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Abstract

In this article, an improved and more efficient algorithm for the compression of the electrocardiogram (ECG)

signals is presented, which combines the processes of modeling ECG signal by variable-length classified signature

and envelope vector sets (VL-CSEVS), and residual error coding via wavelet transform. In particular, we form the VL-

CSEVS derived from the ECG signals, which exploits the relationship between energy variation and clinical

information. The VL-CSEVS are unique patterns generated from many of thousands of ECG segments of two

different lengths obtained by the energy based segmentation method, then they are presented to both the

transmitter and the receiver used in our proposed compression system. The proposed algorithm is tested on the

MIT-BIH Arrhythmia Database and MIT-BIH Compression Test Database and its performance is evaluated by using

some evaluation metrics such as the percentage root-mean-square difference (PRD), modified PRD (MPRD),

maximum error, and clinical evaluation. Our experimental results imply that our proposed algorithm achieves high

compression ratios with low level reconstruction error while preserving the diagnostic information in the

reconstructed ECG signal, which has been supported by the clinical tests that we have carried out.

Keywords: electrocardiogram, data compression, variable-length classified vector sets, energy based ECG

segmentation

1 Introduction
An electrocardiogram (ECG) signal, which is a graphical

display of the electrical activity of the heart, is one of

the essential biological signals for the monitoring and

diagnosis of heart diseases. ECG signals recorded by the

digital equipments are most widely used in the applica-

tions such as monitoring, cardiac diagnosis, real-time

transmission over telephone networks, patient databases

and long-term recording. Some key parameters such as

the sampling rate, sampling precision, number of leads

and recording time play an important role in the

increase of the amount of data collected from an ECG

signal. Evidently, when continuously generating the huge

amount of ECG data, in order to be able to process

these data, we need the proper equipments that have

the high storage capacity. On the other hand, when the

equipments are used in the remote monitoring activities,

they must have the wide transmission band. Therefore,

in order to achieve removing the redundant information

from the ECG signal with retaining all clinically signifi-

cant features including P-wave, QRS complex and T

-wave [1,2], we need to employ an effective ECG com-

pression algorithm.

In the recent years, the studies dealing with the mod-

eling and compression of the ECG signals essentially

utilize one of the following methods: (i) The direct

time-domain methods, (ii) the transform-based methods,

(iii) the parameter extraction methods [2,3].

The direct time-domain methods [4-10] such as

AZTEC [4], CORTES [5], SAPA [6], FAN [7], SAIES

[8], mean-shape vector quantization method [9], gain-

shape vector quantization [10] use the actual samples of

the original signal. In the transform-based methods

[11-22], the domain of the original signal is transformed

into another domain by using the orthogonal transfor-

mations such as principal component analysis (PCA)

[11,12], discrete cosine transformation (DCT) [13], sin-

gular value decomposition (SVD) [14] and wavelet trans-

formation (WT) [15-22]. Then, the appropriate inverse

transformation is applied to the transformed signal to

reconstruct the original signal in its original domain
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with an acceptable reconstruction error. The parameter

extraction methods [23,24] such as linear prediction and

neural network based methods generally use the idea of

generating a set of parameters which is extracted from

the original signal.

Among the proposed methods in the literature, one of

the most known and powerful algorithm is the set parti-

tioning in hierarchical trees (SPIHT) compression algo-

rithm [21]. Another efficient ECG compression method

uses the cosine modulated filter banks to reconstruct

the original ECG signals [25]. In [22], another ECG

compression method is proposed, which is based on the

adaptive wavelet coefficients quantization by using a

modified two-role encoder. Most recently, the wavelet-

based ECG data compression system having a linear

quality control scheme was proposed [20].

In some previously published articles [26,27], it has

been shown that the predefined signature and envelope

vector sets best describe the speech and ECG signals. It

has also been demonstrated in [26,27] that, by introdu-

cing and employing a new systematic procedure called

SYMPES, the predefined signature and envelope vector

sets have been used to model the speech and ECG sig-

nals frame by frame. In this procedure, each frame of

the reconstructed speech or ECG signal is represented

by a combination of multiplication of three major quan-

tities, which are the gain factor, the signature vector,

and the envelope vector.

In [28], a novel EEG compression method was pro-

posed, which is based on the construction of the classi-

fied signature and envelope vector sets (CSEVS). The

signature and envelope vector sets obtained for the

speech and ECG signals in [26,27] were then extended

to the EEG signals in [28] to obtain the signature and

envelope vector sets for the EEG signals. Then, these

vector sets were classified by using k-means clustering

algorithm to determine the centroid vectors of each

classified vector sets, which were to be used in con-

structing of the CSEVS. The main advantage of the

method proposed in [28] is that it reduces the size of

vector sets and computational complexity of the search-

ing and matching processes. The method introduced in

[28] also proved to have advantages over the wavelet

transform coding technique as far as the average RMSE,

average PRD, average PRD1, and CR(%) are concerned.

In [29], a new block-based image compression scheme

was presented based on generation of classified energy

and pattern blocks (CEPBs). In the method, first the cla-

sified enesrgy blocks (CEB) and clasified pattern blocks

(CPB) sets were constructed and any image data can be

reconstructed block by block using a block scaling coef-

ficient and the index numbers of the CEPBs placed in

the CEB and CPB. The CEB and CPB sets were con-

structed for different sizes of image blocks such as 8 × 8

or 16 × 16 with respect to different compression ratios

(CRs) desired. At the end of a series of the experimental

works, the evaluation results show that the proposed

method provides high CRs such as 21.33:1, 85.33:1 while

preserving the image quality at 27-30.5 dB level on the

average. When the CR versus image quality (PSNR)

results in the proposed method compared to the other

works, it seems that the method is superior to the DCT

and DWT particularly at low bit rates or high CRs.

In the current article, we propose a new and more

efficient ECG compression algorithm which relies on

the variable-length CSEVS (VL-CSEVS) and wavelet

transform. In this proposed algorithm, we first use the

energy based segmentation method to represent an ECG

frame with high energy by short segments and an ECG

frame with low energy by long segments. Then, the

unique patterns VL-CSEVS are generated from these

ECG segments of two different lengths. Thus, when

compared with the previous results obtained in [26-28],

our new method significantly improves the CR, and

then the use of wavelet transform based residual error

coding both enhances the quality of the reconstructed

signal. In order to check the performance of our new

method for a different classes of ECG signals, given that

the original unique patterns VL-CSEVS remain

unchanged, we have used the MIT-BIH compression

test database called the worst-case database by the its

developers [15].

The parameters PRD, MPRD, and maximum error

(MAXERR) for compression the ECG of the unique pat-

tern VL-CSEVS derived from the original ECG are mea-

sured by changing both the training set and the test set

at each round of the 4-fold cross-validation method,

whose average values are used to determine the perfor-

mance of our new proposed method. We should point

out here that the sampling frequency, resolution, mean

value, and amplitude value of the ECG signals in the

test database are different from those of the ECG signals

used to construct the unique patterns VL-CSEVS.

The article is organized as follows. Section 2 describes

the details of the newly proposed compression algo-

rithm. In Section 3, we present the experimental results

obtained by using the proposed compression algorithm,

which are then compared with some known successful

ECG compression methods reported in [21,22,25]. In

Section 4, we give the conclusion.

2 Proposed compression algorithm
In this article, an efficient ECG compression algorithm

which is based on the modeling ECG signals via VL-

CSEVS and employs the residual error coding by using

the wavelet transform is proposed. One of the main

advantages of our method is to ensure the quality in the

reconstruction of an ECG signal.
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We use the variable-length approach to generate the

CSEVS. In this context, an ECG frame with high energy

carrying useful information such as QRS complex is

represented by the short segments. At the same time, an

ECG frame with low energy with or without possessing

clinical information is represented by the long segments.

The length of the short segments is determined to be 16

and that of long segments is determined to be 64.

In determination of the length of the segments, we

first check the relationship between the segment length

and blocking effect for various segment lengths, and

then choose the segment length which minimizes the

blocking effect on the reconstructed ECG signal.

After the variable-length segmentation process, the

signature and envelope vectors are extracted from many

of thousands of ECG segments. Then, the signature and

envelope vectors are classified by employing effective k-

means algorithm which helps us to eliminate the similar

signature and envelope vectors. Thus, the VL-CSEVS

are constructed by using non-similar signature and

envelope patterns, implying that the VL-CSEVS will

have unique patterns.

In conclusion, the ECG segments with low energy can be

more compressed than the ECG segments that have high

energy. Thus, our new method allows us to significantly

increase the total CR of ECG signals. On the other hand,

some ECG frames containing p-wave or t-wave carries

valuable clinical information may have low energy. In the

reconstruction of these types of ECG frames, the recon-

struction error is substantially decreased by employing the

wavelet based residual error coding technique. The pro-

posed algorithm is superior to the powerful wavelet based

ECG compression methods, especially at low bit rates.

The newly proposed algorithm basically consists of

three processing stages: the pre-processing stage, the

stage of construction of the VL-CSEVS, and reconstruc-

tion process of an ECG signal. In the following subsec-

tions, each stage is explained in details.

2.1 Preprocessing stage

The preprocessing is one of the most important stages

of an ECG compression method because it plays a cru-

cial role in enhancing the compression performance of

the algorithm. The preprocessing stage is carried out in

three steps.

The first step of this stage normalizes the frequency of

each signal to 500 Hz using cubic spline interpolation

technique. The amplitude normalization is the second

step of this stage, which normalize amplitude of each

ECG signal is between 0 and 1 using the following

formula

xNOR =
x − xmin

xmax − xmin
(1)

The final step of this stage is the segmentation process.

There are two traditional ECG segmentation methods in

the literature. The first method is based on the QRS detec-

tion algorithm. In this method, each QRS peak of heart-

beat or each R-R interval is identified as a segment. Due to

the heart rate variability, this segmentation method

increases the computational cost of the compression pro-

cess. The other method is the fixed-length segmentation

which is one of the mostly used method in the past litera-

ture. In our previous work [27], we employed the fixed-

length segmentation method to split ECG signals into

short and quasi-periodic segments. In this research work,

energy based segmentation method that splits ECG signal

into two different lengths according to the energy varia-

tion of the signal is utilized to improve the compression

performance of the proposed algorithm. This segmenta-

tion method divides the ECG frames with high energy into

the short segments whose length is 16 samples while the

ECG frames with low energy are divided into the long seg-

ments whose each contains 64 samples.

When the preprocessing stage is completed, the nor-

malized ECG segments of two different lengths are

obtained to construct the VL-CSVES which are

explained in detailed in the next subsection.

2.2 Construction of the VL-CSEVS

A normalized ECG segment Xi obtained in the prepro-

cessing stage can be spanned to a vector space in the

following form.

Xi = VT
i Ci (2)

Ci = ViXi (3)

where the Vi represents orthonormal vectors in the

matrix notation and Ci are uncorrelated coefficients

such that

VT
i =

[
vi1 vi2 vi3 . . . viLF

]
(4)

CT
i =

[
ci1 ci2 ci3 . . . ciLF

]
(5)

in which LF is the number of the samples in any ECG

segment which is equal to either 16 or 64.

Now, any normalized ECG segment Xi can be repre-

sented as a weighted sum of the orthonormal vectors vik
as follows:

Xi =

LF∑

k=1

cikvik, cik = XT
i vik (6)

This equation may be truncated by taking the first p

term. In this case, the approximation Xip and approxi-

mation error εi are given in the following form.
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Xi
∼= Xip =

p∑

k=1

cikvik (7)

εi = Xi − Xip =

LF∑

k=p+1

cikvik (8)

The orthonormal vectors vik are determined by mini-

mizing the expected vector of the error vector �i with

respect to vik in the LMS sense. Eventually, these vectors

which are represented by vik are the eigenvectors of the

autocorrelation matrix Ri of the Xi segment. The auto-

correlation matrix Ri can be calculated as follows

Ri =

⎡
⎢⎢⎢⎢⎢⎣

ri (1) ri (2) ri (3) · · · ri (LF)

ri (2) ri (1) ri (2) · · · ri (LF − 1)

ri (3) ri (2) ri (1) · · · ri (LF − 2)
...

...
...

. . .
...

ri (LF) ri (LF − 1) ri (LF − 2) · · · ri(1)

⎤
⎥⎥⎥⎥⎥⎦

(9)

The entries of the matrix Ri are computed by

ri (d + 1) =
1

LF

iLF−1−d∑

j=[i−1]LF+1

xj+1xj+1+d (10)

The above mentioned LMS process results in the

eigenvalue problem. Hence, the eigenvectors vik of the

autocorrelation matrix Ri and the corresponding eigen-

values lik are found by solving

Rivik = λikvik, k = 1, 2, . . . , LF (11)

Since the autocorrelation matrix Ri is a positive semi-

definite, real-symmetrical and toeplitz matrix, the eigen-

values lik are real and non-negative and the eigenvectors

vik are all orthonormal.

The eigenvectors vik can be arranged according to the

descending order of the magnitude of their correspond-

ing eigenvalues lik.

λi1 ≥ λi2 ≥ · · · ≥ λiLF (12)

In this case, the eigenvectors vi1 that have the highest

energy associated with the highest magnitude of the

eigenvalue represents the direction of the greatest varia-

tion of the signal and they are also called signature vec-

tors. The signature vector may approximate each

segment that belongs to the original ECG. Therefore,

each segment Xi is represented as follows

Xi
∼= ci1vi1 (13)

Once the approximation (13) is obtained, it can be

converted into the equality by means of an envelope

diagonal matrix Ai for each segment. Thus, Xi is calcu-

lated by

Xi = ci1Aivi1 (14)

In (14), the diagonal components air of the matrix Ai

are computed in terms of the components vi1r of the

signature vector vi1 and the component xir of the seg-

ment vector Xi by following simple division.

air =
xir

ci1vi1r
(15)

In this research work, many ECG signals were exam-

ined and thousands of segments which contain either 16

or 64 samples were analyzed. After the generation of all

of the signature and the envelope vectors employing the

procedure given above, these vectors were plotted. It

has been observed that there were a lot of signature vec-

tors similar to each other. This type of repetitive simi-

larity properties have also observed among the envelope

vectors. The vectors in the signature and envelope side

were clustered by using an effective k-means clustering

algorithm [1] and the centroid vectors of each cluster

were determined for these two vector types. These cen-

troid vectors are called as classified signature vectors

and classified envelope vectors. The block diagram that

explains this procedure is given in Figure 1.

After determination of the centroid vectors for each

cluster of the signature and envelope vectors, two types

of sets were constructed by using these centroid vectors.

The centroid vectors obtained from the signature vec-

tors and the envelope vectors are renamed as classified

signature vectors (CSV) and classified envelope vectors

(CEV), respectively. The CSVs are collected under either

the classified signature set-16 (CSS16) or the Classified

Signature Set-64 (CSS64) according to their segment

length. The CSVs are represented by ΨNS(n); NS = 1, 2,

..., R, ..., NS. The integer n represents total number of

samples in the each CSV while the integer NS designates

the total number of the CSVs in the CCS16 and CCS64,

individually. In the same way, the CEVs are collected

under either the CES16 or the CES64 according to their

segment length. The CEVs are represented by FNE(n);

NE = 1, 2, ..., K, ..., NE. The integer n represents total

number of samples in the each CEV while the integer

NE denotes the number of the CEVs in the CES16 and

CES64, individually. Afterwards, CSS16, CES16, CSS64,

and CES64 are collected in the VL-CSEVS. Details of the

reconstruction process of measured ECG signals by

means of VL-CSEVS are given step by step in the fol-

lowing subsection.

2.3 Reconstruction process of ECG signals by using VL-

CSEVS

The reconstruction process of the proposed method

consists of two operations: encoding and decoding. The

block diagrams of the encoders and decoders are given
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in Figures 2 and 3, respectively, which are explained step

by step in next subsections.

2.3.1 Encoder

Step 1: The original ECG signal is first normalized, and

then it is segmented in the pre-processing stage. If the

segment length is 16 the switch-codebook bit bSWCB is

assigned as 1. Otherwise, bSWCB is equal to 0.

Step 2a: An appropriate CSV from either CSS16 or

CSS64 according to the value of bSWCB is pulled out

such as the error which is given below is minimized for

all R̃ = 1, 2, . . . , R, . . . , Ns .

δR = min
{∥∥Vi1 − ΨR̃

∥∥2
}

= ‖Vi1 − ΨR‖2 (16)

Step 2b: The index number R that refers to CSV is

stored.

Step 3a: An appropriate CEV from either CES16 or

CES64 according to the value of bSWCB is pulled out

Figure 1 The block diagram of the construction of the VL-CSEVS.

Figure 2 The block diagram of the encoder part of the proposed algorithm.
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such as the error shown below is minimized for all

K̃ = 1, 2, . . . , K, . . . , NE .

Step 3b: The index number K that refers to CEV is

stored.

δK = min
{∥∥Xi − CRΦK̃ΨR

∥∥2
}

= ‖Xi − CRΦKΨR‖2 (17)

Step 4: A new gain coefficient factor Ci is replaced by

CR by computing as follows,

Ci =
(ΦKΨR)T Xi

(ΦKΨR)T (ΦKΨR)
(18)

so that the global error given in (19) is minimized.

δGLOBAL = ‖Xi − CRΦKΨR‖2 (19)

Step 5: At this step, the segment XAi is approximated

by

XAi = CiΦKΨR (20)

Step 6: The above steps is repeated to determine the

model parameters R, K, and Ci for each segment of

ECG signal and X̂rec is reconstructed.

X̂rec =
[
XA1 XA2 XA3 . . . XANF

]
(21)

Step 7: Residual error is figured out by subtracting

X̂rec from the original ECG signal.

err = X − X̂rec (22)

Step 8: The residual error is down-sampled by two

using cubic spline interpolation technique and three-level

discrete wavelet transform using Biorthogonal wavelet

(Bior 4.4) is applied to the down-sampled residual signal.

Step 9: The modified two-role encoder [22] is

employed for coding the obtained wavelet coefficient,

and thus, the encoded residual bit stream is obtained.

Step 10: Encoded bit stream of the index number of R

is obtained by using Huffman coding.

Step 11: Encoded bit stream of the index number of K

is obtained by using Huffman coding.

Step12: The new gain coefficients Ci are coded by

using 6 bits.

2.3.2 Decoder

Step 1: The encoded bit stream of the index number of

R and K are decoded by using Huffman decoder.

Figure 3 The block diagram of the decoder part of the proposed algorithm.
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Step 2: For each segment, the index number of R and K

are used to pull out the appropriate CSV and CEV from the

VL-CSEVS according to the switch-codebook bit bSWCB.

Step 3: The each segment XAi is approximated by the

following mathematical formula

XAi = CiΦKΨR (23)

Step 4: The reconstructed ECG signal X̂rec is pro-

duced by

X̂rec =
[
XA1XA2XA3 . . . XANF

]
(24)

Step 5: The encoded bit stream of the residual signal

is decoded by using the modified two-role decoder [22].

Step 6: The reconstructed residual signal errrec is pro-

duced by applying the inverse WT and up-sampling

process by a factor of two, respectively.

Step 7: In the final step, the reconstruction process of

the ECG signal is accomplished by adding the recon-

structed residual signal to the reconstructed ECG signal

as follows.

Xrec = X̂rec + errrec (25)

In the following section, the simulation results for the

proposed compression algorithm are presented.

3 Simulation results
3.1 Evaluation metrics to measure the performance of the

proposed compression algorithm

The performance of the proposed ECG compression

algorithm and those given in [21,22,25] are evaluated by

using two criteria which are the CR and distortion

error. The CR is defined as the ratio between the num-

ber of the bits required to represent the original and

reconstructed signals [30]. This ratio is given by

CR =
borg

brec

(26)

where borg and brec represent the number of the bits

required for the original and recon-structed signals,

respectively.

However, the exact compression performance of the

proposed method can only be analyzed when the CR is

combined with the distortion error [30]. The distortion

error is usually considered to be the percentage root-

mean-square differences (PRD) defined by

PRD = 100 ×

√√√√√√√√

N∑
n=1

(xorg(n) − xrec(n))2

N∑
n=1

(xorg(n))2

(27)

where xorg(n) refers to the original signal, xrec(n)

denotes the reconstructed signal and N represents the

length of the frame.

Since the distortion error basically depends on the

mean value of the original signal, it can be masked the

real performance of a compression algorithm. Therefore,

the MPRD, which is totally independent of the mean

value of the original signal, is suggested to be used to

test the real performance of a compression algorithm.

The MPRD is defined by

MPRD = 100 ×

√√√√√√√√

N∑
n=1

(xorg(n) − xrec(n))2

N∑
n=1

(xorg(n) − x̃)2

(28)

where x̃ denotes the mean value of the original signal

[30].

It is well known in the literature that the PRD error

measures the global quality of the reconstructed signal.

In order to assess the real performance of the compres-

sion algorithm, not only the global error but also the

local distortion must be examined. The local distortion

indicates the distribution of the error along with the

reconstructed signal and can be determined by using

the MAXERR definition which is defined by

MAXERR = 100 ×
max

(
|xorg (n) − xrec (n) |

)

max
(
xorg (n)

)
− min

(
xorg (n)

) (29)

All of the evaluation criteria explained above are

employed in our experiments. We will compare the

results of our algorithm with the results of the algo-

rithms given [21,22,25] as far as the above mentioned

evaluation criteria are concerned.

3.2 Mean opinion score test

In order to evaluate the performance of the proposed

algorithm from clinical point of view, we use the test

method of Mean Opinion Score (MOS) whose test para-

meters are given in Table 1, which is similar to test pre-

sented in [31]. In Table 1, in section A, the cardiologist

is asked to give a score value ranging from 1 to 5 in

order to determine the similarity between the original

and reconstructed signals. In section B, the cardiologist

is asked to determine whether one can make a different

diagnosis using the reconstructed version of the original

signal without seeing the original signal. The process of

section A is repeated for the important segment QRS

and two critical waves P and T of the original and

reconstructed version of the signals in section C.

The results of the MOS test are analyzed by using the

two different distortion measures: MOSERROR and
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Segmentation based MOS (SMOS). The MOSERROR

which is defined for a single reconstructed signal in [31]

is expressed as follows:

MOSERROR =
1

2
×

[(
5 − a

5

)
× 100 + (1 − b) × 100

]
(30)

where a, an integer ranging from 1 to 5, is the mea-

sure of the similarity between the original and recon-

structed signals. b is the answer to section B related to

the diagnosis. If the answer is YES, b is equal to 0,

otherwise, b is equal to 1 [31].

The SMOS defined as the second distortion measure

shows the similarity between the important segment and

waves of the original and reconstructed ECG signals

specifically QRS segment, P and T waves. In this test,

SMOS is determined for QRS segment, P and T waves,

separately. The results obtained for each segment of the

signal are represented by SMOSQRS, SMOSP, and

SMOST , respectively. We should point out here that

the lower values of the MOSERROR represent the better

signal quality while the higher values of SMOS indicate

the better signal quality.

3.3 Experimental results and comparisons

The compression algorithm explained in the previous

section was first run in Matlab 7.0.1 platform, and then

it was tested with ECG recordings on an Intel Core2

Quad 2.66 GHz processor. In order to evaluate the per-

formance of the proposed compression algorithm, MIT-

BIH Arrhythmia Database [32] and MIT-BIH Compres-

sion Test Database [15] were used in this research work.

The MIT-BIH Arrhythmia Database consists of 48 ECG

recordings which are sampled at 360 Hz and quantized

at 11-bit resolution [32]. On the other hand, the MIT-

BIH Compression Test Database consists of 168 ECG

recordings. Each data in this database is sampled at 250

Hz and quantized at 12-bit resolution [15]. Each record

in both database was first resampled at 500 Hz by using

a cubic spline interpolation technique, and then the

amplitudes of these records were normalized between 0

and 1.

The selection of the appropriate database is very

important in order to construct the VL-CSEVS. The

MIT-BIH arrhythmia database was selected as the train-

ing set because it contains a large set of ECG beats and

many different examples of cardiac pathologies. Then,

VL-CSEVS having the unique patterns were generated

by analyzing a huge number of the ECG segments

obtained from this database.

In the construction of the VL-CSEVS, 4-fold cross-

validation method was employed in order to remove

the biasing effect. After the preprocessing stage, four

different segments with a length of 6.4 s were

extracted from each ECG recording in the MIT-BIH

Arrhythmia Database. The group of the first segments

were collected in the Subset-1. Similarly, Subsets-2, 3,

and 4 were formed by the group of the second seg-

ments, the group of the third segments, and the group

of the fourth segments, respectively. Thus, the four

subsets S1, S2, S3, and S4 of the equal sizes were con-

stituted. In other words, one subset was used as the

test set and the remaining subsets were employed as

the training sets for each round. Thus, each subset was

used exactly once as the test set. In the first round,

while Subset-1 was used as the test set, Subsets-2, 3,

and 4 were employed as the training sets; in the sec-

ond round, Subset-2 was the test set while Subsets-1,

3, and 4 were the training sets; and so on. After all

these training, VL-CSEVS given in Table 2 were con-

structed for each round.

Table 1 The MOS test

ECG Signal Name:####

A. The measure of similarity between the original ECG signal and reconstructed ECG signal.

MOS score

Completely different Bad Acceptable Good Very good

1 2 3 4 5

□ □ □ □ □

B. Would you give a different diagnosis with reconstructed signal if you had not seen the original signal.

Yes No

□ □

C. The measure of segment based similarity between the original ECG signal and reconstructed ECG signal.

MOS score

1 2 3 4 5

QRS segment

P wave

T wave
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In this table, bSWCB refers to the switch-codebook bit

that controls the length of an incoming segment. bCi,

bR, bK are the minimum numbers of the bits required to

represent the gain coefficient Ci, and the integers NS

and NE, respectively.

The performance of the proposed compression algo-

rithm with respect to PRD, MAXERR, and CR was eval-

uated for each round and shown in Figure 4. The

variation of PRD and MAXERR with CR at each round

for the proposed compression algorithm was illustrated

in Figures 4a, b, respectively. Besides, the mean perfor-

mance of the results given in Figure 4 was presented in

Table 3.

The proposed compression algorithm achieves the

average CRs from 4:1 to 20:1 with average PRDa varies

between 1.2 and 5.6%. Since the acceptable values of

PRD were reported to be less than 9% in the literature

[31], it can be emphasized that the results obtained in

the proposed compression algorithm provide high CR

with very low PRD levels. Furthermore, the average

encoding and decoding times of the proposed compres-

sion algorithm are 0.687 and 0.318 s, respectively.

In this experimental research work, the proposed algo-

rithm was compared with three well-known successful

ECG compression methods SPIHT [21], Blanco-Valesco

et al. [25], and Benzid et al. [22] in terms of average

PRD, average MPRD, and average CR. In order to carry

out a precise comparison among the proposed algorithm

and other ECG compression methods given in

[21,22,25], the same test dataset has been used for all

these methods. This dataset contains 11 recorded ECG

signals received from the MIT-BIH arrhythmia database

(records: 100, 101, 102, 103, 107, 109, 111, 115, 117,

118, and 119). The comparison between our proposed

method and the SPIHT [21] in terms of the average

PRD and CR is illustrated in Figure 5. The comparison

between our proposed algorithm and the Blanco-Valesco

et al. [25] is given in Figures 6 and 7. Figure 6 depicts

the variation of the average PRD with respect to the

average CR and Figure 7 shows the variation of the

average MPRD with respect to the average CR. Finally, a

comparison between our results and those obtained by

Benzid et al. [22] is given in Figure 8 which compare

the average PRD and average CR obtained by both

methods. When analyzing the results illustrated in Fig-

ures 5, 6, 7 and 8, it can be clearly seen from these fig-

ures that the proposed compression algorithm

outperforms the compared methods especially at low bit

rates.

In order to evaluate the worst case performance of the

unique VL-CSEVS formed by using the MIT-BIH

Arrhythmia Database, the proposed algorithm was also

tested on the ECG signals received from the MIT-BIH

Compression Test Database which is called the worst

case test database by its developers [15]. It should be

noted that the sampling frequency, resolution, mean

value, and amplitude value of the ECG signals in this

database are completely different from those of the ECG

signals in the MIT-BIH Arrhythmia Database which is

used to construct the unique VL-CSEVS. The mean

values of the results obtained at each round in the worst

case analysis are presented in Table 4. The comparative

results between the proposed algorithm, our previous

method [27] and Hilton [15] are depicted in Figure 9.

As it can be seen from Table 4, the proposed algo-

rithm achieves the average CRs from 4:1 to 20:1 with an

average MPRD in the range of 1.627-8.631%. Moreover,

Table 2 The number of CSV, CEV, and the required total

bit in the VL-CSEVS

LF NS NE bTotal = bSWCB + bCi
+ bR + bK

16 8 64 1+6+3+6 = 16

64 8 128 1+6+3+7 = 17
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Figure 4 The performance of the proposed algorithm by means of CR, PRD, and MAXERR: (a) The variation of the average PRD with

respect to the CR; (b) The variation of the average MAXERR with respect to the CR.
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the MAXERR, representing the local distortion, varies

between 1.015 and 4.209%. Furthermore, the average

encoding and decoding times of the proposed algorithm

are 0.619 and 0.279 s, respectively. Figure 9 shows that

the compression performance of our previous method

mentioned in [27] is significantly improved by employ-

ing the VL-CSEVS in this research work. Also, it is

clearly seen from Figure 9 that the compression perfor-

mance of the proposed algorithm is significantly better

than the results given in Hilton [15] in the light of the

MPRD.

It is important to note that in Hilton [15], the PRD

was used as the distortion measure. Although the PRD

results are always smaller than the MPRD results due to

the mean value of the signal, MPRD results obtained in

the proposed algorithm are smaller than the PRD results

obtained in Hilton [15].

In addition to the results of the objective evaluation

methods given in Tables 3 and 4, several original ECG

signals randomly chosen from test database and their

reconstructed versions are displayed in Figures 10, 11,

12, 13 and 14 to reveal the visual quality of the ECG

signals which are reconstructed by using the proposed

compression algorithm. In Figures 10 and 11, the ECG

records 118 and 117 which are randomly selected from

the MIT-BIH Arrhythmia Database and their recon-

structed versions along with the information of the CR,

PRD, and MAXERRR are presented, respectively. Simi-

larly, two different original ECG signals which are ran-

domly selected from the MIT-BIH Compression Test

Database and their reconstructed versions along with

the information of the CR, MPRD, and MAXERRR are

presented in Figures 12 and 13, respectively. As it can

be clearly seen from these figures, both the morphologi-

cal features of ECG signals are well preserved.

3.4 Clinical evaluation and discussion

In the clinical evaluation of our results, we have used 11

original ECG signals from the MIT-BIH Arrhythmia

Dataset and 11 original ECG signals from the MIT-BIH

Table 3 The performance of the proposed algorithm tested on the MIT-BIH Arrhythmia Database with respect to

average CR, PRD, MAXERR, encoding end decoding time

Average CR Average PRD Average MAXERR Encoding time (s) Decoding time (s)

4 1.246 1.702 0.71 0.32

6 1.613 1.672 0.69 0.31

8 2.097 1.945 0.68 0.32

10 2.620 2.299 0.69 0.32

12 3.155 2.795 0.69 0.32

14 3.689 3.414 0.68 0.32

16 4.233 4.171 0.70 0.33

18 4.849 4.957 0.68 0.31

20 5.639 6.798 0.67 0.32
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Figure 5 Comparison of the proposed algorithm with SPIHT in terms of average PRD and CR.
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Compression Test Database. These 22 original ECG sig-

nals were reconstructed at 4:1, 6:1, 8:1, 10:1, 12:1, 14:1,

16:1, 18:1, and 20:1 CRs by using our proposed method.

As a result, these 22 original and 198 reconstructed

ECG signals were evaluated by the cardiologists in order

to validate the performance of the proposed algorithm

from clinical point of view.

In the first step of the clinical evaluation, the cardiolo-

gistb expressed his opinions by examining these original

and reconstructed ECG signals without applying any

test. He explained that, the onset, off set and duration

of the segments (or intervals) of the ECG signals such

as PR, QRS, ST are correctly determined in the recon-

structed or compressed ECG signals obtained by the

proposed algorithm also at 20:1 CR. He pointed out that

the proposed algorithm provides the nearly perfect

reconstruction of the QRS segments at 20:1 CR.

Although the p-wave and t-wave of the reconstructed

ECG signals have more reconstruction error than the

QRS segments of the reconstructed ECG signals, these

distortions are not critically important in terms of diag-

nosis. He also explained that the quality of the recon-

structed ECG signals is also acceptable at low bit rates.

On the other hand, he also emphasized that, it is very

difficult to obtain high CRs with low reconstruction

errors in the compression of the Holter ECG’s or Stress

ECG’s which are recorded during movement or exercise,

since these types of ECG records contain more variation

or artifacts compared with ECG signals recorded in the

resting mode. Therefore, the CR has to be selected by
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Figure 6 Comparison of the proposed algorithm with Blanco-Valesco in terms of average PRD and CR.
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the cardiologists to ensure the clinical information

depending on the ECG signal being compressed. In this

context, it is an important advantage that the CR of the

proposed algorithm can be adjusted easily according to

the desired CR starting at 1 to 20 or higher.

Furthermore, an average opinion score is requested

from the cardiologist in order to determine the clinical

quality of the reconstructed ECG signals and he rated

the clinical quality of the proposed compression algo-

rithm at 20:1 CR as 4 over 5. As a result, the clinical

operational range of the proposed compression algo-

rithm is up to 20:1 CR.

In the second step of the clinical evaluation of the

results obtained by our proposed method, the MOS test

given in Table 1 has been applied to the original and

reconstructed ECG signals by the cardiologist.c Then,

the results of the MOS test were analyzed by means of

MOS, SMOSQRS, SMOST , SMOSP and MOSERROR

which are shown in Table 5. The variations of the MOS,

SMOSQRS, SMOST , and SMOSP with respect to the CR

are also given in Figure 14.

When analyzing the values of MOS given in Table 5,

it is clearly seen that the quality of all reconstructed

ECG signals is acceptable also at the CR of 20:1.

Furthermore, the results of SMOSQRS show that the

proposed compression algorithm provides nearly perfect

reconstruction of the QRS segments of the recon-

structed ECG signals also at the CR of 20:1. In the light

of the results of the MOS and SMOSQRS, the cardiolo-

gist pointed out that the proposed compression algo-

rithm provides the useful CRs ranging from 4:1 to 20:1.

On the other hand, the results of the SMOST and

SMOSP are lower in comparison with the results of

SMOSQRS as shown in Figure 14. This is an expected

result since the proposed compression algorithm further

compresses the ECG segments with low energy in com-

parison with the ECG segments with high energy.

In order to analyze the values of both MOS and

SMOS given in Table 5 in terms of diagnostic accuracy,

we have employed the MOSERROR. It was reported in

[31] that the reconstructed signal quality can be classi-

fied into four different quality groups by using the
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Figure 8 Comparison of the proposed algorithm with Benzid in terms of average PRD and CR.

Table 4 The performance of the proposed algorithm tested on the MIT-BIH Compression Test Database with respect

to average CR, MPRD, MAXERR, encoding and decoding times

Average CR Average MPRD Average MAXERR Encoding time (s) Decoding time (s)

4 1.627 1.015 0.634 0.282

6 2.202 1.208 0.624 0.281

8 3.175 1.616 0.620 0.279

10 4.264 1.965 0.618 0.279

12 5.283 2.351 0.618 0.278

14 6.211 2.788 0.614 0.279

16 7.056 3.286 0.613 0.278

18 7.849 3.692 0.615 0.279

20 8.631 4.209 0.615 0.279
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MOSERROR. The reconstructed signal quality is classified

to be very good for the values of MOSERROR between 0

and 15%. If the value of MOSERROR is between 15 and

35%, the reconstructed signal quality is determined to

be good. The reconstructed signal quality is assigned

not good if the value of MOSERROR is between 35 and

50%. When the value of MOSERROR is greater than 50%,

the reconstructed signal quality is assumed to be bad.

The variation of average MOSERROR given in Table 5

with respect to the CR and PRD was illustrated in Fig-

ures 15a, b, respectively. When analyzing the results of

the MOSERROR, we have observed that 71.85% of the all

reconstructed ECG signals is in the very good quality

group while 21.05% of the all reconstructed ECG signals

is in the good quality group. On the other hand, the

rest of the reconstructed ECG signals has the values of

MOSERROR which are greater than 35%.

As seen from Table 6, the clinical test proved that the

proposed compression algorithm achieves to compress

16 of 22 original ECG signals, used in the clinical eva-

luation, at 20:1 CR by preserving the diagnostic informa-

tion. The three of these signals are compressed at 16:1
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Figure 9 Comparison of the proposed algorithm with our previous method and Hilton in terms of average MPRD and CR.
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Figure 10 The original and reconstructed ECG signals of the record 118 taken from the MIT-BIH arrhythmia Database (PRD = 0.97846,

CR = 6.0027, MAXERR = 1.5142).
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CR without losing any diagnostic information. The other

three are compressed at 18:1, 14:1, and 12:1, respec-

tively, without losing any diagnostic information.

In conclusion, the ranges of the utility of the proposed

compression algorithm are from 4:1 to 20:1 CRs

depending on the ECG signal to be compressed.

4 Conclusion
We have introduced an efficient compression algorithm

for ECG signals. The proposed algorithm is based on

modeling ECG signals via VL-CSEVS and using residual

error coding by wavelet transform to ensure the recon-

struction quality. The main advantage of the proposed

compression algorithm is to provide low level recon-

struction errors at high CRs while preserving diagnostic

information in the reconstructed ECG signals, which has

been supported by the clinical tests that we have carried

out. Especially at the CR of 20:1, the proposed compres-

sion algorithm achieves almost 13% lower PRD values in

the reconstructed ECG signals in comparison with the
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Figure 11 The original and reconstructed ECG signals of the record 117 taken from the MIT-BIH arrhythmia Database (PRD = 2.4652,

CR = 17.9226, MAXERR = 4.3534).
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Figure 12 The original and reconstructed ECG signals of the record 12981-02 taken from the MIT-BIH Compression Test Database

(MPRD = 1.5022, CR = 5.9748, MAX-ERR = 0.95759).
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other ECG compression methods given in [21,22,25]. In

this work, the VL-CSEVS which have unique patterns

are specifically designed for ECG signals by using the

relationship between energy variation and clinical

information.

In this research work, ECG signals are segmented by

using energy based segmentation so that ECG frames

which have the high energy are represented by the short

segments while the other frames with low energy are

represented by the long segments. Therefore, both the

size of VL-CSEVS and the computational complexity of

the searching and matching process are reduced signifi-

cantly in comparison with the predefined signature and

envelope vector sets proposed in our previous works

[26,27].

In conclusion, the CR of the proposed algorithm is

significantly improved in comparison with the results of

our previous method [27]. Besides the good perfor-

mance in the average CR, the low reconstruction error

is ensured by applying the residual error coding.

The performance of the proposed algorithm is evalu-

ated and compared with the three well-known ECG

compression methods given in [21,22,25]. The results of

the performance evaluations show that the proposed

algorithm provides the better results than the other

methods in terms of the average CR, the average PRD,
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Figure 13 The original and reconstructed ECG signals of the record 08730-02 taken from the MIT-BIH Compression Test Database

(MPRD = 7.4252, CR = 19.9377, MAX-ERR = 3.3334).
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the average MPRD, and the MAXERR which are well-

known objective evaluation criteria. Moreover, the com-

putational complexity of the proposed algorithm is also

very low so that the average encoding and decoding

times are almost 0.7 and 0.3 s, respectively.

In the experiments, the 4-fold cross-validation is

employed to expose the relationship between the CR

and PRD at different levels. The results obtained at each

round show that there is almost no change in the PRD

levels which correspond the same CR values. Further-

more, the performance of the VL-CSEVS is also tested

on the ECG signals from a different database which is

called as MIT-BIH compression test database. During

the experiments, we observed some small differences in

the PRD levels at the same CR values in the worst-case

condition employing the MIT-BIH compression test

database. These experimental results show that the pro-

posed algorithm does not need any adaption process to

reconstruct any ECG signals which have different char-

acteristics. That is to say, the proposed VL-CSEVS do

not require to re-created specifically for an ECG data-

base so that the VL-CSEVS are constructed from the

unique patterns extracted by examining many of thou-

sands ECG segments and they are fixed.

We finally point out that the generation of the VL-

CSEVS is carried out off-line and the unique VL-CSEVS

are fixed and located at the receiver side of the system.

In other words, the unique VL-CSEVS do not required

to be redesigned in order to compress and reconstruct

any ECG signal. On the other hand, the encoding and

decoding parts of the proposed method are on-line pro-

cedures. When the average encoding and decoding

times are analyzed it can be said that the proposed

method is appropriate for real-time applications.

Endnotes
aEach signal in the MIT-BIH Arrhythmia Database

included a baseline of 1024 added for storage purposes.

Consequently, the PRD which is given in (27) is worked

out by subtracting 1024 from each data sample. bThe

Table 5 The average results of the clinical test of the

proposed compression algorithm with respect to the CR,

MOS, SMOSQRS, SMOST, SMOSP, and MOSERROR

CR MOS SMOSQRS SMOST SMOSP MOSERROR

4 4.79 4.71 4.43 4.27 2.14

6 4.50 4.50 4.07 3.64 5.00

8 4.07 4.14 3.93 3.45 9.29

10 3.93 4.07 3.86 3.09 10.71

12 3.79 4.00 3.64 3.00 12.14

14 3.64 4.00 3.50 2.82 17.14

16 3.57 3.86 3.14 2.64 21.43

18 3.21 3.71 2.93 2.09 35.71

20 3.21 3.57 2.79 2.00 39.29
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Figure 15 The clinical evaluation of the proposed compression algorithm by means of MOSERROR, CR, and PRD: (a) The variation of the

average MOSERROR with respect to the CR; (b) The variation of the average MOSERROR with respect to the PRD.

Table 6 The diagnostic performance of the proposed

compression algorithm for the original ECG signals used

in the clinical test

CR The number of original ECG signals

16 1 3 1 1

20:1 Preserved Not
preserved

Not
preserved

Not
preserved

Not
preserved

18:1 Preserved Preserved Not
preserved

Not
preserved

Not
preserved

16:1 Preserved Preserved Preserved Not
preserved

Not
preserved

14:1 Preserved Preserved Preserved Preserved Not
preserved

12:1 Preserved Preserved Preserved Preserved Preserved

10:1 Preserved Preserved Preserved Preserved Preserved

8:1 Preserved Preserved Preserved Preserved Preserved

6:1 Preserved Preserved Preserved Preserved Preserved

4:1 Preserved Preserved Preserved Preserved Preserved
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clinical evaluation was carried out by Prof. Osman

Akdemir who is a cardiologist in the Department of

Cardiology at the T.C. Maltepe University, Istanbul Tur-

key. cThe clinical test was carried out by Dr. Ruken

Bengi Bakal who is a cardiologist in the Department of

Cardiology at the Kartal Kosuyolu Yuksek Ihtisas Educa-

tion and Research Hospital, Istanbul, Turkey.
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