
[11:33 22/2/2011 Bioinformatics-btr014.tex] Page: 860 860–862

BIOINFORMATICS APPLICATIONS NOTE Vol. 27 no. 6 2011, pages 860–862
doi:10.1093/bioinformatics/btr014

Sequence analysis Advance Access publication January 19, 2011

Compression of DNA sequence reads in FASTQ format
Sebastian Deorowicz1,∗ and Szymon Grabowski2
1Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice and 2Computer
Engineering Department, Technical University of Łódź, Al. Politechniki 11, 90-924 Łódź, Poland
Associate Editor: Dmitrij Frishman

ABSTRACT

Motivation: Modern sequencing instruments are able to generate at
least hundreds of millions short reads of genomic data. Those huge
volumes of data require effective means to store them, provide quick
access to any record and enable fast decompression.
Results: We present a specialized compression algorithm for
genomic data in FASTQ format which dominates its competitor,
G-SQZ, as is shown on a number of datasets from the 1000 Genomes
Project (www.1000genomes.org).
Availability: DSRC is freely available at http://sun.aei.polsl.pl/dsrc.
Contact: sebastian.deorowicz@polsl.pl
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on November 16, 2010; revised on December 21, 2010;
accepted on January 3, 2011

1 INTRODUCTION
One of the main tasks of bioinformatics is to collect and analyze huge
genomic data. Sequencing instruments are able to generate at least
hundreds of millions of short reads, accompanied with annotations,
like quality scores denoting uncertainties in sequence identification
processes. Read identifications and other descriptions, e.g. unique
instrument names, are also kept in the same file.

We propose an algorithm for effective compression of genomic
reads of the described kind in the widely accepted FASTQ input
format, and show experimental results suggesting its supremacy
over existing solutions. Our scheme provides fast random access to
individual records of the dataset and is capable of finding repeating
sequences in reads strings.

We are not aware of any direct competitors to our algorithms,
except for G-SQZ (Tembe et al., 2010), presented in the
experimental section. There is a number of DNA-compressing
algorithms but they deal with genomic (and usually not annotated)
sequences rather than DNA reads. The used compression techniques
include detecting exact and inexact repeats (Chen et al., 2002),
complementary palindromes (Grumbach and Tahi, 1994), higher-
order coding, and more. Unfortunately, most of the known
algorithms are computationally intensive and have been tested
only on small datasets (e.g. a few MB’s). A recent trend is to
exploit similarities between sequences of individuals of the same
species (Kuruppu et al., 2010), but this is also a problem different to
the one we consider here. For a survey of compression techniques
in computational biology, see (Giancarlo et al., 2009).

∗To whom correspondence should be addressed.

2 METHODS
Data compression methods can be divided into dictionary and statistical
methods. The former encode repeating subsequences of the input text
as references to subsequences seen earlier. The latter encode each input
character on the basis of gathered statistics, possibly involving its context.

The FASTQ format so far lacks a clear definition and several
incompatible variants of it are in use (Solexa, Sanger, Illumina
1.3+ and more). The need for format standardization was advocated
in (Cock et al., 2009) and a format proposal presented therein. Another,
similar, proposal was given by Institute for Integrative Genome Biology
of University of California (http://illumina.ucr.edu/ht/documentation/
standardized-fastq-format-aka-fastq2, accessed on December 15, 2010),
where e.g. line wrapping after 80 characters and a few other restrictions are
obligatory. Our solution is compatible with those two recent specifications.
FASTQ data can naturally be perceived as ordered collections of records,
each consisting of three streams: title information, DNA sequence (read),
quality scores. In our solution the three FASTQ streams within a record are
processed (almost) independently. Also, we impose a hierarchical structure
of the compressed data, to provide fast random access to records. To this end,
we divide the dataset into blocks of b records (b=32 by default) and also
group blocks into superblocks of size s blocks each (s=512 by default).
Our format (but not the current implementation) allows for incremental
growth of the archive, where new records are added at the end. Each
superblock is compressed independently while blocks within a superblock
share statistics but apart from that are also independent. In other words, in
order to decompress a random block, the superblock it belongs to is first
located, the block offset within the superblock is found, the appropriate
statistical data common to all blocks in the superblock are read, and finally the
block’s data are extracted. Extracting a random record requires five disk seek
operations (details are given in Section 2 of the Supplementary Material).
Our solution also supports extraction of the whole superblock (note that
arbitrary ranges of contiguous records can be composed of one or several
successive superblocks, where possibly a prefix of the first superblock and
a suffix of the last superblock are truncated). This strategy is much faster
than naïve invocation of the extraction procedure for individual records in
the superblock.

In the following subsections we briefly present the techniques used for
compressing the three FASTQ data streams.

2.1 Title lines
The Title lines start with the @ character followed with a sequence
identifier and (optional) description, which can store information like unique
instrument name, flowcell lane, read length etc. There is no specification, or
even one commonly accepted convention, of the description format, hence
we choose a heuristic approach. We treat the Title lines as a concatenation
of several fields with separators (blank space, colon, period and a few more)
between them. The first Title line in a superblock specifies the number of
fields and the separators between them for the rest of the superblock (the rare
cases of varying number of fields or heterogeneous layout of separators are
also handled). Then, each field is inspected separately, with statistics gathered
usually on the superblock level. The techniques used here include: compact

860 © The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/6/860/235075 by guest on 20 August 2022

http://sun.aei.polsl.pl/dsrc
http://illumina.ucr.edu/ht/documentation/


[11:33 22/2/2011 Bioinformatics-btr014.tex] Page: 861 860–862

Compression of genomic sequences in FASTQ format

encoding of constant (fixed) fields, recognition of numeric and non-numeric
fields, efficient encoding of columns with fixed characters in non-numeric
fields, detection of the numeric fields amenable to differential coding, entropy
coding.

We explain our processing of the Title lines on an excerpt from the
beginning of the SRR003177 dataset. The input lines are as follows.

@SRR003177.1 FC60WVV01ASZMI length=42
@SRR003177.2 FC60WVV01AEUTT length=213
@SRR003177.3 FC60WVV01AIMMC length=121
@SRR003177.4 FC60WVV01AHKQQ length=497
@SRR003177.5 FC60WVV01AVYZ0 length=174

The first Title line is split on the separators, which are a period, a blank
space, a blank space and an ‘=’ character. Clearly, the number of obtained
fields is five. Two constant fields are detected, and their values, SRR003177
and length, respectively, stored only once (of course, this check is performed
for the whole superblock). The other fields are divided into numeric (the
second and the fifth field) and non-numeric (the third field) ones. Numeric
fields consist of digits only, with non-zero at the beginning if the digit
sequence length is greater than 1. For each numeric field it is then decided
if it should be differentially (delta) encoded. We assume that a field benefits
from delta coding if the difference of the maximum and the minimum
delta between the field values in two successive records is smaller than
the difference between the maximum and the minimum field values without
delta encoding; the extremes are taken over the whole superblock. In our
small example, the second field produces all delta values equal to 1, while the
extreme ‘raw’values are 5 and 1, hence delta coding would be applied. For the
last field, delta coding seems harmful (deltas vary from −323 to 376, while
the range for raw values is narrower). The resulting (i.e. delta-transformed or
unchanged) sequence of numbers is then compactly encoded, together with
the minimum and the maximum field value. The chosen encoding variant
depends on the resulting range of values. For ranges smaller than 512, order-
0 Huffman encoding is applied. Otherwise, the values are encoded using the
minimum required number of bits, same for each. For example, if the field
is not delta-encoded and the minimum and the maximum values are 200
and 1190, respectively, then 10 bits per number are used, since all numbers
from the range [200,1190] can be encoded using 10 bits. In our example, the
second field is even more compactly represented, because all delta values
are equal and thus the delta is stored only once.

The processing of non-numeric fields is different. Commonly for such
fields the characters at some positions (‘columns’) are fixed. In our example,
for the third field the fixed positions comprise the prefix of length 10
(FC60WVV01A). As in general any positions can be fixed, we store a
bit vector at the superblock level, denoting the fixed positions, and the
fixed characters are stored only once. This bit vector, which we also call a
Hamming mask, is of length equal to the length of the respective field in the
first record. The characters in non-fixed positions are statistically encoded,
using a separate order-0 Huffman model for each field column.

We notice that fields may be of variable length, which is not a problem
(characters at the trailing positions cannot simply be considered fixed). Still,
if a field is of variable length, its minimum and maximum length must be
recorded, to compactly encode the field length for each record, in the manner
of compact encoding of numerals, presented above. If the field length is
constant, it is recorded only once.

Finally, we note that if the Title field format is inconsistent across different
records (which may happen if the data come from different experiments) then
our encoding of those data is relatively inefficient.

2.2 DNA
The number of distinct DNA bases is usually four, but the (rare) occurrences
of N and other symbols (of the IUPAC list) for inconclusive identification
make the simple idea of packing bases into bytes at least cumbersome. Our
solution of this issue is to move the extra symbols from the DNA stream into
the quality stream; the range for qualities is (at most) 94, hence over 160

byte values can be utilized for this purpose. Having got a symbol from the
augmented alphabet, we mix it with its quality score, assuming the score is
one of its 8 lowest values ([33,40]; ambiguous symbols should have low-
quality scores), which produces 120 values, easily fitting the upper half of the
byte range. If the superblock contains at least one symbol not in the allowed
set (of 4 standard bases and 15 extra symbols) or at least one of its extra
symbols is accompanied with quality score above 40, the whole DNA stream
in this superblock is Huffman-encoded. Such a situation is rare though. Still,
our algorithm does more than mere packing bases in fours in bytes (and
handling extra symbols). From the sequencing process it is obvious that
some some sequence reads should overlap, so LZ77-style encoding of them is
applied. Below we present an outline of our LZ77-style compression scheme
while more details are in the Supplementary Material.

The LZ77-based compression algorithms basically need two data
structures: the buffer with the text already read, in which matched phrases
are found, and an indexing structure (a dictionary) for fast match search,
often implemented as a hash array, which is also used in our solution.

One of the assumptions we made is that encoded matches are read prefixes.
If for the current read an LZ-match is found, then this read is not indexed,
i.e. cannot be a reference to a future read. This prevents from possibly very
long reference chains, detrimental for fast record access. Another assumption
is that it pays not to hash the current read if it is not hopeful enough to yield
a significant gain as a reference to a future read. This estimation is based
on the corresponding quality scores; if they are low, then also chances for
a match are low and the read is not indexed and searching for its match is
canceled.

The hashes are calculated over read subsequences of length 36, which
obviously is also the minimum match length threshold. Clearly, for much
shorter matches it is cheaper to encode the literals one by one. Even for
‘prospective’ reads, not all of its subsequences are added to the hash array.
We take some care to minimize space usage; for example, we prevent adding
new entries if the number of collisions for a given hash is large enough.

2.3 Quality scores
We have noticed that there are basically three sorts of quality streams:
(i) quasi-random with mild dependence of quality score position onto the
score symbol distribution; (ii) similar to the previous one but with many
quality strings ended with several # characters; and (iii) the last one, with
strong local correlations within individual records, which can be exploited
with simple means, like run-length encoding, which precedes a statistical
coding phase. The compressor detects the actual case and chooses the
appropriate processing variant. In the case (ii), a bit flag per record is spent to
tell if its quality string ends with hashes. If so, the trailing hashes are removed
and their length stored. With this difference, the cases (i) or (ii) are handled in
the same way: the quality data of a given block are split into as many streams
as the length of the longest quality sequence in the superblock. The streams
are order-0 Huffman-encoded using frequencies stored on the superblock
level. In case (iii), the concatenated quality sequences of the block are split
into run heads and run lengths, and encoded statistically. For example, the
input string BCCBCBC@BBBCB would be split into BCBCBC@BCB
(run heads) and 0,1,0,0,0,0,0,2,0,0 (run lengths, decreased by 1 as lengths
must be at least one). The run lengths are limited to 256 to fit a single byte;
even longer runs (which are rare) are split into several shorter ones. The
resulting head and length streams are then order-1 Huffman-encoded, using
their respective statistics stored on the superblock level.

3 IMPLEMENTATION AND RESULTS
The C++ implementation of our algorithm is called DSRC (DNA Sequence
Reads Compressor). In order to evaluate its practical assets: compression
ratio, compression speed, decompression speed and random access (record
extraction) time, we compared it against two popular general-purpose
compressors, gzip 1.3.5 and bzip2 1.0.3 (both run with switch −9), and
the specialized DNA reads compressor G-SQZ 0.6 (Tembe et al., 2010).

861

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/6/860/235075 by guest on 20 August 2022



[11:33 22/2/2011 Bioinformatics-btr014.tex] Page: 862 860–862

S.Deorowicz and S.Grabowski

Table 1. Compression results.

Dataset Type Size
[GB]

gzip bzip2 G-SQZ DSRC DSRC-LZ

Ratio c-sp d-sp Ratio c-sp d-sp Ratio c-sp d-sp e-t Ratio c-sp d-sp e-t Ratio c-sp d-sp e-t
[MB/s][MB/s] [MB/s][MB/s] [MB/s][MB/s][ms] [MB/s][MB/s][ms] [MB/s][MB/s][ms]

SRR001471 LS454 0.22 3.24 2.2 90.7 3.94 7.8 17.3 – – – – 4.44 36.4 41.3 7 4.63 23.2 38.7 7
SRR003177 LS454 1.20 3.17 2.0 89.9 3.81 7.7 16.9 – – – – 4.24 40.5 42.0 8 4.38 20.4 39.0 8
SRR003186 LS454 0.89 2.98 1.9 86.4 3.59 7.4 16.0 – – – – 4.02 36.4 37.6 7 4.08 18.6 35.6 7
SRR007215_1 SOLiD 0.70 4.19 9.1 92.7 5.21 4.2 23.9 4.71 25.2 4.8 178 6.51 21.0 35.8 8 6.51 21.0 35.8 8
SRR010637 SOLiD 2.09 3.48 7.6 96.1 4.25 4.8 21.0 3.98 22.1 4.0 117 5.13 21.7 31.2 8 5.13 21.7 31.2 8
SRR013951_2 SOLEXA 3.19 2.41 3.9 81.0 2.81 6.4 15.3 2.77 15.2 2.7 193 3.23 26.6 29.1 7 3.29 17.7 28.3 7
SRR014961_2 SOLiD 40.90 3.55 6.8 84.3 4.37 5.0 21.1 3.98 21.2 3.9 113 5.49 19.9 31.4 9 5.49 19.9 31.4 9
SRR027520_1 SOLEXA 4.81 2.88 3.7 81.5 3.42 6.5 17.0 3.03 16.4 2.9 178 3.98 27.5 34.5 7 4.05 15.4 33.3 7
SRR027520_2 SOLEXA 4.81 2.81 3.7 78.4 3.33 6.3 16.7 3.03 16.5 3.0 168 3.90 27.3 33.0 7 3.97 15.8 31.9 7

Average for SOLiD and SOLEXA 3.22 5.8 85.7 3.90 5.5 19.2 3.58 19.4 3.5 158 4.71 24.0 32.5 6 4.74 18.6 32.0 6
Average for all 3.19 4.6 86.8 3.86 6.2 18.4 – – – – 4.55 28.6 35.1 7 4.61 19.3 33.9 7

The columns ‘ratio’ denote how many times the compressed output is smaller than the original file. ‘c-sp’ and ‘d-sp’ stand for compression speed and decompression speed,
respectively. ‘e-t’ stands for average extract time for a single record.

Basically, G-SQZ applies order-0 Huffman coding on combined bases and
respective qualities. Many details of its internal work cannot be inferred from
the paper and we were unable to obtain program sources. G-SQZ cannot
handle datasets with variable-length reads. DSRC is run twice: with and
without LZ-matches on the reads stream. The test data comprise nine files
from 1000 Genomes Project; more results are shown in the Supplementary
Material. The test machine was an AMD Opteron™8378 2.4 GHz, using a
single core, 16 GB of RAM, under Red Hat Enterprise Linux Server 5.4.
Time measurements were performed with the Unix time command.

For all tested compressors we present the ratio between the original
and the compressed file size (so, higher is better), and compression and
decompression speed (see Table 1). Also, for the specialized compressors,
G-SQZ and DSRC, we show the random record extract time. First, we notice
that in almost all cases DSRC is able to reduce the input datasets from four
to over six times. Second, adding LZ-matching generally helps, although
sometimes the reads are below the minimum match length and then this idea
becomes effectively turned off. On other files, the overall gain from this idea
is usually about 2–4%. Even without LZ-matching our algorithm achieves
significantly higher compression than the competitors, on each test file.

As expected, LZ-matches harm the speed, but in decompression the loss
rarely exceeds 5%. On the other hand, the compression time grows by
60–105% (the milder slow-down in the reported averages comes from the
fact that on several files LZ-matching was actually not used, as explained
above). In real numbers, the decompression speed on the test machine is about
30–40 MB/s while the compression speed varies from 15 MB/s to 23 MB/s
with LZ-matching and from 20 MB/s to 40 MB/s without. We note that even
our slower variant is several times faster in compression than gzip and bzip2.
This is not the case with G-SQZ which is comparable in compression speed
with DSRC with LZ-matching, but usually slower than DSRC in the faster
mode. As for the decompression speed, gzip is unsurpassable, running at
80–100 MB/s. The other competitors are clearly slower than DSRC here.
Over an order of magnitude difference between DSRC and G-SQZ can be
noticed in the random access test, where DSRC makes it possible to extract
any individual record in less than 10 ms. Finally, the time to extract a whole

random superblock depends on the read lengths, but typically varies from
2 s to 5 s with LZ-matching and from 0.1 s to 0.3 s without.

4 CONCLUSION
We presented a specialized compressor, DSRC, for genomic
sequences with quality scores, clearly superior both in compression
efficiency and performance to its only known competitor for this
kind of data, G-SQZ. Comparison with two well-known general-
purpose compressors also puts our solution in a favorable position.
Acarefully designed two-level structure of compressed records made
it possible to extract any individual record in less than 10 ms.

Funding: Polish Ministry of Science and Higher Education under
the project (N N516 441938) in part.

Conflict of Interest: none declared.

REFERENCES
Chen,X. et al. (2002) DNACompress: fast and effective DNA sequence compression.

Bioinformatics, 18, 1696–1698.
Cock,P.J.A. et al. (2009) The Sanger FASTQ file format for sequences with

quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res., 38,
1767–1771.

Giancarlo,R. et al. (2009) Textual data compression in computational biology: a
synopsis. Bioinformatics, 25, 1575–1586.

Grumbach,S. and Tahi,F. (1994) A new challenge for compression algorithms: genetic
sequences. Inf. Process. Manage., 30, 875–886.

Kuruppu,S. et al. (2010) Relative Lempel-Ziv compression of genomes for large-scale
storage and retrieval. Lect. Notes Comput. Sci., 6393, 201–206.

Tembe,W. et al. (2010) G-SQZ: compact encoding of genomic sequence and quality
data. Bioinformatics, 26, 2192–2194.

862

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/6/860/235075 by guest on 20 August 2022


