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Abstract: High dimensional source vectors, such as occur in hyperspectral imagery, are 
partitioned into a number of subvectors of (possibly) different length and then each 
subvector is vector quantized (VQ) individually with an appropriate codebook. A locally 
adaptive partitioning algorithm is introduced that performs comparably in this application 
to a more expensive globally optimal one that employs dynamic programming. The VQ 
indices are entropy coded and used to condition the lossless or near-lossless coding of the 
residual error. Motivated by the need of maintaining uniform quality across all vector 
components, a Percentage Maximum Absolute Error distortion measure is employed. 
Experiments on the lossless and near-lossless compression of NASA AVIRIS images are 
presented. A key advantage of our approach is the use of independent small VQ 
codebooks that allow fast encoding and decoding.  

1. Introduction 
Airborne and space-borne remote acquisition of high definition electro-optic images is 
becoming increasingly used in scientific and military applications to recognize objects 
and classify materials on the earth's surface. In hyperspectral photography, each pixel 
records the spectrum (intensity at different wavelengths) of the light reflected by a 
specified area, with the spectrum decomposed into many adjacent narrow bands. The 
acquisition of hyperspectral images produces a two dimensional matrix (or "image cube") 
where each pixel is a vector having one component for each spectral band. For example, 
with images acquired by the NASA Airborne Visible/Infrared Imaging Spectrometer 
(e.g., Shaw and D. Manolakis [2002]), each pixel contains 224 bands. Although the 
resolution of AVIRIS imagery is low compared with the millions of bands found in high 
resolution laboratory spectrometers, the acquisition of these images already produces 
large amounts of highly correlated data where each image may be over 1/2 Giga-byte.  
Since hyperspectral imagery may be used in tasks that are sensitive to local error like 
classification (assignment of labels to pixels) or target detection (identification of a rare 
instance), the lossy algorithms commonly used for the compression of pictorial images 
may not be appropriate. 

Approaches to the compression of the hyperspectral image cube that have been proposed 
in literature include ones based on differential prediction via DPCM (Aiazzi, Alparone 
and Baronti [2001], Roger, Arnold, Cavenor and Richards [1991]), on direct Vector 
Quantization (VQ) (Manohar and Tilton [2000]), on dimensionality reduction using the 
Discrete Cosine Transform (Abousleman [1995]), and the Principal Component 
Transform (Subramanian, Gat, Ratcliff and Eismann [1992]) (where the representation of 
a spectrum is transformed in order to isolate the smallest number of significant 
components). In many cases, DPCM-based methods are too simple to exploit properly 
multidimensional data, VQ design is too computationally intensive to be applied to the 
full spectrum, and transform based algorithms may be limited by the use of the squared 
error as distortion measure because the introduction of uncontrolled error in the 
compressed data may affect the results of classification and recognition algorithms 
(Aiazzi, Alparone, Barducci, Baronti and Pippi [2001]). PCT-based lossless compressors 
may not achieve the best results because the transformed signal is harder to entropy code. 



 

Here, we first apply partitioned vector quantization independently to each pixel, where 
the variable size partitions are chosen adaptively. These VQ indices are entropy coded 
and used to condition the lossless or near-lossless coding of the residual error. The 
codebooks, which have negligible sizes, are included as part of the compressed data. In 
fact, key advantage of our approach is that the use of independent small VQ codebooks 
allows fast encoding and decoding.  

Section 2 presents basic definitions relating to partitioned vector quantization (PVQ). 
Section 3 presents a locally optimal PVQ codebook design algorithm (LPVQ) that 
performs comparably for our application to a globally optimal one based on a more 
expensive dynamic programming algorithm. Section 4 presents the entropy coding that 
follows quantization. Section 5 presents experimental results for lossless and near lossless 
compression subject to a number of performance measures, including the Percentage 
Maximum Absolute Error (PMAE). Section 6 concludes. 

2. Definitions 
We model a hyperspectral image as discrete time, discrete values, bi-dimensional random 
source I ( x,y )  that emits pixels that are D-dimensional vectors I(x ,y) . Each vector 
component Ii (x,y) , 0 ≤ i ≤ D −1, is drawn from the alphabet   X i  and is distributed 
according to a space variant probability distribution that may depend on the other 
components. We assume that the alphabet has the canonical form    X i = 0,1,… ,M i{ }. 

The complexity of building a quantizer for vectors having the high dimensionality 
encountered in hyperspectral images is known to be computationally prohibitive. A 
standard alternative, which we review in this section, is partitioned VQ, where input 
vectors are partitioned into a number of consecutive segments (blocks or subvectors), 
each of them independently quantized (e.g., see the book of Gersho and Gray [1992]). 
While partitioned VQ leads to a sub-optimal solution in terms of Mean Squared Error 
(MSE), because it does not exploit correlation among subvectors, the resulting design is 
practical and coding and decoding present a number of advantages in terms of speed, 
memory requirements and exploitable parallelism. 

We divide the input vectors (the pixels) into N  subvectors and quantize each of them 
with an L-levels exhaustive search VQ. Since the components of I(x ,y)  are drawn from 
different alphabets, their distributions may be significantly different and partitioning the 
D  components uniformly into N  blocks may not be optimal. We wish to determine the 
size of the N  sub vectors (of possibly different size) adaptively, while minimizing the 
quantization error, measured for example in terms of MSE. Once the N  codebooks are 
designed, input vectors are encoded by partitioning them into N  subvectors of 
appropriate length, each of which is quantized independently with the corresponding VQ. 
The index of the partitioned vector is given by the concatenation of the indices of the N  
subvectors.  

A Partitioned Vector Quantizer (or PVQ) is composed by N  independent, L-levels, 
di -dimensional exhaustive search vector quantizers Qi = ( Ai ,Fi ,Pi ) , such that di = D

1≤i≤N
∑  

and: 
• Ai = {c1

i ,c 2
i ,...,c L

i } is a finite indexed subset of Rdi called codebook. Its elements c j
i  

are the code vectors. 



 

• Pi = {S1
i ,S2

i ,...,SL
i } is a partition of Rdi and its equivalence classes (or cells) Sj

i  satisfy: 

  
Sj

i = Rdi

j=1

L

∪ and Sh
i ∩ Sk

i = ∅for h ≠ k . 

• Fi :R
di → Ai  is a function defining the relation between the codebook and the 

partition as Fi (x) = c j
i  if and only if x ∈S j

i . 

The index j of the centroid c j
i  is the result of the quantization of the 

di -dimensional subvector x , i.e. the information that is sent to the decoder. 
 
With reference to the previously defined N  vector quantizers Qi = (Ai ,Fi ,Pi ) , a Partitioned 
Vector Quantizer is formally a triple Q = A ,P ,F ( ) where: 

•   A = A1 × A2 ×…× AN  is a codebook in RD ; 

•   P = P1 × P2 ×…× PN  is a partition of RD ; 

• F : RD → A  is computed on an input vector x ∈RD  as the concatenation of the 
independent quantization of the N  subvectors of x . Similarly, the index sent to the 
decoder is obtained as a concatenation of the N  indices. 

The design of this vector quantizer aims at the joint determination of the N +1 partition 
boundaries   b0 = 0 ≤ b1 ≤… ≤ bN = D  and to the design of the N  independent vector 
quantizers having dimension di = bi − bi−1 , 1 ≤ i ≤ N . 

Given a source vector I(x ,y) , we indicate the i th  subvector of boundaries bi−1  and bi −1 
with the symbol Ibi − 1

bi −1  (for simplicity, the x  and y  spatial coordinates are omitted when 

clear from the context). The mean squared quantization error between the vector I and its 
quantized representation ˆ I , is given by  

I − ˆ I ( )2

= Ibi − 1

bi −1 − ˆ I bi −1

bi −1( )2

= Ibi − 1

bi −1 − c Ji

i( )2

= Ih − cJi ,h −bi − 1

i( )2

h=bi −1

bi −1

∑
i=1

N

∑
i=1

N

∑
i=1

N

∑  

where   cJi

i = cJi ,0
i ,…,c Ji ,di −1

i( ) is the centroid of the i th codebook that minimizes the 

reconstruction error on Ibi − 1

bi −1 , and: 

Ji = argmin
1≤l≤L

MSE Ibi − 1

bi −1 ,cl
i( ) 

3. A Locally Optimal PVQ Design 
Given the parameters N (the number of partitions) and L (the number of levels per 
codebook), the partition boundaries achieving minimum distortion can be found by a 
brute-force approach. First, for every 0 ≤ i ≤ j < D  determine the distortion Dist(i , j)  that 
an L-levels vector quantizer achieves on the input subvectors of boundaries i  and j. 
Then, with a dynamic program, traverse the matrix Dist(i , j)  in order to find N  costs that 
correspond to the input partition of boundaries  b0 = 0 ≤ b1 ≤… ≤ bN = D  and whose sum is 
minimal. This approach is computationally expensive and, as experimental comparisons 
indicate, unnecessary for our application. For past work using dynamic programming for 
PVQ codebook design, see Matsuyama [1987].  



 

 
Figure 1: LPVQ lossless encoder. 

 

 
 
Mi = min( βi−1 +α i, βi−1 +ε i−1,δ i +α i) 
if (Mi=δ i +α i) 

bi−1 = bi−1 −1 
else if (Mi= βi−1 +ε i−1) 

bi−1 = bi−1 +1 
Figure 2: Error contributions for two 
adjacent partitions. 

Figure 3: Partition changes in 
modified GLA. 

Here we propose a locally optimal algorithm for partitioning (LPVQ) that provides an 
efficient alternative to dynamic programming, while performing comparable in practice 
for our application of PVQ followed by an entropy coder, as depicted in Figure 1. Our 
algorithm is based on a variation of the Generalized Lloyd Algorithm (or GLA, Linde, 
Buzo and Gray [1980]).  

Unconstrained vector quantization can be seen as the joint optimization of an encoder 
(the function F: Rd → A  described before) and a decoder (the determination of the 
centroids for the equivalence classes of the partition P = {S1 ,S2 ,...,SL }). GLA is an 
iterative algorithm that, starting from the source sample vectors chooses a set of centroids 
and optimizes in turns encoder and decoder until the improvements on a predefined 
distortion measure are negligible. To define our PVQ, the boundaries of the vector 
partition   b0 = 0 ≤ b1 ≤… ≤ bN = D  need to be determined as well. The proposed design 
follows the same spirit of the GLA. The key observation is that once the partition 
boundaries are kept fixed, the MSE is minimized independently for each partition by 
applying the well-known optimality conditions on the centroids and on the cells. 
Similarly, when the centroids and the cells are held fixed, the (locally optimal) partitions 
boundaries can be determined in a greedy fashion. The GLA step is independently 
applied to each partition. The equivalence classes are determined as usual, but as shown 



 

in Figure 2, the computation keeps a record of the contribution to the quantization error 
of the leftmost and rightmost components of each partition: 

α i = Ibi − 1
(x ,y) − ˆ I bi −1

(x,y )( )
x,y
∑

2

 and βi = Ibi −1(x,y )− ˆ I bi −1(x,y )( )
x,y
∑

2

 

Except for the leftmost and rightmost partition, two extra components are also computed: 

δ i = I bi −1 −1(x,y) − ˆ I bi −1 −1(x,y)( )
x,y
∑

2

 and εi = I bi
(x,y )− ˆ I bi

(x ,y)( )
x ,y
∑

2

  

The reconstruction values used in the expressions for δ i  and εi  are determined by the 
classification performed on the components bi−1,...,bi . The boundary bi−1  between the 
partitions i −1 and i  is changed according to the criteria shown in Figure 3. 

4. Entropy Coding 
As was depicted in Figure 1, our LPVQ algorithm follows locally optimal codebook 
design by lossless and near–lossless coding of the source vectors. We use quantization as 
a tool to implement dimensionality reduction on the source, where quantization residual 
is entropy coded conditioned on the subvector indices.  After proceeding as described in 
the previous section to partition the input vector and quantize subvectors to obtain the 
vector of indices J(x ,y) , we compute the quantization error  

E(x,y ) = Eb0

b1 −1(x ,y),Eb1

b2 −1(x,y ),...,EbN −1

bN −1(x,y)( ) 

 where, for each 1 ≤ i ≤ N : 
Ebi −1

bi −1(x ,y) = Ibi −1

bi −1(x ,y) − ˆ I bi −1

bi −1(x ,y)  

Since the unconstrained quantizers work independently from each other and 
independently on each source vector, an entropy encoder is used to exploit this residual 
redundancy. In particular, each VQ index Ji (x,y )  is encoded conditioning its probability 
with respect to a set of causal indices spatially and spectrally adjacent. The components 
of the residual vector Ebi −1

bi −1(x ,y)  are entropy coded with their probability conditioned on 

the VQ index Ji (x,y ) . 

5. Experimental Results 
Our LPVQ algorithm has been tested on a set of five AVIRIS images. AVIRIS images 
are obtained by flying a spectrometer over the target area. They are 614 pixels wide and 
typically on the order of 2,000 pixels high, depending on how long the instrument is 
turned on. Each pixel represents the light reflected by a 20m x 20m area (high altitude) or 
4m x 4m area (low altitude). The spectral response of the reflected light is decomposed 
into 224 contiguous bands (or channels), approximately 10nm wide and spanning from 
visible to near infrared light (400nm to 2500nm). Spectral components are acquired in 
floating point 12-bit precision and then scaled and packed into signed 16 bit integers. 
After acquisition, AVIRIS images are processed to correct for various physical effects 
(flight corrections, time of day, etc.) and stored in "scenes" of 614 by 512 pixels per file 
(when the image is not  a multiple of 512 high, the last scene is 614 wide by whatever the 
remainder). All files for each of the 5 test images were downloaded from the NASA web 
site (JPL [2002]) and combined to form the complete images.



 

 
Figure 4: Partition sizes and alignment. 

Several experiments have been performed for various numbers of partitions and for 
different codebook sizes. The results that we describe here were obtained for N = 16 
partitions and L = 256 codebook levels. The choice of the number of levels makes also 
practical the use of off-the-shelf image compression tools that are fine-tuned for 8 bit 
data. The LPVQ algorithm trains on each image independently and the codebooks are 
sent to the decoder as side information. The size of the codebook is negligible with 
respect the size of the compressed data (256 x 224 x 2 bytes = 112 Kilo-byte) and its cost 
is included in the reported results.   

The partition boundaries for each of the five images are depicted in Figure 4. While 
similarities exist, the algorithm converges to different optimal boundaries on different 
input images. This is evidence that LPVQ adapts the partitions to input statistics. 
Experimentally we have found that adaptation is fairly quick and boundaries converge to 
their definitive values in less than one hundred iterations. 

In the following we analyze the LPVQ performance in terms of Compression Ratio 
(defined as the size of the original file divided by the size of the compressed one), Signal 
to Quantization Noise Ratio, Maximum Absolute Error and Percentage Maximum 
Absolute Error. 

The Signal to Quantization Noise Ratio (SQNR) is defined here as: 

SQNR (dB) =
10

D
log10

σ
I i

2

σE i

2 + 1
12

 
  

 
  

i=0

D−1

∑  

The correction factor 1
12  is introduced to take into account the error introduced by the 12 

bit analog-to-digital converter used by the AVIRIS spectrometer (Aiazzi, Alparone and 
Baronti [2001]). This solution also avoids unbounded values in the case of a band 
perfectly reconstructed. 

The Maximum Absolute Error (MAE) is defined in terms of the MAE for the i th  band as 
MAE = max

i
MAEi , where MAEi  is: 

MAEi = max
x ,y

I i( x ,y) − ˆ I i( x ,y)  



 

 
Lossless Indices Only AVIRIS 

gzip bzip2 JPEG-LS JPEG 2K LPVQ CR SQNR 
Cuprite 1.35 2.25 2.09 1.91 3.13 40.44 23.91 
Low Altitude 1.38 2.13 2.00 1.80 2.89 39.10 25.48 
Lunar Lake 1.36 2.30 2.14 1.96 3.23 47.03 27.15 
Moffett Field 1.41 2.10 1.99 1.82 2.94 40.92 25.74 
Jasper Ridge 1.39 2.05 1.91 1.78 2.82 35.02 20.37 
Average 1.38 2.17 2.03 1.85 3.00 40.50 24.53 

Table I: Compression ratio for lossless and lossy mode. 
 

 Constant MAE Quasi-Constant PMAE Quasi-Constant SQNR 
∆  CR RMSE SQNR MAE PMAE CR RMSE SQNR MAE PMAE CR RMSE SQNR MAE PMAE 
1 4.03 0.82 46.90 1.00 0.19 3.41 0.73 52.15 0.57 0.00 3.45 0.78 51.81 0.62 0.01 
2 4.80 1.41 42.49 2.00 0.39 3.97 1.50 47.34 1.54 0.02 3.86 1.56 48.11 1.54 0.02 
3 5.49 1.98 39.64 3.00 0.58 4.46 2.27 44.35 2.53 0.03 4.33 2.36 45.06 2.54 0.03 
4 6.16 2.52 37.60 4.00 0.77 4.95 3.03 42.04 3.56 0.04 4.75 3.15 42.91 3.53 0.04 
5 6.83 3.04 36.05 5.00 0.96 5.36 3.80 40.39 4.54 0.06 5.15 3.95 41.18 4.54 0.06 
6 7.50 3.51 34.85 6.00 1.16 5.77 4.56 38.97 5.55 0.07 5.51 4.74 39.85 5.52 0.07 
7 8.16 3.97 33.88 7.00 1.35 6.16 5.29 37.83 6.52 0.08 5.88 5.54 38.61 6.55 0.08 
8 8.80 4.39 33.08 8.00 1.54 6.55 6.04 36.83 7.53 0.10 6.23 6.31 37.57 7.54 0.10 
9 9.42 4.80 32.41 9.00 1.72 6.95 6.76 35.88 8.53 0.11 6.55 7.06 36.73 8.52 0.11 

10 0.01 5.19 31.84 9.98 1.85 7.32 7.48 35.14 9.53 0.13 6.90 7.82 35.91 9.53 0.13 
11 - - - - - 7.68 8.15 34.48 10.51 0.14 7.25 8.53 35.19 10.54 0.14 
12 - - - - - 8.07 8.80 33.87 11.53 0.16 7.57 9.21 34.61 11.51 0.16 
13 - - - - - 8.45 9.42 33.32 12.54 0.17 7.94 9.84 34.01 12.51 0.17 
14 - - - - - 8.83 10.01 32.84 13.53 0.19 8.29 10.47 33.50 13.53 0.19 
15 - - - - - 9.17 10.56 32.44 14.51 0.20 8.63 11.03 33.08 14.52 0.20 
16 - - - - - 9.55 11.08 32.05 15.51 0.22 8.97 11.57 32.67 15.53 0.21 
17 - - - - - 9.91 11.58 31.69 16.51 0.23 9.31 12.08 32.32 16.52 0.23 
18 - - - - - 10.32 12.04 31.33 17.53 0.25 9.66 12.55 31.97 17.52 0.24 
19 - - - - - 10.67 12.47 31.04 18.51 0.26 10.00 12.99 31.66 18.52 0.26 
20 - - - - - 11.02 12.89 30.78 19.52 0.28 10.35 13.40 31.35 19.52 0.27 

Table II: Average Compression Ratio (CR), Root Mean Squared Error 
(RMSE), Signal to Quantization Noise Ratio (SQNR), Maximum Absolute 
Error (MAE) and Percentage Maximum Absolute Error (PMAE) achieved 
by the near-lossless LPVQ on the test set for different ∆ . 

The average Percentage Maximum Absolute Error (PMAE) for the i th  band having 
canonical alphabet     X i = 0,1,… ,M i{ } is defined as: 

  
PMAE (%) =

1

D

MAEi

M i

×100
i=0

D−1

∑  

Table I shows that LPVQ achieves on the five images we have considered an average 
compression of 3:1, 38.25% better than bzip2 when applied on the plane–interleaved 
images (worse results are achieved by bzip2 on the original pixel–interleaved image 
format).  



 

The last column of Table I reports, as a reference, the compression and the SQNR when 
only the indices are encoded and the quantization error is fully discarded. As we can see 
from the table, on average we achieve 40.5:1 compression with 24.53dB of SQNR. While 
extrapolated data suggests that LPVQ outperforms other AVIRIS compression methods, 
we were unable to perform a detailed comparison because the published studies known to 
us were either on the old AVIRIS data set (10 bits analog-to-digital converter instead of 
the newest 12 bit) or reported results for a selected subset of the original 224 bands.  

More interesting and practical are the results obtained with the near-lossless settings, 
shown in Table II.  At first, the introduction of a small and constant quantization error 
across each dimension is considered; that is, before entropy coding, each residual value x 
is quantized by dividing x adjusted to the center of the range by the size of the range; i.e.,  
q(x) = (x+∆)/(2∆+1). This is the classical approach to the near-lossless compression of 
image data and results into a constant MAE across all bands. With this setting, it is 
possible to reach an average compression ratio ranging from 4:1 with the introduction of 
an error ∆ = ±1 and a MAE =1  to 10:1 with and error of ∆ = ±10 and MAE =10 . While the 
performance in this setting seem to be acceptable for most applications and the SQNR is 
relatively high even at high compression, the analysis of the contribution to the PMAE of 
the individual bands shows artifacts that might be unacceptable. In particular, while the 
average PMAE measured across the 224 bands of the AVIRIS cube is low, the 
percentage error peaks well over 50% on several bands (see Figure 5). Since the PMAE is 
relevant in predicting the performance of many classification schemes, we have 
investigated two different approaches aimed at overcoming this problem. In both 
approaches we select a quantization parameter that is different for each band and it is 
inversely proportional to the alphabet size (or dynamic). In general, high frequencies, 
having in AVIRIS images higher dynamic, will be quantized more coarsely than low 
frequencies. We want this process to be governed by a global integer parameter ∆ . 

The first method, aiming at a quasi–constant PMAE across all bands, introduces on the 
i th band a distortion ∆i  such that: 

1

D
∆i ≈ ∆

i=0

D−1

∑  

Since the i th band has alphabet     X i = 0,1,… ,M i{ } we must have: 

  

∆i = ±
D ⋅∆

M ii=0

D−1∑
⋅ M i +

1

2

 

 
 
 

 

 
 
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The alternative approach, aims at a quasi–constant SQNR across the bands. If we allow a 
maximum absolute error ∆i  on the i th band, it is reasonable to assume that the average 

absolute error on that band will be 
∆i

2
. If we indicate with ξi  the average energy of that 

band and with ∆  the target average maximum absolute error, then the absolute 
quantization error allowed on each band is obtained by rounding to the nearest integer the 
solution of this system of equations: 
 

  

10log10

ξ i
2

∆i 2
2 ≈ 10log10

ξ j
2

∆ j 2
2 i , j ∈ 0,… ,D −1[ ],  i ≠ j

1
D

∆ i
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Figure 5: PMAE for near-lossless coding 
with constant Maximum Absolute Error. 

 
Figure 6: PMAE for near-lossless 
coding with quasi-constant PMAE. 

Figure 7: SQNR for near-lossless coding 
with quasi-constant SQNR. 

 
Figure 8: PMAE for near-lossless 
coding with quasi-constant SQNR. 

As can be seen from Table II, the three methods for near-lossless coding of AVIRIS data 
are equivalent in terms of average SQNR at the same compression. However, the 
quasi-constant PMAE method is indeed able to stabilize the PMAE across each band 
(Figure 6). The small variations are due to the lossless compression of some bands and 
the rounding used in the equations. The average SQNR is not compromised as well. 
Similar results are observed for the quasi-constant SQNR approach. The SQNR is almost 
flat (Figure 7), except for those bands that are losslessly encoded and those with small 
dynamic. The PMAE is also more stable than the constant MAE method (Figure 8).  



 

6. Conclusion 
We have presented an extension of the GLA algorithm to the locally optimal design of a 
partitioned vector quantizer (LPVQ) for the encoding of source vectors drawn from a 
high dimensional source on RD . It breaks down the input space into independent 
subspaces and for each subspace designs a minimal distortion vector quantizer. The 
partition is adaptively determined while building the quantizers in order to minimize the 
total distortion.  Experimental results on lossless and near-lossless compression of 
hyperspectral imagery have been presented, and different paradigms of near-lossless 
compression are compared. Aside from competitive compression and progressive 
decoding, LPVQ has a natural parallel implementation and it can also be used to 
implement search, analysis and classification in the compressed data stream. High speed 
implementation of our approach is made possible by the use of small independent VQ 
codebooks (of size 256 for the experiments reported), which are included as part of the 
compressed image (the total size of all codebooks is negligible as compared to the size of 
the compressed image and our experiments include this cost). Decoding is no more than 
fast table look-up on these small independent tables. Although encoding requires an 
initial codebook training, this training may only be necessary periodically (e.g., for 
successive images of the same location), and not in real time. The encoding itself 
involves independent searches of these codebooks (which could be done in parallel and 
with specialized hardware). 
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