluster,
we now look at ways to further exploit the pose redun-
dancy that is present among the frames belonging to the
same cluster. Our predictive coding scheme works as
follows: given the sparse representation of motion
fragments that are clustered by the pose similarity, we
compress the first motion fragment by using the LPC.
Then, each mesh frame in the subsequent motion
fragments is encoded as a linear combination of a
number of previously encoded frames (Figure 4). More
specifically, each frame in the subsequent motion frag-
ments is encoded as a linear combination of k frames
from the first one. Because the mesh frames in the first
fragment are similar to the subsequent fragments
belonging to the same cluster, the representation based
on linear combination is a good choice for reducing
the reconstruction error without additional cost.

6.1. Linear Predictive Coding

The principle of LPC is to predict a value of a frame using
the m immediate preceding frames. More precisely, the PC
coefficients in a frame are predicted as a linear
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combination of those of the preceding frames. Thus, the
LPC algorithm consists of coding (i) the first m frames of
the motion fragment, (ii) the weights a1,, . . ., aj for each
PC coefficient, and (iii) the residuals. The weights aj are
given to each of m preceding frames in determining the
current frame, as given by

wt ¼
Xm
j¼1

ajwt�j; mþ 1≤t≤l1;

wt�j is a PC coefficient of the frame vector ewt�j and l1 is the
number of frames in the first motion fragment in the cluster.
Note that the m weights are calculated for the entire fragment
and for each PC coefficient by using the least-squares method.
To increase the precision of the predictor, the residual (the
difference between the predicted value and the actual value)
is calculated for each frame and each PC coefficient. This
value is then encoded using the uniform quantization.
. Anim. Virtual Worlds 2013; 24:365–375 © 2013 John Wiley & Sons, Ltd.
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Figure 5. To encode ewt , we first choose ewi and compute its
coefficient bi such that ewt � bi ewik k2 is minimized. We then com-
pute the residuald ¼ ewt � bi ewi and choose ewj, which is the most
parallel to the residual vector. Finally, we compute the coeffi-

cients such that ewt � bi ewi þ bj ewj
� ��� ��2 is minimized.
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6.2. Linear Coding Based on Pose Similarity

Suppose that we have the first motion fragment encoded with
the LPC. The next step is to construct a predictor that estimates
each frame in subsequent motion fragments by using those of
the first one.More precisely, the PC-coefficient vector of
each frame in the subsequent motion fragments is
encoded as a linear combination of the PC-coefficient
vectors of the k frames belonging to the first fragment.
Unlike the LPC method, the interpolating frames are
not those immediately preceding the frame to interpo-
late; they are chosen in a way that the error of the
predictor is the smallest possible. In addition, the
weights are calculated for each frame to predict.

The algorithm to select the k interpolating frames from
the first fragment works as follows. Let SFG be the set of
frames of the first fragment and SI be the interpolating
frames selected from SFG; SI is initially empty. We first
choose the frame of SFG and whose coefficient vector is
the most parallel to the one we want to code. This vector
is put into SI. Next, we compute the weight of the vector
in SI such that their weighted summation is as close as
possible to the frame to code. We compute the residual
vector, which is the difference between the interpolated
vector and the vector to encode. This vector is used the
guide the selection of the next interpolating frame at the
next iteration, that is, we choose the next interpolating
frame that is the most parallel to the residual vector. The
number of iteration is fixed to two (Figure 5).

The pseudo-code of the algorithm is as follows:
The key point is to choose the interpolating frames and

their weight in a way that the norm of the residual vector d
becomes the smallest possible over the iterations (steps 2
and 3). This algorithm works best when the animation is
composed of repetitive frames. If it is not the case, it could
happen that the norm of d does not reduce over the itera-
tions; the dot product of d with any vector of SFG ¼ew1; . . . ; ewl1f g is equal to 0. The consequence is a
degraded compression ratio.

Contrary to the LPC method in which the interpolating
frames are determined implicitly, our method requires
explicit coding of the indices of the frames that are used for
the predictor. One may think that these additional indices
may degrade the compression. In fact, these frame indices
can be encoded efficiently. Let be l1 the number of frames
in the first fragment. The number of bytes required to store
Comp. Anim. Virtual Worlds 2013; 24:365–375 © 2013 John Wiley & Sons, Ltd
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a frame index is d log 2(l1)e/8 For instance, 7 bits are sufficient
for clusters whose first fragment is composed of 128 frames.

Similarly to the LPC method, we compute the residual
values, which are the differences between the predicted
values. We then encode these residual values by using
uniform quantization.

The main advantage of LCPS over the LPC is that the re-
sidual values are much smaller than those of the LPC; the
number of bits needed for the quantization of these values is
much smaller. This results into a better compression ratio.
7. RECONSTRUCTION

We now focus our discussion on how to reconstruct the
original frame data from the encoded data. First, all clusters
are decoded separately, according to the following steps:
For each cluster, the LPC coefficients and the corresponding
residual values are used to compute the PC coefficients of
the first motion fragment. Then, the PC coefficients of the
remaining frames in each cluster are reconstructed using the
first fragment and the coefficients with the residuals of the
LCPS. Once all the PC coefficients have been calculated,
we compute the frame coordinates by using these PC coeffi-
cients and the PCs (eigenframes). This process is carried out
separately for each cluster. Next, we reconstruct the original
motion by rearranging the frames by increasing order of their
371.
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frame index. The last step is to decompress the six coefficients
of the rigid motion and apply this rigid motion on the frames.
8. RESULTS

In this section, we report on experiments with the proposed
compression method. All the algorithms, including other
methods we have chosen for the comparison, have been
implemented as Matlab scripts [20].

8.1. Animation Data

For the comparison, we used three different types of
animation sequences: “galloping horse,” “face,” “flag,”
and “woman” (Table 1). The horse animation has been
generated using the skeleton-driven deformation and the
flag with a physics-based simulator. The face data is from
a motion capture system [21] and contains relatively fewer
number of vertices (markers) and high number of frames
because of the very high frame rate (120Hz).

8.2. Compression and Reconstruction

Table 2 shows the compression and reconstruction results
with different numbers of clusters. For each animation,
the compression ratio has been calculated with varying
numbers (one to five) of clusters while keeping constant
KG error. We observe that the compression of the “horse”
and “flag” animations with four clusters returns the best
compression ratio. For the “face” and “women”
Table 1. Models used in our experiments.

Name
# of

vertices
# of

triangles
# of

frames Creation method

Horse 1000 1990 200 Synthetic
Face 80 139 1001 Motion capture
Flag 121 200 1068 Physics-based

animation
Woman 1580 3156 558 Motion capture

Table 2. Compression performance w

Name # of clusters KG error (%) # of PCs T

Horse 1 0.0290 {23}
2 0.0379 {9, 13}
4 0.0259 {4, 3, 4, 9}

Face 1 0.0809 {68}
3 0.0768 {58, 39, 41}
5 0.0771 {28, 38, 35, 50, 41}

Flag 1 0.1884 {159}
3 0.1837 {105, 118, 58}
4 0.1815 {111, 79, 36, 88}

Woman 1 0.0535 {55}
2 0.0520 {55, 5}
3 0.0538 {51, 10, 15}
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animations, the best compression ratio is obtained with
three clusters. Our experiments show that there is an opti-
mal number of clusters for each data. As we decrease the
number of clusters, a higher number of PCs is required to
maintain the same KG error, which in turn degrades the
compression ratio. Similarly, increasing the number of
clusters degrades the compression ratio. This is because
clusters require a minimum number of PCs, whatever is
the size of the cluster. This implies that a compression with
a higher number of clusters implies higher number of PCs,
resulting into a degraded compression ratio. Note that the
compression is not only a function of the number of PCs
but also the number of frames belonging to each cluster.
This explains why we obtain better compression ratio on
the face with three clusters whose total number of PCs
(138) is larger than that of one cluster (68).

The timings in Table 2 include the runtime for frame
clustering, PCA, quantization, and LCPS. Our method
has implemented using Matlab running on Intel Core
3.40GHz PC with 16.0GB RAM. Detailed timings are
listed in Table 3.
8.3. Comparison with Other Methods

For the comparison, we have chosen the methods of same
class, that is, PCA-based methods. They are the spatial
segmentation method by Sattler et al. [6] and the PCA
combined with the LPC method by Karni and Gotsman [4].
Like ours, they concentrate on the compression of frame data
and do not perform compression on the connectivity data.
Compared with other methods, the main advantage of
PCA-based methods is that they do not use the mesh connec-
tivity for the compression.

Sattler et al. [6] presented a compression method that
clusters vertices with similar trajectories. With clustered
PCA, it segments the given mesh surface into segments
so that average of per-cluster reconstruction error is
minimized. Once the clustering is done, each cluster is
encoded with a number of eigenvectors and PC coefficients
corresponding to each vertex trajectory. The animation
ith different number of clusters.

otal # of PCs Compression ratio (%) Timing (in seconds)

23 0.2331 2.38
22 0.1824 2.01
20 0.1617 1.22
68 0.3513 41.88

138 0.3351 19.29
192 0.3972 15.06
159 0.5869 10.10
281 0.5493 15.72
314 0.5416 13.45
55 0.5168 12.86
60 0.3812 15.58
76 0.4596 14.30
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Figure 6. Comparison of performance for the “horse” model.
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Figure 7. Comparison of performance for the “walking woman”
model.

Table 3. Computation time (in seconds) of the three methods with two models.

Our method
Sattler
et al.

Karni
et al.Clustering (# of clusters) PCA Quantization LCPS Total

Horse 0.20 (4) 0.14 0.09 0.16 0.59 236 3.02
Face 0.06 (3) 0.18 0.17 3.20 3.61 185 2.42
Flag 0.18 (4) 0.32 6.56 3.16 10.22 826 24.21
Woman 0.57 (2) 1.74 1.48 0.58 4.27 2904 13.05

The KGerror was set to 0.4%.
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data are further compressed by applying the PCA on the
eigentrajectories and the uniform quantization.

Karni et al. [4] have presented another compression
method in which the PCA method is applied on the trajecto-
ries of vertices. Unlike the method by Sattler et al. and ours,
they do not use any clustering. The vertex trajectories are fur-
ther compressed by encoding them using the LPC method.

In all methods, the uniform quantization has been used to
encode the PCs, the PC coefficients, and the residual values.

To compare the reconstruction error of the different
methods, we use the KG error measure in percentage
proposed by Karni et al. [4]:

KGerror ¼ 100�
A� eA��� ���

A� E Að Þk k0

A is a 3n�F matrix containing the original animation
sequence, n being the number of vertices and F the number

of frames. eA is the same animation after the compression
and decompression stages. E(A) is a matrix of the same
dimensions as A, in which the values have been replaced
by per-frame averages. The reconstruction error is calcu-
lated with Frobenius norm.

To measure the compression efficiency, we compute the
ratio (in percentage) between the size of the compressed
data and the size of the uncompressed data.

The horse model is an animated mesh with exact
repetitive motion. In other words, the same sequence of
deformation is repeated several times. Our algorithm per-
forms the best for high quality compression. As shown in
Figure 6, for a KGerror of 0.27%, the compression ratio is
22% better than the method by Sattler et al. This means
that our method could successfully identify the redundancy
among frames and use this information to obtain a better
compression ratio. For the compression of the “walking
woman,” our method tends to perform better compared
with the two others for small KGerror (Figure 7).

Figure 8 shows the compression results for the face
model; the compression ratio of our method is approximately
four times better that that of Karni et al. for aKGerror equal to
0.25%. Unlike the horse model, the “face” and the “flag”
sequences do not contain any two identical frames; all the
frames have different shape.

As shown in Figure 9, the compression ratio of the flag
is lower than the two other models. This is because this
Comp. Anim. Virtual Worlds 2013; 24:365–375 © 2013 John Wiley & Sons, Ltd
DOI: 10.1002/cav
animation sequence is much more complex. The move-
ment of the flag is highly dynamic because of the wind.
For a KGerror of 0.27%, the compression ratio of our
method is approximately 30% better than that of the two
other methods. Similarly to the “face” animation sequence,
this sequence does not contain any two identical frames.
8.4. Computation Time

Table 3 summarizes the computation times of our method
along with the two other methods.
373.
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As shown in Table 3, our method has lower computation
time compared with the two others, except for the face model.
There are two factors that intervene in the computation time.
The first one is obviously the length of the animation; longer
animations require more computation time than the shorter
ones. The second factor is the value of the KG error. Com-
pression with small KG error requires using larger number
of PCs, which in turn makes the quantization and LCPS steps
slower because of the size of the data.

One may notice that the timing shown in Table 3 are
large compared with those provided by Karni et al. and
Sattler et al. This is because all our algorithms have been
implemented as Matlab scripts. Because these scripts are
not compiled but interpreted, the execution time is much
longer than that of the same code written in C++. The
purpose of this table is to compare the computation times
rather than to provide absolute timing.
8.5. Length of the Animation Sequence

As expected, our method shows best performance for long an-
imation sequences, where the number of frames is much
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Figure 9. Comparison of performance for the “flag” model.

0%

10%

20%

30%

40%

0 2 4 6 8

C
o

m
p

re
ss

io
n

 r
at

io

KGerror(%)

Sattler et al. Karni et al. Our method

Figure 8. Comparison of performance on the “face” model.
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larger than the number of vertices; it outperforms the two
other methods when the number of frames is large enough
so that the animation exhibits repetitive motions. On the other
hand, the performance of our method is lower than the two
others for animation sequences with no repetitive motion.

To show the effect of the animation sequence length, we
have compared the compression algorithms for the horse se-
quence truncated at 5%. The truncated animation sequence
contains the first 10 frames of the original horse animation.
As shown in Figure 10, our method does not perform any bet-
ter than the two others for the KGerror equal to 0.27%.

Our approach has several other limitations. It could
sometimes produce discontinuous frames, at boundaries
of motion fragments. Such artefact can be observed more
often with high compression ratio. Thus, future work could
focus on reducing this problem of possible frame disconti-
nuity. Another limitation is the number of frame clusters
that need to be defined manually. Future work could be
on automatically determining the optimal number of frame
clusters towards best compression ratio with minimal error.
9. CONCLUSION

In search of good capture of spatio-temporal coherency, we
have introduced a new alternative approach to the
compression of 3D animation data. The key to efficient
compression is the aggregation of similar poses into frame
clusters, which allows us to reduce the number of PCs
required for each frame.

Further, we perform intracluster compression based on
linear coding. Because every motion fragment within a
cluster exhibits similar poses, conventional LPC can be
replaced by key frame-based linear coding, to achieve
minimal reconstruction error. Subsequently, we obtain
better compression ratio for a given reconstruction error
than other comparable methods.
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Figure 10. Comparison for the horse model whose animation
sequence has been truncated at 5%.
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