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ABSTRACT

Context. The volume of radio-astronomical data is a considerable burden in the processing and storing of radio observations that have
high time and frequency resolutions and large bandwidths. For future telescopes such as the Square Kilometre Array (SKA), the data
volume will be even larger.
Aims. Lossy compression of interferometric radio-astronomical data is considered to reduce the volume of visibility data and to speed
up processing.
Methods. A new compression technique named “Dysco” is introduced that consists of two steps: a normalization step, in which
grouped visibilities are normalized to have a similar distribution; and a quantization and encoding step, which rounds values to a
given quantization scheme using a dithering scheme. Several non-linear quantization schemes are tested and combined with different
methods for normalizing the data. Four data sets with observations from the LOFAR and MWA telescopes are processed with different
processing strategies and different combinations of normalization and quantization. The effects of compression are measured in image
plane.
Results. The noise added by the lossy compression technique acts similarly to normal system noise. The accuracy of Dysco is
depending on the signal-to-noise ratio (S/N) of the data: noisy data can be compressed with a smaller loss of image quality. Data with
typical correlator time and frequency resolutions can be compressed by a factor of 6.4 for LOFAR and 5.3 for MWA observations
with less than 1% added system noise. An implementation of the compression technique is released that provides a Casacore storage
manager and allows transparent encoding and decoding. Encoding and decoding is faster than the read/write speed of typical disks.
Conclusions. The technique can be used for LOFAR and MWA to reduce the archival space requirements for storing observed data.
Data from SKA-low will likely be compressible by the same amount as LOFAR. The same technique can be used to compress data
from other telescopes, but a different bit-rate might be required.
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1. Background

Data from interferometric radio observatories consists of corre-
lated signals from all the pairs of antennae that are part of the
interferometric array. These correlated signals are measured in
spectral channels, and integrated over short timesteps before they
are recorded to disk (Thompson et al. 2001).

Correlators in modern interferometric radio observato-
ries output data at high spectral and temporal resolutions
(Perley et al. 2011; Wilson et al. 2011; Tingay et al. 2013;
van Haarlem et al. 2013). It is often not desirable to decrease the
resolution before archiving, because resolution in both dimen-
sions provides scientific value. High temporal resolution is for
example desirable for variability studies (Stappers et al. 2011),
advanced calibration methods that solve for the ionospheric
disturbances and instrumental variabilities (Kazemi et al. 2013;
Smirnov 2011; van Weeren et al. 2016) and to avoid time decor-
relation. On the other hand, high frequency resolution is neces-
sary for spectral-line studies (Favre et al. 2011; Morabito et al.
2014; Offringa et al. 2016), accurate removal of man-made in-
terference (Offringa et al. 2013) and bandwidth decorrelation.
The required time and frequency resolutions can lead to data
volumes of several petabytes, which have to be supported
by complex network architectures to allow acceptable trans-
fer rates. While current interferometers consist of up to a

few hundred of antenna elements, future instruments will have
thousands of antenna elements that will produce data at even
higher resolutions or with multiple beams, thereby increasing the
data volume and associated storage costs by several orders of
magnitudes (van Cappellen & Bakker 2010; Jiwani et al. 2013;
Heywood et al. 2016). For these reasons, compression of corre-
lated interferometric data is desirable.

In radio astronomy, linear quantization of the captured an-
tenna voltages prior to correlation is common and well under-
stood (Thompson et al. 2007). Further quantization of correlated
data is however not common, mainly because it has not been ex-
plored what the effects of quantization are on the final science
products, such as images or spectra. Since many interferometric
projects need to reach large dynamic ranges, compression tech-
niques that would limit the dynamic range are undesirable.

In this paper I consider compressing correlator output
samples that consist of complex values. These data com-
monly have a low signal-to-noise ratio (S/N), especially at
high resolutions (Thompson et al. 2001), and noise-like signals
are inherently hard to compress without loss of information
(Shannon & Weaver 1949). In radio data, each complex com-
ponent is normally stored as a 32-bit IEEE 754 single-precision
floating-point value (see e.g. “FITS Interferometry Data Inter-
change Format”, AIPS memo #114, Sect. 4.1; and “Measure-
mentSet definition version 2.0”, CASA Memo #229). Loss-less
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compression is only effective for the 8-bit exponents of the
floating point values, because the mantissa and sign follow
closely a uniform distribution and are incompressible without
loss. Therefore, loss-less compression can only reduce the vol-
ume of visibilities to approximately 75% of the original size. For
these reasons, this paper will explore compression with a lossy
encoding.

There are a few existing implementations of compression
that are related to compressing visibilities. Firstly, AIPS can
write visibilities as 16-bit values with uniform quantization. Sec-
ondly, the Flexible Image Transport System (FITS) file format
(Wells et al. 1981) allows Rice, GZIP, HCompress, and PLIO
compression1. Thirdly, for compression of integer data recorded
with the CHIME telescope, Masui et al. (2015) showed that
those data can be compressed to 28% of its original size using
linear quantization and applying the bitshuffle technique be-
fore LZ77 encoding (Ziv & Lempel 1977). FITS compression
was designed particularly with image compression in mind, and
is not designed for visibility data. FITS compression uses expo-
nential quantization (the mantissa is rounded). It supports sub-
tractive dithering (Pence et al. 2010). AIPS and BITSHUFFLE
do not use dithering.

In this work, I describe a new compression method that is
particularly designed for noise-dominated visibilities. It makes
use of the Gaussian distribution of noise. I will test the effects of
this compression method and will determine the maximal com-
pression factor for this technique given a maximal increase in
the system noise. In Sect. 2, I will describe the new technique.
Section 3 presents the implementation. The result of this tech-
nique are shown in Sect. 4 using four test sets. The results are
discussed in Sect. 5 and suggestions for future work are given in
Sect. 6. Final conclusions are presented in Sect. 7.

2. Methods

The new method consists of two steps: a normalization step, in
which grouped visibilities are normalized to have a similar dis-
tribution; and a quantization and encoding step, which rounds
values to a given quantization scheme using a dithering scheme.
The new compression technique consisting of the combination of
these two steps is named “Dynamical Statistical Compression”
(Dysco). In the next subsections, we will describe the two steps
in detail.

2.1. Normalization

In observations, the variance of the data can be different for vis-
ibilities of different times, antennae, polarizations and frequen-
cies. To encode visibilities accurately, this variation in variance
should be normalized so that the visibilities follow the same dis-
tribution. The AIPS uvfits format allows compression of visibil-
ities, and in this format visibilities are normalized by row: each
row of visibilities is scaled by a single scaling factor to match
the data to the quantization. A row contains an array of visi-
bilities with different frequencies and polarizations, but of the
same timestep and antennas (Greisen 2016). This normalization
method will be referred to as “row normalization”. The downside
of this method is that visibilities from different frequencies and
polarizations are assumed to follow the same noise distribution.
This can be an issue when RFI has not been flagged before en-
coding, as well as when the bandpass has a large dynamic range

1 See https://heasarc.gsfc.nasa.gov/docs/software/

fitsio/compression.html

or when the statistics of the differently-polarized visibilities dif-
fer strongly.

Two additional ways to normalize the visibilities are tested.
For the second method, each visibility is normalized by three
terms: fch, a channel scaling term, and fa and fb, a scaling term
for the antennae that were correlated. Hence, for a given visi-
bility, the corresponding normalization factor σ can be calcu-
lated with σ = fch fa fb. Different timesteps and polarizations
are encoded independently, so will have different normalization
factors, while the real and imaginary values of a visibility are
assumed to follow the same distribution. Consequently, for the
visibilities corresponding to a given timestep and polarization,
Nch + Nant factors are stored, as well as 2NchNant (Nant + 1) /2
quantized values. Such a group of visibilities will be referred
to as a timeblock, and this way of normalization as antenna-
frequency (AF) normalization. For each timeblock, the channel
and antenna factors are stored separately as 32-bit floating point
values.

AF-normalization does not work well on auto-correlations,
because these have different statistics, and its standard devia-
tion can generally not be described by the multiplication of two
antenna factors. Auto-correlations of astronomical interferom-
eters are seldomly used, and therefore in this work the auto-
correlations are set to zero and are ignored during compression.
If auto-correlations are to be saved, a separate scaling factor
could be computed for auto-correlations. Our implementation
does not support this at this point. The other normalization meth-
ods do preserve the auto-correlations.

The third normalization method, row-frequency normaliza-
tion (RF-normalization), uses two terms: fch, a channel scaling
term and frow, a row scaling term. Each polarization also has its
own channel and row factors. The final normalization factor is
σ = fch frow. This is somewhat similar to the row normalization
method (as used in AIPS) but with some differences: an addi-
tional normalization term per frequency is added and indepen-
dent per-row factors for different polarizations are stored, be-
cause the polarizations can have different distributions.

For each of these methods, the data is normalized such that
the maximum normalized value is equal to the maximum quan-
tizable value, that is, the maximum value can be represented ex-
actly and never needs trimming. An alternative is to normalize
the data such that a certain range (e.g. all data <3σ) fits inside
the quantization, and all excess values are trimmed. Initially, for
this work the latter method was tested as well. In the case of
noise-dominated data, it was found that trimming does not cause
a bias, but in case some part of the data has excess values due to
real signal, it causes a bias. Hence, trimming data is not consid-
ered in this work. Normalization scales the data to fit within the
quantization minimum and maximum values.

In typical situations, in particular for data outputted by the
LOFAR or MWA correlators, the extra metadata (the scaling fac-
tors) stored by any of the normalization methods, is negligible.

The result of these normalization methods is demonstrated in
Fig. 1 for an observation with strong RFI. The original spectrum
is shown in the top-left. The other dynamic spectra show the dif-
ference between before and after compression using the three
normalization techniques. With per-row normalization, when
one of the channels contain large values, the noise in the other
channels increases strongly. With AF and RF normalization,
which have an extra channel normalization factor, the noise in
the data without RFI is not significantly increased.

Figure 2 shows another example of the properties of nor-
malization. These scatter plots show a single baseline of a
LOFAR observation. This particular observation was averaged
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(a) Original

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

V
is

ib
ili

ty
 (

u
n

c
a

lib
ra

te
d

 u
n

it
s
)

136.44

136.46

136.48

136.5

136.52

136.54

136.56

136.58

136.6

F
re

q
u

e
n

c
y
 (

M
H

z
)

17:30:30 17:31
Time (UTC, hh:mm:ss)

(b) Row normalization (difference)
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(c) AF-normalization (difference)
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Fig. 1. Dynamic spectra of 1.5 min of a LOFAR observation at high frequency and time resolutions (6 kHz and 0.5 s) with strong RFI, compressed
to 8 bits per float with different kinds of normalization. Compression with per-row normalization increases the noise significantly in all channels.
The RF and AF normalizations, which normalize the channels individually before encoding, behave more robust in the presence of RFI.

to a resolution of 12 s and 200 kHz, and because of this it has
a high S/N in the XX and YY polarizations. All three normal-
izations visibly add noise to the data, but in different ways. The
assumption for AF-normalization is that the data is noise dom-
inated. Because this is not the case in this example, the noise
added to the XX and YY polarizations is larger than for the other
normalizations. Row normalization does not store an indepen-
dent scaling factor per polarization. Because of this, the accu-
racy of the XY and YX quantization strongly depends on the
XX and YY signals. We note that the quantization is unbiased;
while the quantization adds certain structures to the raw visibili-
ties (most clearly visible in row normalization), it will be shown
in later sections that the added imaging noise is unstructured and
unbiased.

2.2. Quantization

After normalization, the visibilities are encoded with a non-
linear quantization scheme. The encoding is a-priory optimized
for complex samples with a given distribution with zero mean.
The distribution of correlated samples will approximate a nor-
mal distribution when the S/N is low and the observation does
not contain interfering sources. Several encoding schemes are
tested that are optimized for different distributions.

The quantization table is created by uniform sampling of the
inverse of the corresponding cumulative distribution function.
Dithering is applied to avoid possible systematic bias when the
signal-to-noise ratio in the input data is high. Dithering is imple-
mented as follows: for each float to be encoded, the two closest
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Fig. 2. Compression example of a single baseline of a LOFAR observation with high S/N. Top-left plot: original data; top-right plot: compression
with AF-normalization; bottom-left plot: compression with RF-normalization; bottom-right plot: compression with row normalization. Compres-
sion was performed with the 2.5σ-truncated Gaussian 3-bit quantization. The red, green, blue and black dots represent the XX, XY , YX and
YY correlations, respectively.

quantization values are found. The chosen encoding quantity is
selected randomly, giving each a probability dependent on its
distance to the original value. A quantized value will always be
selected when it equals the original value, while if the original
value is halfway between the two quantized values, both quanti-
ties are equal likely to be selected. This is equivalent to adding
uniformly-distributed random noise to the input value, which is
a common method of applying dithering, except that the bounds
of the distribution vary per sample, depending on the distance
of the value to the quantization values. Dithering ensures that
the average of encoding a value many times asymptotically ap-
proaches that value. An example of the quantization is shown in
Fig. 3.

The quantized values are converted to binary values and bit-
packed. The number of bits can be set by the user, and define
the number of quantities per encoding symbol. One encoding
quantity is reserved for storing the special value “not-a-number”
(NaN). An odd number of quantities remains for encoding finite
values. Since the quantized values are symmetric around zero,
the value 0 can be encoded precisely. This is beneficial, because
it implies that no noise will be added when encoding the value
zero. This way, an antenna that has produced zeros can be more
easily identified. As an example, when the user asks for 8 bit
encoding, a visibility is quantized to 256 values: values <127
correspond with negative visibilities; 127 corresponds with zero;
values >127 and <255 correspond with positive visibilities; and
255 corresponds with the value NaN.

3. Implementation

The Casacore table system that is used to access CASA mea-
surement sets uses so-called “storage managers” to access visi-
bilities on disk (van Diepen 2015). The storage manager system
is transparent to the client program, and storage managers can
be located in an external software library. Any client program
that uses Casacore (including CASA) can access measurement
sets that were stored with a custom storage manager, without
any changes to or recompilation of the client software. For this
project, such a Casacore storage manager was designed to allow
the transparent compression of data in a Casacore measurement
set with the Dysco technique. The source code of the Dysco im-
plementation is publicly released2.

In my implementation, the compressed data is stored in an
extra file inside the measurement set. Inside the file, the time-
blocks are stored consecutively. Given that a timeblock has a
fixed number of visibilities, as well as that the encoded repre-
sentation has a fixed size, the position of a timeblock inside the
file can be directly calculated. This has implementational advan-
tages, such as not having to maintain an index table, as well as
being able to replace a timeblock without the possibility that the
new timeblock will not fit.

2 The source code and manual of the implementation can be found
at https://github.com/aroffringa/dysco. Commit 393cd97758
(8 Aug. 2016) was used.
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Fig. 3. A quantization example using the Gaussian-optimized least-squares quantization scheme with dithering to quantize a sinc function. 4-bit
quantization and a single scaling factor were used. Left plot: result of encoding and decoding. Because the quantization is optimized for Gaus-
sian distributed values, the quantization steps are smaller near zero. Central and right plot: average of 3 and 100 times encoding and decoding
respectively.

Table 1. Sets used for testing the compression.

Set Observation Id Date and size ∆t ∆ν Description, processing

A LOFAR HBA 3C 196, L431602 2016-02-28 4 s 36 kHz Single subband, calibrated after

6 h, 117 MHz 6.1 GB (5 ch) compression.

B LOFAR HBA 3C 196, L323164 2015-04-01 0.5 s 6 kHz Single subband, calibrated before

10 min, 133 MHz 6.0 GB (32 ch) compression.

C MWA Vela / Puppis A, 1052736496 2013-05-16 4 s 80 kHz Calibrated before compression.

2 min, 149 MHz 2.3 GB (384 ch)

D MWA Hydra A, 1077974936 2014-03-04 0.5s 40 kHz Calibrated after compression, recompressed

2 min, 154 MHz 65 GB (768 ch) after applying solutions.

Because each timeblock is compressed independently in
each of the normalization and quantization methods, random ac-
cess and streaming access of the timeblocks is possible. When a
timeblock is requested or written, the implementation will keep
that timeblock in the cache until another timeblock is written or
read. This avoids encoding or decoding the timeblock when the
client accesses different visibilities (table rows) from the same
block multiple times. Once a different timeblock is requested, the
cached timeblock is queued for writing if it has been changed.
This system implies that accessing the visibilities in time-major
order requires encoding or decoding each time block only once.
This access pattern is the most common way of accessing a mea-
surement set – calibration and imaging access the data in this
way. One exception to this is flagging (Offringa et al. 2013), for
which a reordering of the data is performed. Random access to
measurement sets will lead to encoding or decoding the same
block multiple times, but in practice this access pattern is rare.

AF-normalization is implemented as follows: first, the chan-
nel standard deviations are divided out to make each channel
have a standard deviation of unity. Then, the antenna factors are
found by solving Σ = f ant ⊗ f ant, where ⊗ is the outer product,

Σ is a matrix with the measured variance of a baseline at each el-
ement after channel normalization, and f ant is a vector with the
antenna factors to be solved for. After dividing out the antenna
factors, such that the variance of each baseline is approximately
unity, the algorithm continues by iteratively selecting and max-
imizing the channel factor or antenna factor that increases the
sum of the absolute values the most when maximized. This is
continued until the gain is smaller than some threshold.

In the RF-normalization algorithm, the standard deviations
of the channels are also first normalized, but afterwards each row
is directly maximized. After that, each channel is maximized.

The encoding of timeblocks is multi-threaded. Typical nodes
can encode and write visibilities faster than writing the uncom-
pressed visibilities.

4. Results

In this section, Dysco is tested using several real observations.
Table 1 lists the sets that have been used for testing. LOFAR
HBA and MWA observations were used with different time and
frequency resolutions. Because the compression method adds
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noise that is relative to the variance of the data, sets with different
signal-to-noise ratios were used for testing. For both telescopes,
a high-resolution set was used, which is the typically resolution
for archiving, and a set at lower resolution was used that is the
typical resolution used during processing.

Images were produced for each of the sets and for various
compression configurations. Reference images were made by
skipping the compression step. Typical imaging parameters for
the field of interest were used. Two quantities were measured:
the rms of the difference between the reference and the dirty im-
ages of the compressed set; and the absolute rms levels of the
images after cleaning. The differential rms was measured over
the entire image. The absolute rms was measured in a rectan-
gular part of the image in which no sources were visible. Each
test set was tested with a different processing strategy, in order
to test the effect of compression in combination with different
processing steps.

LOFAR test set A of the 3C 196 field was RFI flagged and
compressed with one of the described methods. Subsequently,
calibration and subtraction of 3C 196 was performed on com-
pressed data. Calibration was performed using the Mitchcal tool
introduced by Offringa et al. (2016). The corrected visibilities
were written without compression, so that the quantization noise
was only added once. These uncompressed visibilities were then
imaged. Because 3C 196 is a strong source at these frequencies
(∼100 Jy) while the imaging noise is only a few mJy, the set also
tested compression of visibilities for imaging with high dynamic
range.

Test set B is a LOFAR measurement set of the 3C 196 field
with high time and frequency resolutions. It was RFI flagged be-
fore compression. After compression, it was averaged 8× in fre-
quency and 16× in time, calibrated using the LOFAR calibration
tool ndppp (Dijkema et al., in prep.) and imaged.

Test set C is an MWA measurement set targeting the Vela
and Puppis A supernova remnants. It was calibrated and aver-
aged before compression. Calibration was performed by trans-
ferring solutions using CASA. The imaging was performed on
the compressed visibilities. It has a relatively low time and fre-
quency resolution, which is typical in MWA data processing to
decrease the data volume. This set has a high S/N, in particular
on the smaller baselines, because some of these see the Galactic
plane.

Test set D is an MWA measurement set of calibrator Hy-
dra A. Compression tests were performed on the original MWA
time and frequency resolutions outputted by the MWA correla-
tor. The compressed data was calibrated using Mitchcal, and the
corrected visibilities were again stored with compression. This
implies the compression noise was added twice.

All imaging was performed with wsclean (Offringa et al.
2014), and all sets were imaged using uniform weighting. In uni-
form weighting, more weight is applied to the long baselines.
Therefore, compression errors on the long baselines dominate
the compression errors in image space. This is a realistic use-
case for data from these telescopes.

4.1. Compression accuracy

Figure 4 shows the differential imaging error (reference dirty im-
age minus dirty image using compression) as a function of the
number of bits used in compression, for different normalization
and quantization techniques. Continuous lines are normalized
using AF-normalization, dashed lines using RF-normalization
and dot-dashed lines using row normalization. The colour in-
dicates the quantization distribution. The horizontal grey line

indicated the Stokes V noise, which is similar to the system
noise. Hence, when the imaging error is well below this noise
level, it will have an insignificant effect.

The Gaussian and 3.5σ truncated Gaussian quantizations
produce relatively larger errors compared to other quantizations
if more than approximately 8 bits are used in compression. An
intuitive explanation for this is that at higher bit levels, these dis-
tributions reserve more quantization values for outlying values.
The visibilities are scaled such that the maximum visibility value
matches the maximum quantization value. Because the num-
ber of visibilities per time block are limited, visibilities rarely
have outlying values, and therefore do not match the quantiza-
tion distribution.

With the exception of the Gaussian and 3.5σ-truncated
Gaussian quantizations schemes, methods that perform rela-
tively well with few bits also perform relatively well with more
bits, which allows one to generalize the results of one bit-rate
to other bit rates. Table 2 shows the 8-bit compression imag-
ing errors for the three normalization methods and for the four
sets. Additionally, it shows the average over the normalized sets
for each unique combination of normalization and quantization
method, as well as the average over the normalization methods
and quantization methods. In order to make each test set equally
important in the averaging, normalization is performed by di-
viding the results of a particular test set by the average result
of that test set, and multiplying it by the average error over all
test sets. Confidence intervals are given at 2σ boundaries. Con-
fidence intervals of average values are calculated by assigning
each measurement a standard error equal to the standard devia-
tion of the measurements that are averaged over, and these errors
are propagated to the average value.

The results show that the combination of row-normalization
with 1.5σ-truncated Gaussian quantization achieves the lowest
error (153 ± 56 µJy). The combination with second-lowest er-
ror is row-normalization with uniformly distributed quantization
(177 ± 91 µJy). This is the “AIPS compression” technique, but
with 8-bits instead of 16-bits quantization, and with dithering.
As was shown in Fig. 1, per-row normalization is not robust and
performs badly in the case of RFI or when there are other reasons
for large differences between channels. The combination with
lowest error excluding row-normalization, is AF-normalization
with a 2.5σ-Gaussian quantization distribution (184 ± 31 µJy).

When taking the average over the quantization methods,
AF-normalization performs slightly but insignificantly better on
average of the three normalization methods tested. When com-
paring the average error of the quantization methods by aver-
aging over the normalization methods, the 1.5σ-truncated and
2.5σ-truncated Gaussian quantizations achieve the overall low-
est errors. The Gaussian and 3.5σ-truncated Gaussian quanti-
zations produce significantly larger errors than the other three
methods.

In Fig. 4, for test sets A, B and C it is clear that the com-
pression error decreases by a constant factor for each bit that is
added. The fact that the decrease in error is larger at the very
low bit-rates of 2–4 bits (which makes the error as a function
of bit-rate slightly steeper in Fig. 4), is because one encoding
quantity is reserved for the special value NaN. The error ratio of
8-bit compression over 16-bit compression is 258, 246 and 247
for set sets A, B and C respectively. Therefore, every added bit
decreases the error by approximately a factor of 2. For test set D,
the same 8-bit/16-bit ratio is only 5.8. This is likely because the
compression error is not the dominating error in the imaging of
this set. This set has more than ten times more visibilities than
the other sets, and the large number of visibilities will increase
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Fig. 4. Compression noise rms values for different quantization schemes and test sets, determined by measuring the rms in the difference between
images processed with and without compression. The horizontal dashed grey line indicates the system noise level.

the effect of quantization noise during the calibration and imag-
ing due to the use of 32-bit floats in those operations. The small
numerical changes caused by the compression will trigger a dif-
ferent instantiation of quantization noise during the imaging, and
this dominates the error. Because the error is not decreased when
going from 12 to 16 bits, the implication is that storing more
than 12 bits is uneconomical for this test set, because the imag-
ing error is already dominated by the numerical precision of the
imaging.

So far, results were based on the error, that is, the difference
between the original dirty image and the dirty image after com-
pression. To analyse the actual implications of compression after
deconvolution, Fig. 5 shows the fractional noise changes calcu-
lated from cleaned Stokes-I images. Noise values are measured
in a relatively empty square near the centre of the images. These
plots mostly show the same trends as Fig. 4. For test set B, in-
creasing the number of bits does not improve the sensitivity of
the deconvolved image: even at the lowest bit-rate, the decon-
volved image is dominated by system noise.

4.2. Properties of compression noise

Besides producing low average errors, a visibility compression
technique should also not add structural noise to an image, and
should not change the flux of sources. To show that the compres-
sion technique indeed behaves properly, compression examples
are shown in Figs. 6 and 7. Both figures display the original and
compressed images and their difference, and are made from test
set A.

In Fig. 6, an 8-bit quantization scheme is used with the
2.5σ-truncated Gaussian distribution and AF-normalization,
such that the compression noise is lower than the image noise.
The original and compressed images can not be distinguished by
eye. The difference shows unstructured noise. The noise distri-
bution of the image follows closely a Gaussian distribution.

In Fig. 7, a 2-bit quantization scheme is used with the
2.5σ-truncated Gaussian distribution and AF-normalization. As
can be seen in the compressed image, the noise is significantly
increased due to the low bit-rate and reasonably high S/N of
the observation. The difference image again does not show any
structure or bias at the position of strong sources. The noise
distribution of the difference image follows again a Gaussian
distribution.

From these results, it is clear that the quantization noise be-
haves like normal system noise in the image plane. While test
sets B, C and D are short observations, test set A is a 6 h obser-
vation. Because the noise in test set A does not show systematic
behaviour, one can conclude that compression noise averages
down like system noise, and remains uncorrelated in longer
observations.

4.3. Minimum bit-rates

Using Figs. 4 and 5, a minimum acceptable bit-rate can be
derived by defining an acceptable imaging error. An accept-
able imaging error might depend on the application: in a
confusion-limited survey such as GLEAM (Wayth et al. 2015;
Hurley-Walker et al. 2016), a compression noise addition at 10%
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Table 2. Imaging error rms values with 8-bit compression.

Set Quantization AF RF Row

rms rms rms

A Gaussian 179 µJy 462 µJy 612 µJy

Tr. Gaus. 1.5 227 µJy 92 µJy 105 µJy

Tr. Gaus. 2.5 178 µJy 209 µJy 265 µJy

Tr. Gaus. 3.5 178 µJy 437 µJy 572 µJy

Uniform 299 µJy 78 µJy 82 µJy

B Gaussian 117 µJy 174 µJy 224 µJy

Tr. Gaus. 1.5 98 µJy 212 µJy 75 µJy

Tr. Gaus. 2.5 91 µJy 160 µJy 113 µJy

Tr. Gaus. 3.5 115 µJy 174 µJy 196 µJy

Uniform 128 µJy 290 µJy 82 µJy

C Gaussian 421 µJy 452 µJy 406 µJy

Tr. Gaus. 1.5 616 µJy 327 µJy 360 µJy

Tr. Gaus. 2.5 453 µJy 318 µJy 309 µJy

Tr. Gaus. 3.5 422 µJy 459 µJy 394 µJy

Uniform 827 µJy 411 µJy 462 µJy

D Gaussian 81 µJy 104 µJy 93 µJy

Tr. Gaus. 1.5 76 µJy 67 µJy 74 µJy

Tr. Gaus. 2.5 68 µJy 70 µJy 70 µJy

Tr. Gaus. 3.5 79 µJy 99 µJy 90 µJy

Uniform 95 µJy 81 µJy 91 µJy

Avg Gaussian 199 µJy 305 µJy 344 µJy

Tr. Gaus. 1.5 225 µJy 195 µJy 153 µJy

Tr. Gaus. 2.5 184 µJy 201 µJy 194 µJy

Tr. Gaus. 3.5 197 µJy 296 µJy 320 µJy

Uniform 294 µJy 243 µJy 177 µJy

Per-normalization avg 220 ± 248 ± 237 ±

31 µJy 23 µJy 39 µJy

Per-quantization avg

Gaussian 282 ± 62 µJy

Tr. Gaus. 1.5 191 ± 46 µJy

Tr. Gaus. 2.5 193 ± 20 µJy

Tr. Gaus. 3.5 271 ± 55 µJy

Uniform 238 ± 69 µJy

Notes. Averages have been calculated by normalizing the results for
each set.

of the system noise is likely acceptable, since this will still be
well below the imaging noise level. However, in system-noise-
limited spectral-line work or in Epoch of Reionization experi-
ments, a 10% noise increase might not be acceptable.

Minimum bit-rates are now calculated for four different re-
quirements: for requirements (i) and (ii), the dirty image error
rms must be smaller than 10% and 1% of the system noise, re-
spectively; for requirements (iii) and (iv), the deconvolved image
noise level must change by less than 10% and 1%, respectively.
Table 3 lists the results. With 10-bit compression, every test set
can be imaged with less than 1% error. Since a 1% imaging er-
ror with a smaller imaging noise increase is probably accept-
able in any project, it is likely that 10-bit compression is accept-
able for all LOFAR observations, and 8-bit compression for all
MWA observations.

Test sets B and D are at higher frequency and time resolu-
tion than A and C, and their S/N is thus lower. Therefore, they
require fewer bits to achieve the same error. These sets can be
compressed using 6-bit (LOFAR) and 5-bit (MWA) compres-
sion with less than 1% error. Test sets B and D are compressed
at the correlator output resolution, and this is in most cases the
resolution at which the observations are archived. Hence, assum-
ing the results can be generalized to other observations, LOFAR
and MWA archival data can be compressed with an insignif-
icant change in image quality using 5 and 6-bit compression,
respectively.

4.4. Measurement set compression

A Casacore measurement set can be decomposed into visibility
data, weights and observational metadata. Here, observational
metadata refers to other data inside the measurement set, such as
antenna indices and timestamps. The normalization factors are
considered to be part of the visibility data volume. The measure-
ment set definition allows two ways of storing weights: a single
weight per table row that applies to all visibilities of that row;
and a weight per visibility. In the latter case, the weights are
stored in a column named “WEIGHT_SPECTRUM”. For each
complex visibility consisting of two 32-bit floats, a single 32-bit
float weight is stored. Therefore, the weights make up about one
third of the volume of a data set. LOFAR and MWA observa-
tions require a weight per visibility, in particular because RFI
can cause the weights of visibilities within a row to vary, and
sensitivity will be lost if per-visibility weights are not stored and
used in the processing. Another reason for per-visibility weights
is to reduce the weight of the edges of a (sub)band with increased
noise. Without per-visibility weights, these edges are not down-
weighted and reduce the sensitivity.

When the DATA column is compressed by a factor of a few,
it becomes relevant to compress the weights too. Fortunately,
this is much less complicated. Normally, four linearly-polarized
correlations are stored inside LOFAR measurement sets. The
weights of visibilities for different polarizations are always the
same. The measurement set format does not make use of this
fact, and stores four equal weights in the case of LOFAR. By
simply writing only one weight for the four polarized visibilities,
the weight volume is reduced by a factor of 4. To increase the
weight compression further, one can use the fact that quantizing
the weights is much less problematic than quantizing visibilities:
while changing the weights might reduce the sensitivity, even
if the weights are always truncated, they will not cause a bias.
Dithering is therefore not required. Weights are also not noisy,
and can not have extreme outliers, making them suitable for lin-
ear quantization. I found that linearly quantizing the weights to
12 bits with row normalization does not influence the sensitivity
noticeably (≪1%) in the four test sets. The weights can prob-
ably be quantized with fewer bits, but extensive testing is lim-
ited in this work to compression of visibility data, which is the
most pressing issue. Tests with different bit-rates for the weights
were not performed. With 12-bit weights and one weight for ev-
ery four differently-polarized visibilities, the weights are com-
pressed by a factor of 10, and are no longer the dominating con-
tribution to the size of compressed measurement sets.

Figure 8 shows the size of the data, weights and metadata
of a measurement set that contains the data for test set B. The
sizes before and after compression relative to the uncompressed
size of the full measurement set are shown. The size of the
measurement set after compression with the BZIP2 algorithm
(Burrows & Wheeler 1994) is also shown for comparison. With
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Fig. 5. Change in imaging noise as an effect of compression, measured relatively to the uncompressed image noise in an empty region of the
images. The measurements were performed for different quantization schemes and test sets.

BZIP2, the visibilities are hardly compressed. However, because
weights do not contain noise and are repetitive, the weights can
be compressed to less than 1% of its original size. When 2 or
3 bit compression is used for the visibilities, the weights and
metadata dominate the measurement set size.

4.5. Computational performance

Table 4 lists the wall-clock time of several operations. Each en-
try is the average of five runs. For the measurements, a high-end
server with a 40-core Intel Xeon E5-2660 running at 2.20 GHz
was used. For storage, a RAID disk with 4 × 3TB spinning disks
was used. Since the ratio between compression and writing will
vary strongly depending on the speed of the system, these re-
sults only provide an indicative impression of the speed of the
compression.

Compressing the visibilities consists of reading the old data
column and writing a new table column into the measurement set
with the compressed visibilities. To replace an existing column
with a compressed column, it is normally also required to replace
flagged visibilities with NaN values. When performed as a sepa-
rate step, this takes approximately as much time as compressing
the visibilities. This is not included in the measurements. In a
pipeline that writes out compressed visibilities, this step can be
done on the fly. Once the compressed column has been writ-
ten, the old uncompressed data column can be removed from the

data set. However, the casacore storage managers do not re-
lease the space of a removed data column, and the measurement
set will therefore not decrease in size. In order for the space to
be released, the whole measurement set needs to be rewritten.
Performing the full reordering is not included in these measure-
ments. The reordering can be avoided by writing out compressed
visibilities in a pipeline or by the correlator instead of replacing
the data column of an existing measurement set.

The results show that compression speeds up processing of
imaging. A considerable cost in compressing the visibilities is
reading the uncompressed data, which can be avoided by in-
tegrating compression in a pipeline. Using a lower bit-rate de-
creases the wall-clock time of the operations, because it requires
less reading or writing.

5. Discussion

It was shown that Dysco works best in cases with low S/N, where
it can achieve compression factors of 5 to 6, or approximately
twice as much if it is acceptable to increase the system temper-
ature by 10%. Since all four test sets are observations of bright
targets, these test sets are approximately worst case situations.
Most target fields will be more quiet, and will therefore com-
press with larger accuracy. While a few brighter targets exist
(Cygnus A and Cassiopeia A in particular), these targets are of-
ten limited by dynamic range issues during deconvolution. It is
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Fig. 6. Noise added by 8-bit compression using LOFAR test set A. Left image: result of calibration, 3C 196 subtraction and imaging without
compression. Centre image: same, but before processing the visibilities were compressed using the 8-bit quantization scheme (4× compression)
with the 2.5σ-truncated Gaussian distribution. Right image: difference between left and centre images – note the different colour scheme. Its rms
is 430 µJy. The added noise is unstructured and well below the system noise, and the left and centre images are visually indistinguishable.

Fig. 7. Noise added by 2-bit compression using LOFAR test set A. Left image: results of calibration, 3C 196 subtraction and imaging without com-
pression. Centre image: same, but before processing the visibilities were compressed using the 2-bit quantization scheme (16× compression) with
the 2.5σ-truncated Gaussian distribution. Right image: difference between left and centre images. While the added compression noise dominates
the noise in the image, the compression has not affected the sources systematically and the added noise is unstructured.

Table 3. Minimum bit-rate per data set, given four different
requirements.

Set ∆σ < 0.1σV ∆σ < 0.01σV σc < 1.1σI σc < 1.01σI

A 7 10 3 5

B 3 5 2 –

C 5 8 3 4

D 3 6 2 3

Notes. The second and third columns provide the minimum bit-rate for
a differential error rms < 10% and 1% of Stokes V rms, respectively.
Columns four and five provide the minimum bit-rate for an absolute
noise change <10% and 1%, respectively.

therefore likely that an increase in system noise will not degrade
the imaging results. In the exceptional situation of very bright
targets and an extremely high dynamic range, it is advisable to
use no compression or compression with larger bit-rates.

Only LOFAR HBA and MWA sets were tested. Both tested
telescopes operate at low frequency. It is likely that Dysco is
effective for other telescopes, but further experiments are re-
quired to determine acceptable bit-rates. The LOFAR LBA mea-
surements generally have lower S/N compared to LOFAR HBA,

hence using the same compression settings for LBA as for HBA
will be at least as accurate. In the current SKA design, the station
size of SKA-low stations will be similar to the size of LOFAR
stations and correlator resolutions will be at least as high as for
LOFAR. It can therefore be assumed that the compression of
SKA-low observations is equally affective as for LOFAR. Very
long baseline interferometry (VLBI) observations are typically
correlated at high time and frequency resolution, and produces
noise-dominated data. Compression is therefore likely to work
well on VLBI observations.

Averaging in time or frequency affects the field of view be-
cause of time and frequency smearing. It also removes infor-
mation that might be useful for high-resolution spectral work
or calibration. The compression methods introduced here do
not remove the high-resolution information. Due to the depen-
dence on the S/N, Dysco will in particular be useful for com-
pressing raw correlation data. Because observations are often
archived at high resolution, this can significantly lower the de-
mands for archive space. During data processing, data from the
archive is often averaged before calibration and imaging to de-
crease the computational requirements (e.g. van Weeren et al.
2016; Hurley-Walker et al. 2016). During this step, the averaged
data can be written without compression. With the implementa-
tion resulting from this work, this can be completely transparent

A99, page 10 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629565&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629565&pdf_id=7


A. R. Offringa: Compression of interferometric radio-astronomical data

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Original bz2 2 bits 3 bits 4 bits 6 bits 8 bits 12 bits 16 bits

C
o
m

p
re

s
s
e
d
 s

iz
e
 (

%
)

Compression method

Metadata Weights Visibilities

Fig. 8. Comparison of data volume using test set B. The “original” case
is not compressed, and “bz2” is compressed using bzip2 compression.
For the other cases, the weights are compressed to 12 bits and the visi-
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tization methods described in this paper.

Table 4. Wall-clock timings of several operations on test set D (65 GB)
on a server with a 40-core Intel Xeon CPU E5-2660 @ 2.20 GHz and
4 × 3TB RAID disks.

Reading the uncompressed set 277 s
Copying the uncompressed set 679 s
Compress visibilities with 8-bit / AF-normalization 387 s
Compress visibilities with 2-bit / AF-normalization 356 s
Compress visibilities with 8-bit / RF-normalization 374 s
Compress visibilities with 2-bit / RF-normalization 351 s
Compress visibilities with 8-bit / row normalization 378 s
Compress visibilities with 2-bit / row normalization 332 s
Compress weights to 12 bits 285 s
Imaging of uncompressed set 339 s
Imaging of 8-bit compressed set 236 s
Imaging of 2-bit compressed set 198 s

Notes. Values are averages of five runs.

to the astronomer, because the compressed measurement set can
be handled as a normal measurement set.

In some cases it might be helpful to compress averaged
and/or calibrated data, for example to work with a limited
amount of disk space or reduce IO overhead or network trans-
fer. Because of the higher S/N, this requires more quantization
bits, but compression factors of 3 and 4 can still be achieved for
LOFAR and MWA, respectively.

The result that AF-normalization is on average more accurate
than RF-normalization is somewhat counter-intuitive, since RF-
normalization decomposes the data with more factors and has
therefore more freedom to optimize the normalization. In fact,
given the factors for AF-normalization, an RF-normalization can
be found that performs equally well by setting each row fac-
tor to the multiplication of the two relevant antenna factors.
Hence, RF-normalization never has to perform worse. The rea-
son that this does occur is that, as discussed in Sect. 3, the AF-
normalization algorithm decomposes the data in a different or-
der: first it normalizes the channel standard deviations, then it
finds the antenna factors, and finally it iteratively maximizes the
channel factor or antenna factor that increases the sum of abso-
lute value the most, until convergence. In the RF-normalization

algorithm, the standard deviations of the channels are also first
normalized, but then each row is maximized. Afterwards, each
channel is maximized. The latter algorithm is easier and com-
putationally faster than the AF-normalization algorithm, but re-
sults evidently in less optimal factors. An algorithm that pro-
duces RF-normalization factors that is at least as accurate as
AF-normalization, is to calculate the factors by starting from
the AF-normalization factors, and then maximize each row. The
computational cost of this is relatively low compared to astro-
nomical operations such as calibration or imaging, so the extra
computational cost is likely not an issue. Given that the noise
variance of observations can physically be described by the AF-
normalization factors, on noise-dominated sets it is likely that
the extra normalization freedom of RF-normalization does not
contribute much.

This work uses for the first time a non-linear quantization
scheme on radio astronomical data, in which the quantization
is matched to the expected distribution of the input data. In
AF-normalization and RF-normalization it reduces the quanti-
zation error compared to linear quantization by 1.60 and 1.25
on average, respectively. Non-linear quantization is therefore in-
deed a small improvement over linear quantization for the en-
coding of radio data.

Our current implementation consists of a storage manager
used by CASACORE and a stand-alone tool that can replace the
column of an existing measurement set with a compressed col-
umn. As shown, compression works best on RFI flagged data,
which is often performed by a preprocessing pipeline. For exam-
ple, LOFAR uses NDPPP and MWA uses COTTER, two prepro-
cessing pipelines that flag the data using the AOFLAGGER, con-
vert the format of the data to a standard measurement set, and can
do several other tasks at the same time. Because raw data from
these telescopes have large volumes, every extra read or write of
the raw data is costly. Hence, the ideal place for compression is
inside these pipelines, just before writing to disk. Pipelines can
do so by requesting CASACORE to use the compressing storage
manager for the relevant columns.

As was shown in Sect. 4.5, writing data with compression
is faster than writing without compression. In certain process-
ing steps, this might be an important consideration. In the Factor
pipeline (van Weeren et al. 2016), disk input-output is a consid-
erable cost, because the original data needs to be read, phase
changed, averaged and rewritten to a measurement set for each
facet direction. One possible way to improve this, is to compress
the high-resolution data at the original phase direction. This will
have an insignificant loss in accuracy due to the low S/N, yet
decrease the IO-overhead considerably.

5.1. Comparison with other implementations

In this section, I will briefly compare the features of Dysco to the
AIPS 16-bit compression technique, the FITS file compression
technique and the BITSHUFFLE compression technique.

AIPS uses row-normalization with uniform quantization,
which I showed to have a high accuracy on average. As was
shown, it performs not well in the case of RFI or high dy-
namic range. The bit-rate of 16 bits per input value allows about
4 orders of magnitude of dynamic range before catastrophic
quantization occurs. Flagging the data before compression will
mostly mitigate this problem. The RF and AF-normalization
schemes introduced in this work also solve this issue. The lack
of dithering in AIPS compression might lead to a systematic bias
(Pence et al. 2010). This is only an issue in the case of high S/N.
In the case of low S/N, the intrinsic noise in the visibilities will
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mimic dithering. Of course, with aips the compression rate is
limited to a factor of 2.

The BITSHUFFLE compression technique also uses
uniform quantization. Before quantization, values are rounded
relative to the expected noise in a sample. The effect of this is
somewhat comparable to the combination of normalization and
quantization used in this work, which also throws away signifi-
cance that is smaller than the noise.

The BITSHUFFLE and FITS compression technique use
more bits when the rounded values have higher entropy. There-
fore, it compresses effectively with a variable bit-rate. This is ef-
fective for signal-dominated data with repeating values, but has
no benefit for the compression of noise-dominated data with con-
stant entropy.

The FITS compression technique uses exponential quantiza-
tion. Thereby, similar to Gaussian quantization, the quantization
error is smaller for values near zero. In exponential quantization,
small values will be preserved with exponentially more preci-
sion than large values. This is useful for image data, where the
relative error on each pixel is relevant, but is not optimal for vis-
ibilities. For those, the average error is a more relevant measure
of the effects on the final science products, and since visibilities
follow a Gaussian distribution – or even a more uniform dis-
tribution after normalization – quantizing with an exponential
distribution is not optimal.

5.2. Guideline for method selection

While it is possible to measure the compression loss of observa-
tions and determine the acceptable compression method, this is
not practical for regular observing of different targets with dif-
ferent correlation settings. Instead, in this section I will weigh
the characteristics of the various compression configurations and
suggest a rule for selecting the compression method that will not
affect data.

Based on the accuracy, several combinations of quantization
and normalization have been shown to perform well on all test
sets. Per-row normalization with uniform quantization, similar
to the method used by aips but including dithering and differ-
ent bit-rates, is on average one of the most accurately perform-
ing methods. Moreover, it is the simplest method to implement.
However, as was shown, the accuracy of compression with row
normalization is sensitive to large dynamic ranges in the visi-
bility, such as in the case of RFI (Fig. 1), and makes the com-
pression of the different polarizations dependent on each other
(Fig. 2). The RF and AF normalizations are robust to these is-
sues. On average, the AF normalization performs slightly better
than the RF-normalization method, and the most accurate com-
bination with AF-normalization is more accurate than the most
accurate combination with RF-normalization. The difference be-
tween accuracy of the normalization methods with best quanti-
zation are however not significant.

AF-normalization is theoretically slightly more com-
putational intensive during compression compared to RF-
normalization and row-normalization, but this difference is small
in practice. The methods require the same time to decompress.
The quantization method does not change the computational
performance of the methods. AF-normalization requires special
treatment of auto-correlations, but requires less metadata to be
stored (Npol(Nch + Nant) vs. Npol(Nch + N2

ant) per timeblock). In
large measurement sets with many channels, the metadata is in-
significant. All in all, there is little reason to select one method
over another.

Noise normalization performed by AF normalization will
equalize the statistics of all visibilities. Therefore, the extra fac-
tors that RF normalization adds do not match the physical pro-
cess by which the noise is formed. When the signal adds a
dominant contribution to the visibilities, the RF-normalization
can have a benefit, because with RF-normalization the visibil-
ities of different baselines can be scaled independently. The re-
sults show that AF normalization combines better with centrally-
dense quantization distributions, while RF normalization favours
more uniform distributions. For sets with larger number of chan-
nels or antennas, the statistics of sets after normalization will be
more accurately quantized by centrally-dense distributions.

For these reasons, I suggest to use the following guideline
for compression of MWA and LOFAR observations, as well as
future high-resolution SKA observations:

- For the compression of high-resolution observations (∆t ×
∆ν ≤ 0.5 s × 6 kHz for LOFAR and SKA, and ∆t × ∆ν ≤
0.5 s × 40 kHz for the MWA), use AF normalization with
2.5σ-truncated Gaussian quantization. As described, on av-
erage it is the most accurate method with the exception of
the less stable row-normalization, it is robust and it matches
the underlying physics. High-resolution LOFAR sets can be
compressed with 5-bit quantization and MWA sets can be
compressed with 6-bit quantization, respectively.

- Observations with a lower resolution – and therefore higher
S/N – should be compressed using higher bit-rates. Up to
a resolution of ∆t × ∆ν ≤ 4 s × 36 kHz for LOFAR and
SKA-low, and ∆t × ∆ν ≤ 4 s × 80 kHz for the MWA,
RF-normalization with 1.5σ-truncated Gaussian quantiza-
tion should be used, with 10-bit compression for LOFAR and
8-bit compression for the MWA. On the lower-resolution sets
A and C, this is on average the most accurate compression
method. As was shown, it is also robust.

Compression with these parameters increases the image noise
with less than 1%.

6. Possible improvements and future work

After the quantization of randomly distributed Gaussian noise
with a matched quantizer, the compressed data will be
independently-distributed noise with a uniform distribution that
can not be compressed any further. Hence, in noise-dominated
situations, using the distribution of the data and normalizing the
data with AF-normalization, will lead in theory to the best com-
pression rate. In the case of signal-dominated data, compressed
data will be correlated and can be compressed further. To make
use of such correlations, an encoding scheme such as Rice cod-
ing (Rice & Plaunt 1971) or LZ77 compression (Ziv & Lempel
1977) can be used to increase the compression factor. This makes
the input-output of data somewhat more complex, because differ-
ent timeblocks can have different sizes after Rice coding, and this
requires extra administration to keep track of the place and size
of each timeblock. The algorithm will also have to look for cor-
relations in the time direction, while time is generally the slowest
changing dimension. It has been shown to provide good results
thought (Masui et al. 2015), and a combination of these methods
might provide a generic algorithm that performs near-optimal in
noise-dominated as well as signal-dominated situations.

As was shown, metadata and weights are easily compress-
ible. At low visibility bit-rates, these can have a significant size
compared to the data. While it was shown that the weights can be
compressed by a factor of 10, compression with BZIP2 can com-
press the weights by more than a factor of 100. Hence, a similar
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algorithm but one that can randomly and transparently access the
weights inside a measurement set will increase the compression
of the weights, compared to the method used in this work.

Baseline-dependent averaging can also reduce the size of ob-
servations. This can in theory be performed together with the
compression method described in this paper. In sets that are not
baseline-dependently averaged, the visibilities of long baselines
receive more weight and will therefore dominate the compres-
sion error in image space. Smaller baselines can be stored with
fewer bits before their inaccuracies becomes noticeable in image
plane. With baseline-dependent averaging, the weight of each
visibility will be more constant when using the uniform weight-
ing scheme, and every visibility will contribute similarly to the
compression error (in image plane). However, if averaging of the
smaller baselines increases the S/N in those baselines too much,
compression will be less accurate. In that case, the smaller base-
lines might dominate the compression error. The application of
baseline-dependent averaging for compressing archival data is
limited, because accurate RFI flagging require high time and fre-
quency resolutions (Offringa et al. 2013) and baselines can only
be averaged up to the calibration solution interval. For LOFAR,
this interval can be as short as a few seconds to deal with the
ionosphere in high-resolution maps (van Weeren et al. 2016).

Currently, the distribution of a particular visibility is
parametrized by a single scaling factor. It is evident from the
test results that this single parametrization is not always op-
timal; signal-dominated data sets are more accurately com-
pressed by using a uniform distribution in the quantizer, while
noise-dominated data sets are more accurately compressed by a
truncated Gaussian distribution. Therefore, a possible increase
in accuracy could be achieved by increasing the number of pa-
rameters of the distribution within each timeblock, for example
by searching the optimal truncation value for each timeblock and
storing these along with the scaling factors.

7. Conclusions

The Dysco technique for compressing visibilities is suitable
for radio observations. The noise added by this compression
technique acts like normal system noise. The accuracy of the
compression is depending on the signal-to-noise ratio of the
data: noisy data can be compressed with a smaller loss of image
quality. Data with typical correlator time and frequency resolu-
tions can be compressed by a factor of 6.4 for LOFAR and 5.3
for MWA observations with less than 1% added system noise in

image plane. After averaging observations in time and frequency
to the typical resolutions used in processing, a compression fac-
tor of 3.2 to 4 can be reached with less than 1% added system
noise in image plane. The technique is in particular well suited
to reduce the archival space requirements.

So far, testing was performed only on low-frequency data
from the MWA and LOFAR telescopes. The implementation is
generic and can be applied to other telescopes. However, further
experiments are required to determine acceptable bit-rates.

Acknowledgements. I acknowledge financial support from the European Re-
search Council under ERC Advanced Grant LOFARCORE 339743.

References

Burrows, M., & Wheeler, D. J. 1994, Technical report 124, Digital Equipment
Corporation, http://www.hpl.hp.com/techreports/Compaq-DEC/

SRC-RR-124.html

Favre, C., Wootten, H. A., Remijan, A. J., et al. 2011, ApJ, 739, L12
Greisen, E. W. 2016, Tech. Rep., AIPS Memo 117, http://www.aips.nrao.
edu/aipsmemo.html

Heywood, I., Bannister, K. W., Marvil, J., et al. 2016, MNRAS, 457, 4160
Hurley-Walker, N., Callingham, J. R., Hancock, P. J., et al. 2016, MNRAS, 464,

1146
Jiwani, A., Colegate, T., Razavi-Ghods, N., et al. 2013, TASA, 30, 23
Kazemi, S., Yatawatta, S., & Zaroubi, S. 2013, MNRAS, 430, 1457
Masui, K., Amiri, M., Connor, L., et al. 2015, Astron. Comput., 12, 181
Morabito, L. K., Oonk, J. B. R., Salgado, F., et al. 2014, ApJ, 795, L33
Offringa, A. R., de Bruyn, A. G., Zaroubi, S., et al. 2013, A&A, 549, A11
Offringa, A. R., McKinley, B., Hurley-Walker, N., et al. 2014, MNRAS, 444, 606
Offringa, A. R., Trott, C. M., Hurley-Walker, N., et al. 2016, MNRAS, 458, 1057
Pence, W. D., White, R. L., & Seaman, R. 2010, PASP, 122, 1065
Perley, R. A., Chandler, C. J., Butler, B. J., & Wrobel, J. M. 2011, ApJ, 739, L1
Rice, R., & Plaunt, J. 1971, IEEE Trans. Commun. Technol., 19, 889
Shannon, C. E., & Weaver, W. 1949, The Mathematical Theory of

Communication (Univ. of Illinois Press)
Smirnov, O. M. 2011, A&A, 527, A107
Stappers, B. W., Hessels, J. W. T., Alexov, A., et al. 2011, A&A, 530, A80
Thompson, A. R., Emerson, D. T., & Schwab, F. R. 2007, Radio Science, 42,

RS3022
Thompson, A. R., Moran, J. M., & Swenson, G. W. 2001, Interferometry and

Synthesis in Radio Astronomy, 2nd edn. (Wiley-Interscience)
Tingay, S. J., Goeke, R., Bowman, J. D., et al. 2013, PASA, 30, e007
van Cappellen, W. A., & Bakker, L. 2010, in Phased Array Systems and

Technology (ARRAY), 2010 IEEE Int. Symp., 640
van Diepen, G. N. J. 2015, Astronomy and Computing, 12, 174
van Haarlem, M. P., Wise, M. W., Gunst, A. W., et al. 2013, A&A, 556, A2
Wayth, R. B., Lenc, E., Bell, M. E., et al. 2015, PASA, 32, e025
van Weeren, R. J., Williams, W. L., Hardcastle, M. J., et al. 2016, ApJS, 223, 2
Wells, D. C., Greisen, E. W., & Harten, R. H. 1981, A&AS, 44, 363
Wilson, W. E., Ferris, R. H., Axtens, P., et al. 2011, MNRAS, 416, 832
Ziv, J., & Lempel, A. 1977, IEEE Trans. Information Theory, 23, 337

A99, page 13 of 13

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://linker.aanda.org/10.1051/0004-6361/201629565/2
http://www.aips.nrao.edu/aipsmemo.html
http://www.aips.nrao.edu/aipsmemo.html
http://linker.aanda.org/10.1051/0004-6361/201629565/4
http://linker.aanda.org/10.1051/0004-6361/201629565/6
http://linker.aanda.org/10.1051/0004-6361/201629565/7
http://linker.aanda.org/10.1051/0004-6361/201629565/8
http://linker.aanda.org/10.1051/0004-6361/201629565/9
http://linker.aanda.org/10.1051/0004-6361/201629565/11
http://linker.aanda.org/10.1051/0004-6361/201629565/12
http://linker.aanda.org/10.1051/0004-6361/201629565/13
http://linker.aanda.org/10.1051/0004-6361/201629565/14
http://linker.aanda.org/10.1051/0004-6361/201629565/15
http://linker.aanda.org/10.1051/0004-6361/201629565/17
http://linker.aanda.org/10.1051/0004-6361/201629565/18
http://linker.aanda.org/10.1051/0004-6361/201629565/23
http://linker.aanda.org/10.1051/0004-6361/201629565/24
http://linker.aanda.org/10.1051/0004-6361/201629565/25
http://linker.aanda.org/10.1051/0004-6361/201629565/26
http://linker.aanda.org/10.1051/0004-6361/201629565/27
http://linker.aanda.org/10.1051/0004-6361/201629565/28
http://linker.aanda.org/10.1051/0004-6361/201629565/29

	Background
	Methods
	Normalization
	Quantization

	Implementation
	Results
	Compression accuracy
	Properties of compression noise
	Minimum bit-rates
	Measurement set compression
	Computational performance

	Discussion
	Comparison with other implementations
	Guideline for method selection

	Possible improvements and future work
	Conclusions
	References

