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Abstract—Multicarrier Phase-Coded signals have been recently
introduced to achieve high range resolution in radar systems. As
in single carrier phase coded radars, the conventional method for
compression of these signals is based on using matched filter or direct
computation of autocorrelation function. In this paper we propose a
new method based on Discrete Fourier Transform (DFT) that has lower
computational complexity compared to the conventional approach.
It has been proved that the proposed method is mathematically
equivalent to matched filtering, so there is no processing loss. Also
the effect of sampling frequency on compression loss has been
investigated and for the oversampled matched filter of MCPC signals, a
computational efficient algorithm based on polyphase implementation
has been proposed.

1. INTRODUCTION

Nowadays, there is an increasing demand for high range resolution
radar systems in many applications such as target recognition and
classification [1, 2]. High range resolution is also achieved by increasing
the bandwidth of the radar signal. Among the techniques that can
be used for this purpose are phase and frequency modulation of
transmitted pulse [3]. However increasing bandwidth in the phase code
modulated signal (PCM) is equivalent to decreasing chip width which
faces the technological limitations if it is beyond more than a specific
extent. On the other hand, in linear frequency modulation (LFM)
creating a signal with high frequency slope and adequate linearity in
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frequency is not easily possible. To overcome this problem one can use
multicarrier signals.

Multicarrier signals for radars have been presented for the first
time in 1998 by Jankiraman et al. [4–6]. They designed PANDORA
radar with a signal consisting of several narrowband LFM channels
where the channels are separated by frequency guard bands. Output
signals of different channels are combined in receiver in such a way
that range data with high resolution are produced. An appropriate
replacement of the analog LFM signal is a digital phase coded
modulation signal or PCM, particularly the P3 and P4 codes, in
which the phase sequences are samples from the phase trajectory of
a LFM signal [7]. In other words, similar to multicarrier LFM signal,
PCM sequences can be modulated on N subcarriers and transmitted
simultaneously. Using this signal in radar systems has been proposed
by Levanon in 2000 [7]. In the proposed idea, minimum frequency
space between subcarriers is used to preserve orthogonality.

The main advantage of multicarrier signal based on PCM
(MCPC) compared with multicarrier signal based on LFM, is its high
spectral efficiency due to its property of orthogonal frequency division
multiplexing (OFDM). Because the LFM based multicarrier signals
need to use guard band to separate each frequency channel, but in
MCPC signals based on using OFDM concept it is not necessary to
use guard bands. On the other hand by choosing appropriate codes, the
side lobes of ambiguity function can also be reduced significantly [7–
15].

The other good point about this signal which is the main
issue of this paper is to achieve compression of the signal by
introducing efficient computational algorithms based on interesting
inherent mathematical property of the signal.

In this paper, first, the MCPC signal is introduced and the
conventional method for its compression is presented. Then the new
compression method is proposed and its advantages are discussed.
Also, some necessary discussions are presented on choosing the
appropriate sampling frequency for realization of digital matched
filter, and a low frequency sampling rate method based on polyphase
implementation of the oversampled matched filter is suggested for
compressing these signals.

2. MCPC SIGNAL AND ITS CHARACTERISTICS

A multicarrier phase-coded (MCPC) pulse consists of P carriers
transmitted simultaneously where each carrier is phase modulated
using a sequence ofM chips. The carrier frequencies are equally spaced
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with frequency separation equal to the inverse of the chip duration,
forming orthogonal frequency division multiplexing (OFDM) [16–19].
The complex envelope of the MCPC signal is given by:

x(t) =
M∑

m=1


P−1∑

p=0

ap,m exp(j2πfpt)


 s (t− (m− 1)tc) (1)

where

s(t) =
{

1, 0 ≤ t < tc
0, otherwise (2)

and

fp =
p

tc
, p = 0, 1, . . . , P − 1 (3)

The string {ap,m}M
m=1 in Equation (1) is the code sequence on p-th

carrier and tc is the chip width.
Ambiguity function of MCPC signal depends on modulated codes

on each carrier signal. It has been shown that by choosing proper codes
for each subcarrier in MCPC signals, ambiguity function sidelobes in
both range and Doppler domain can be reduced to below that of the
single-carrier signals with similar resolution, [15]. Several works on
designing appropriate code for MCPC signal can be found in [9, 10].

One of the obvious characteristics of the MCPC signals is their
frequency spectrum which is almost bounded and flat, with effective
band width of P/tc and its frequency sidelobes less than that of the
single-carrier coded signal that has a shape of the Sinc function [8].

A major drawback of the multicarrier signal is its varying envelope
during a pulse. For transmitter power amplifier it is desirable to
reduce the Peak to Mean Envelope Power Ratio (PMPER) as much
as possible. Also, several works have been reported to decrease the
PMPER that are based on the appropriate code designing, amplitude
and initial phase of each subcarrier setting [7, 15].

3. CONVENTIONAL METHOD FOR THE MCPC PULSE
COMPRESSION

The conventional method for compressing phase coded pulse is to use
discrete time version of matched filter. In this method, after sampling
the received signal, correlation of the produced samples and samples of
the reference signal are calculated. For MCPC signal, the first choice
for sampling rate, based on the signal bandwidth, is fs = P/tc. Of
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course it can be shown that using this sampling rate may cause much
compression loss. So to generalize the following discussion, sampling
rate of fs = NP/tc is used where N is an integer number.

Now if we sample the MCPC signal defined in Equation (1) with
fs = NP/tc rate, we have:

x[n] = x (nts) = x

(
n
tc
NP

)

=
P−1∑
p=0

M∑
m=1

ap,m exp
(
j2π

(
p

tc

)
ntc
NP

)
s

(
ntc
NP

− (m− 1)tc

)

=
P−1∑
p=0

M∑
m=1

ap,m exp
(
j2π

np

NP

)
s

(
ntc
NP

− (m− 1)tc

)
,

n = 0, 1, . . . , NPM − 1 (4)

By choosing window function s[n] = s
(

ntc
NP

)
then:

s [n] =
{

1, 0 ≤ n ≤ NP − 1
0, else (5)

Also

s

(
ntc
NP

− (m− 1)tc

)
= s [n− (m− 1)NP ] (6)

Hence Equation (4) could be rewritten as:

x[n] =
P−1∑
p=0

M∑
m=1

ap,m exp
(
j2π

np

NP

)
s [n− (m− 1)NP ],

n = 0, 1, . . . , NPM − 1 (7)

In the conventional method, matched filter is used for pulse
compression, where the filter impulse response is the sampled version
of the analog filter impulse response given by

h(t) = x∗ (Mtc − t) (8)

where superscript ∗ denotes complex conjugate.
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If we sample this function with fs = NP/tc rate, we have:

h [n] = x∗
(
Mtc −

ntc
NP

)
= x∗

(
(NPM − n) tc

NP

)
= x∗ [NPM − n]

=
P−1∑
p=0

M∑
m=1

a∗p,m exp
(
−j2π (NPM − n)p

NP

)

s

(
(NPM − n)tc

NP
− (m− 1)tc

)
,

n = 1, . . . , NPM (9)

Since the impulse response of the matched filter can be shifted in time
domain, so the impulse response of the matched filter can be chosen
as:

h[n] = x∗[(NPM − 1) − n]

=
P−1∑
p=0

M∑
m=1

a∗p,m exp
(
−j2π [(NPM − 1) − n]p

NP

)

s

(
[(NPM − 1) − n]tc

NP
− (m− 1)tc

)
,

n = 0, 1, . . . , NPM − 1 (10)

By this choice, non-zero samples of the matched filter will be at samples
n = 0 to n = NPM − 1.

Based on the above definition for discrete window function s[n],
Equation (10) is equal to:

h[n] =
P−1∑
p=0

M∑
m=1

a∗p,m exp
(
−j2π [(NPM − 1) − n]p

NP

)

s [(NPM − 1) − n− (m− 1)NP ] ,
n = 0, 1, . . . , NPM − 1 (11)

The matched filter output is calculated as follows:

y[n] = x[n] ∗ h[n] =
+∞∑

k=−∞
x[k]h[n− k] (12)

where ∗ denotes linear convolution. For example if 5 carriers are used
in the MCPC signal, and the consecutive ordered cyclic shift of a P4
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code with length 5 has been used to modulate these 5 carriers [8], its
matched filter output for a fixed target is shown in Figure 1. The phase
vector of P4 code that is used is given by:

a = [0◦ −144◦ −216◦ −216◦ −144◦] (13)

In this example the sampling rate fs = P/tc is used for the matched
filter implementation and the target delay is assumed to be an integer
number of the sampling interval.

Figure 1. The matched filter output (conventional method of pulse
compression) for M = P = 5, Target delay=10tc, and fs = P/tc.

4. THE SUGGESTED METHOD FOR COMPRESSING
THE MCPC SIGNAL

In this section another method for realization of the matched filter
or Equation (12) is presented to compress the MCPC signal. For
this purpose, Equation (11) can be written in the following form by
swapping the two summations:

h[n] =
M∑

m=1

P−1∑
p=0

a∗p,m exp
(
−j2π [(NPM − 1) − n]p

NP

)

s [(NPM − 1) − n− (m− 1)NP ] ,
n = 0, 1, . . . , NPM − 1 (14)
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Using this equation, function h[n] can be considered as a summation
of M functions given by:

h[n] =
M∑
i=1

hi[n] (15)

where:

hi[n] =
P−1∑
p=0

a∗p,i exp
(
j2π

[n− (NPM − 1)]p
NP

)

s [(NPM − 1) − n− (i− 1)NP ]

=




P−1∑
p=0

a∗p,i exp
(
j2π [n−(NPM−1)]p

NP

)
,

n = (M − i)NP, . . . , (M − i+ 1)NP − 1
0, otherwise

(16)

and also the matched filter output in response to input x[n] is equal
to:

y[n] = x[n] ∗ h[n] =
M∑
i=1

x[k] ∗ hi[n]

=
n−NP (M−1)∑
k=n+1−NPM

x[k]h1[n− k] +
n−NP (M−2)∑

k=n−NP (M−1)+1

x[k]h2[n− k]

+ . . .+
n∑

k=n−NP+1

x[k]hM [n− k]

=
M∑
i=1

yi[n] (17)

where yi[n]s are defined as:

yi[n] =
n−NP (M−i)∑

k=n+1−NP (M−i+1)

x[k]hi[n− k] = XT
i · h∗

i (18)

where
Xi = [x[n− (M − i+ 1)NP + 1] x[n− (M − i+ 1)NP + 2]

. . . x[n− (M − i+ 1)NP + NP]]T

h∗
i = [hi[(M − i+ 1)NP − 1] hi[(M − i+ 1)NP − 2]

. . . hi[(M − i+ 1)NP − NP]]T

(19)
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We know that if A, and B are two vectors and U is a unitary matrix,
we have:

ATB∗ = ÂT B̂∗ (20)

where

Â = UA
B̂ = UB (21)

Now if we define the matrix U according to Equation (22), then
calculation of Â and B̂ are equal to the DFT calculation of the elements
of A and B respectively.

U =
1√
NP




1 1 1
1 exp

(
−j2π
NP

)
exp

(
−j2π×2

NP

)
1 exp

(
−j2π×2

NP

)
exp

(
−j2π×2×2

NP

)
. . . . . . . . .

1 exp
(
−j2π(NP−1)

NP

)
exp

(
−j2π(NP−1)×2

NP

)
. . . 1
. . . exp

(
−j2π(NP−1)

NP

)
. . . exp

(
−j2π×2×(NP−1)

NP

)
. . . . . .

. . . exp
(
−j2π(NP−1)(NP−1)

NP

)




NP×NP

(22)

By using the above definition for matrix U and using
Equation (20), the inner product of Equation (18) can be calculated
as follows (this equation can also be obtained using the Parseval’s
theorem):

yi[n] = XT
i · h∗

i = X̂T
i · ĥ∗

i (23)

where:

X̂i =
1√
NP

DFT{Xi}, ĥ=
i

1√
NP

DFT{hi} (24)

On the other hand the vector ĥi can be calculated as:

ĥi(K) =
1√
NP

NP−1∑
n=0

hi(n+ 1) exp
(
−j2π nK

NP

)
,

K = 0, 1, . . . , NP − 1 (25)
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where hi(K) and ĥi(K) denotes the k-th element of the vectors hi and
ĥi respectively. Hence ĥ∗

i is given by:

ĥ∗
i (K) =

1√
NP

NP−1∑
n=0

h∗
i (n+ 1) exp

(
j2π

nK

NP

)
,

K = 0, 1, . . . , NP − 1 (26)

ĥ∗
i (K) =

1√
NP

NP−1∑
n=0

hi[(M−i+1)NP−n−1] exp
(
j2π

nK

NP

)
(27)

Therefore:

ĥ∗
i (K) =

1√
NP

NP−1∑
n=0

P∑
p=1

a∗p,i

exp
(
j2π

[(M−i+1)NP−n−1−(NPM−1)]p
NP

)
exp

(
j2π

nK

NP

)

=
1√
NP

NP−1∑
n=0

P∑
p=1

a∗p,i exp
(
j2π

[(1−i)NP−n]p
NP

)
exp

(
j2π

nK

NP

)

=
1
NP

P∑
p=1

a∗p,i

NP−1∑
n=0

exp
(
j2π

n(K − p)
NP

)
(28)

On the other hand:

NP−1∑
n=0

exp
(
j2π

n(K − p)
NP

)
=

{
NP, p = K
0, p �= K

(29)

So we have:

ĥ∗
i (K) =

{ √
NPa∗K,i, K < P

0, K ≥ P
(30)

The Fourier transform of the vector Xi is also equal to:

FXi(K) =
√
NP X̂i(K)

=
NP−1∑
b=0

x[n+ 1 − (M − i+ 1)NP + b] exp
(
−j2π Kb

NP

)
,

K = 0, 1, . . . , NP − 1 (31)
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So the inner product of Equation (18) can be calculated by:

yi[n] =
NP−1∑
K=0

X̂i(K)ĥi(K) =
P−1∑
K=0

FXi(K)a∗K,i (32)

and the matched filter output is equal to:

y[n] =
M∑
i=1

yi[n] =
M∑
i=1

P−1∑
K=0

FXi(K)a∗K,i (33)

By interchanging the order of summation in Equation (33), we have:

y[n] =
P−1∑
K=0

[
M∑
i=1

FXi(K)a∗K,i

]
=

P−1∑
K=0

SK (34)

The realization of this equation which is shown in Figure 2,
presents a new method for compressing the MCPC signals. Based
on this equation, to calculate the matched filter output in every
sample time, first, the last received NPM samples are divided into
M segments where each one contains NP samples and the DFT of
length NP is computed for each segment. The first P samples of each
DFT are demultiplexed and the resulting P different sequences are
filtered by P conventional single carrier pulse compression filters that
are matched to the corresponding codes modulated on each subcarrier.

At the end different channels data are added in order to compute
the final output for the given sample time. This operation is performed
sequentially by sliding on all of the sample times.

If we apply the above algorithm to the example of Section 3 with
the same sampling rate, the result is exactly the same as the one
obtained in Figure 1.

The important characteristic of the suggested method to compress
the MCPC signal for realization of matched filter is that its
computational complexity is lower than the conventional method, as
shown in Section 7. Also the proposed method has been proved that is
mathematically equivalent to the conventional matched filter, so there
is no processing loss compared to the conventional approach.

As another important characteristic of the suggested method
is the possibility of phase and amplitude estimation for different
subcarriers frequencies based on this method. These data can be used
in radar systems in various scenarios, especially for appropriate power
management in the tracking mode. This is a new concept in radar
systems and would deserve a separate research by itself.
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NP NP NP
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          &
       Serial
         To
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    DFT
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i=1Xi
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i=1Xi
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*

Σ
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*
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Matched Filtering

SP-1

S0

Σ
P-1

K=0
SK

Figure 2. Block diagram of the proposed method to compress the
MCPC signals.

5. THE EFFECT OF SAMPLING FREQUENCY ON THE
COMPRESSION QUALITY

If we study the matched filter output, at the sampling frequency P/tc,
we find that when the target signal delay is not exactly a multiple of
sampling rate, the pulse compression faces some problems. In this
case, the peak output power of the matched filter is reduced, and
autocorrelation sidelobes also increase. For example, if the barker code
of length 5 is used to modulate different 5 carriers, the peak power loss
versus target delay will be as in Figure 3(a) and the ratio of the peak
power to maximum sidelobe level is also similar to Figure 3(b).

Figure 3(a) shows a compression loss of 3.7 dB in some target
delays which is drastically a large amount. To avoid the peak power
loss by changing the target delay, we should increase the sampling
rate. As this figure shows, increasing the sampling rate by a factor
of 2 or 4 can reduce the compression loss considerably. Increasing the
sampling frequency, makes the ratio of the peak power to maximum
sidelobe level almost independent of the target delay, as it is shown in
Figure 3(b). According to these figures the appropriate sampling rate
for compressing the MCPC signal would be more than fs = P/tc and
fs = 4P/tc seems to be enough for this purpose.
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Figure 3. (a) Compression loss versus normalized target delay (td/ts)
for 3 sampling frequencies (M = P = 5, Target delay= 9.1tc, and
ts = tc/P ). (b) The ratio of the peak power to maximum sidelobe
level versus normalized target delay (td/ts) for 3 sampling frequencies
(M = P = 5, Target delay= 9.1tc, and ts = tc/P ).

6. POLYPHASE IMPLEMENTATION OF THE
OVERSAMPLED MCPC PULSE COMPRESSION FILTER

As it has been shown in Section 5, if the sampling frequency is P/tc and
the target signal delay is not exactly a multiple of sampling interval,
the matched filter output signal amplitude will reduce and also sidelobe
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levels will increase slightly. This is mainly due to the fact that in
this case the discrete-time pulse compression filter is not exactly the
matched filter. So mismatch loss can be expected. A method to avoid
these mismatch losses that depend on the target delay is to increase
the sampling rate. It has been shown that increasing the sampling
rate by a factor of 4 can dramatically reduce the mismatch loss and
certainly this causes the increase of the computational complexity.

For MCPC signals the lowest possible sampling rate according to
Nyquist criteria is approximately P/tc. So to reduce the mismatch
loss in discrete time pulse compression we should implement an
oversampled matched filter.

In this section we derive polyphase representation of the
oversampled matched filter and show that the polyphase representation
yields a more efficient structure for compression of MCPC signals.

Consider MCPC signal x[n] as the sampled received signal x(t)
by the Nyquist sampling rate (P/tc). According to above discussion it
should be oversampled by a factor of L, and then applied to a matched
filtering at sampling rate of LP/tc as shown in Figure 4.

L ↑ H(z)
x[n]

Ideal LPF
y[n]

xe[n]

Up sampler (Interpolator)

ADC
x(t)

fs=P/tc

Oversampled 
matched filter 

 

Figure 4. The oversampled matched filtering after interpolation to
avoid compression loss.

In Figure 4 the first block in the up-sampler is called “sampling
rate expander” or “L-fold expander” in literature [20, 21] and its output
is given by:

xe[n] =
{
x

[
n
L

]
, n = 0, ±L, ±2L, . . .

0, otherwise (35)

or equivalently:

xe[n] =
∞∑

k=−∞
x[k]δ[n− kL] (36)

The second block in the up-sampler shown in Figure 4 is the
interpolator filter which is an ideal low pass filter with cut off frequency
π
L . H(z) in Figure 4 is the oversampled matched filter or pulse
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compression filter, given by:

H(z) =
∑

n

h[n]z−n (37)

where h[n] is given by Equation (11) with N replaced by L:

h[n] =
P−1∑
p=0

M∑
m=1

a∗p,m exp
(
−j2π [(LPM − 1) − n]p

LP

)

s [(LPM − 1) − n− (m− 1)LP ] ,
n = 0, 1, . . . , LPM − 1 (38)

and

s [n] =
{

1, 0 ≤ n ≤ LP − 1
0, else (39)

or

s [(LPM − 1) − n− (m− 1)LP ]

=
{

1, (M −m)LP ≤ n ≤ (M −m+ 1)LP − 1
0, else (40)

Since in Figure 4 the interpolator filter is an ideal low pass filter
which has approximately the same bandwidth as the pulse compression
filter H(z), so it can be omitted as shown in Figure 5. Thus,
oversampled matched filter H(z) can be used as the interpolator filter
in this figure too.

L ↑ H(z)
x[n] y[n]

ADC
x(t)

fs=P/tc

Figure 5. Using the oversampled matched filtering as interpolation
filter in Figure 4.

As it is well-known in multirate signal processing, we can
decompose H(z) as: [21]

H(z) =
∑

n

h[nL]z−nL + z−1
∑

n

h[nL+ 1]z−nL

+ . . .+ z−(L−1)
∑

n

h[nL+ L− 1]z−nL (41)
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This can compactly be rewritten as:

H(z) =
L−1∑
l=0

z−lEl(zL) (42)

where:

El(z) =
∑

n

el[n]z−n (43)

with:

el[n] = h[Ln+ l], 0 ≤ l ≤ L− 1 (44)

Equation (42) which is depicted in Figure 6 is called the polyphase
representation of the oversampled matched filterH(z) of Figure 4 (with
respect to L). In Figure 6, El(z), l = 0, . . . , L − 1 are called the
polyphase components.

L ↑E0(z)

L ↑E1(z)

L ↑EL-1(z)

Z-1

Z-1

x[n] y[n]w0[n]

wL-1[n]

w1[n]

Figure 6. Polyphase implementation of the oversampled matched
filter, H(z).

Using Equations (38) and (44), the l-th polyphase component of
H(z) is given by:

el[n] = h[nL+ l]

=
P−1∑
p=0

M∑
m=1

a∗p,m exp
(
−j2π [(LPM − 1) − (nL+ l)]p

LP

)

s [(LPM − 1) − (Ln+ l) − (m− 1)LP ] ,
n = 0, 1, . . . , PM − 1 (45)
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where:

s [(LPM − 1) − (Ln+ l) − (m− 1)LP ]
= s [(PM − 1) − n− (m− 1)P ]

=
{

1, (M −m)P ≤ n ≤ (M −m+ 1)P − 1
0, else (46)

Hence Equation (45) could be expressed as:

el[n] =
P−1∑
p=0

M∑
m=1

a∗p,m exp
(
−j2π [L− l − 1]p

LP

)

exp
(
−j2π [(PM−1)−n]p

P

)
s [(PM−1)−n−(m−1)P ]

n = 0, 1, . . . , PM − 1, l = 0, 1, . . . , L− 1 (47)

or

el[n] =
P−1∑
p=0

M∑
m=1

ã∗p,m exp
(
−j2π [(PM − 1) − n]p

P

)

s [(PM − 1) − n− (m− 1)P ]
n = 0, 1, . . . , PM − 1, l = 0, 1, . . . , L− 1 (48)

where:

ã∗p,m = a∗p,m exp
(
−j2π [L− l − 1]p

LP

)
= a∗p,m × αp,l (49)

This equation is exactly the same as Equation (11) for N = 1
where a∗p,m is replaced by ã∗p,m. Thus, el[n] can be implemented as
Equation (11) based on proposed method which has been introduced
in Section 4 and shown in Figure 2. The only difference is that
the subcarrier code words are different. Using the fact that ã∗p,m =
a∗p,m × αp,l, el[n] can be implemented as shown in Figure 7.

According to Figure 7 the proposed structure for MCPC pulse
compression is based on the implementation of polyphase components
which has the same structure with different coefficients at the last
stage. Therefore, to implement all of the polyphase components, we
can implement the first three blocks of Figure 7 only one time, and then
combine its outputs with different coefficients as shown in Figure 8. It
is obvious that this approach is more efficient. In the next section
we will show that based on this representation the computational
complexity is significantly reduced.
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Figure 8. Polyphase implementation of the oversampled MCPC pulse
compression filter.

7. COMPARING DIFFERENT METHODS FROM
COMPUTATIONAL COMPLEXITY POINT OF VIEW

Two substituting methods were given for the realization of the matched
filter to compress the MCPC signals in Sections 4 and 6. The first
method that is based on the Equation (34), has been proved in this
paper that is exactly equivalent to the matched filter, and the second
method or the structure of Figure 8 is the polyphase implementation of
the oversampled matched filter based on the first proposed structure.
One of the advantages of the above two suggested methods is the lower
computational complexity compared to the straight realization of the
matched filter. In this section, these approaches are compared to each
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other from the computational complexity point of view.
For this purpose assume that the MCPC signal contains P

subcarriers and each subcarrier is modulated by a code of length M.
In this case the number of required basic computational operations for
different methods can be calculated as follows:

7.1. Conventional Implementation of the Matched Filter

In this method, and with the assumption of using the sampling rate
fs = NP/tc, the matched filter is implemented as an FIR filter with
NPM complex coefficients. To calculate one output sample, NPM
complex multiplications and NPM -1 complex additions are required.
On the other hand, we know that for calculation of one complex
multiplication, 4 real multiplications and 2 real additions are needed,
and for the calculation of one complex addition, 2 real additions are
required. So the required total number of calculations is 4NPM real
multiplications and 4NPM -2 real additions. If the total number of
range cells is equal to NR, these calculations are also multiplied by
this number. On the average the required number of computational
operation for compressing signal in each range cells is equal to:

- Number of real multiplications: 4MNP.
- Number of real additions: 4MNP-2.

7.2. First Proposed Method of Compression (Direct
Implementation of DFT-Based Method)

If the total number of range cells is equal to NR, for calculation of
all of the output samples, NR DFT of length NP is needed (for the
cells with NP cells apart, only computation of one new DFT is needed
and other DFTs are the same).Also PNR compressing operations with
FIR filter of length M are required, and finally, NR additions of length
P are also needed. On the other hand if we use the fact that only
P out of NP DFT points need to be computed, then computational
complexity could be reduced via efficient algorithms such as Goertzel,
Boncelet, Prunning and transform decomposition algorithms [20, 22].
For example to compute P out of NP -DFT points, the Goertzel
algorithm requires 4P (NP + 1) real additions and 2P (NP + 2) real
multiplications (with no assumption on the length of the data) [20]. If
the modulated codes on each of the subcarriers are complex, then FIR
filters multiplications are complex and so M complex multiplications
and M − 1 complex additions are needed.

Thus by using Goertzel algorithm for DFT calculation, the average
number of computational operations for compressing signal in each of
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the range cells is equal to:

- Number of real multiplications: 2P (NP + 2) + 4MP .
- Number of real additions: 4P (NP + 1) + 4MP − 2.

Also if the modulated codes on the subcarriers are real, FIR filters
multiplications are real and the input signal is complex, so M complex
to real multiplications and M − 1 complex additions are required. In
this case the average number of computations for compressing signal
in each of the range cells is equal to:

- Number of real multiplications: 2P (NP + 2) + 2MP .
- Number of real additions: 4P (NP + 1) + 3MP − 2.

On the other hand if NP is a power of 2 then computation of NP -
point DFT can be calculated via a fast Fourier transform algorithm
(FFT). In this case there are different algorithms with different
computational complexity that are more efficient than Goertzel
algorithm [22]. For example, for computation of NP point FFT by
3-butterfly split-radix algorithm, 3NP × log2(NP ) − 3NP + 4 real
additions and NP × log2(NP ) − 3NP + 4 real multiplications are
required (to compute all NP outputs) [22]. Based on using this
algorithm for FFT calculation, the average number of computational
operations for compressing signal in each of the range cells in the case
of complex modulated codes is equal to:

- Number of real multiplications: NP log2(NP )− 3NP +4MP +4.
- Number of real additions: 3NP log2(NP ) − 3NP + 4MP + 2.

and in the case of real codes it is equal to:

- Number of real multiplications: NP log2(NP )− 3NP +2MP +4.
- Number of real additions: 3NP log2(NP ) − 3NP + 3MP + 2.

7.3. Second Proposed Method of Compression (Polyphase
Implementation of the DFT-based Method

For this method that uses the sampling rate fs = P/tc and implement
the oversampled matched filter using polyphase decomposition, if the
oversampling ratio is equal to L and the modulated codes on each of the
subcarriers are complex, the required average number of calculations
for compressing signal in each of the range cells is:

- Number of real multiplications: 2P (P + 2) + 4(M + 1)P .
- Number of real additions: 4P (P + 1) + (4M + 2)P − 2.
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In the above calculations extra adders following the expanders are
not counted, because the signal SK [n], K = 0, 1, . . . , P −1 which has
been shown in Figure 8 is obtained merely by interlacing the outputs
of these expanders consecutively. So this method requires only P extra
complex multiplications than the direct implementation of DFT based
method with N = 1 for compression of signal in each of the range cells.

In this method if the modulated codes on the subcarriers are real,
the number of calculations for compressing signal in each of the range
cells decreases to:

- Number of real multiplications: 2P (P + 2) + (2M + 4)P .
- Number of real additions: 4P (P + 1) + (3M + 2)P − 2.

Also in this method if P is a power of 2 then computation of
P -point DFT can be done by FFT algorithms such as split-radix
algorithm. If we use 3-butterfly split-radix algorithm, the average
number of computational operations for compressing signal in each
of the range cells in the case of complex modulated codes is equal to:

- Number of real multiplications: P log2(P )− 3P + 4(M + 1)P + 4.
- Number of real additions: 3P log2(P ) − 3P + (4M + 2)P + 2.

and in the case of real codes it is equal to:

- Number of real multiplications: P log2(P )− 3P + (2M + 4)P + 4.
- Number of real additions: 3P log2(P ) − 3P + (3M + 2)P + 2.

Tables 1 and 2 summarize the above calculations for computa-
tional complexity of different methods.

Table 1. Number of real multiplications required for compressing
signal in each of the range cells.

DFT Based Method
Polyphase implementation of the DFT based 

methodconventional

NP   2  k NP=2k NP   2k NP=2k

Complex 

codes
4MNP

MP

NPP

4

)2(2

+

+

44

3)(log2

++
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NPNPNP
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)1(4

)2(2
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++

4)14(

)(log2

++
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PM

PP

Real 

codes
4MNP
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NPP

2

)2(2 ++
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++

−
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)2(2
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++

4)12(
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+

PM

PP

≠       ≠       

Figures 9 and 10 show the ratio of computational complexity of
the conventional method to the first proposed method with sampling
frequency 4P/tc. In Figure 9 the computational load ratio of the
conventional implementation of the matched filter and the DFT based
method are shown versus P , for M = 50 (it is assumed that Goertzel
algorithm used for DFT calculation). As this figure shows when
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Table 2. Number of real additions required for compressing signal in
each of the range cells.

DFT Based Method
Polyphase implementation of the DFT based 

methodconventional

NP   2k NP=2k NP   2k NP=2k

Complex 

codes
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the codes on the subcarriers are complex, computational load of
the proposed method is lower (up to 3.7 times) than that of the
conventional method and if the codes are real, the number of required
additions are up to 4.75 times less and the number of multiplications
are up to 7.1 times less than that of the conventional method. Thus,
the DFT based method gives significant saving especially for real
modulated codes. Furthermore the complexity reduction is more than
that of depicted in Figure 9 when P is power of 2 and DFT can be
evaluated using FFT algorithms.
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Figure 9. Computational load ratio of conventional and DFT based
methods versus number of subcarriers (fs = 4P/tc, M = 50).

In Figure 10 the effect of code length on computational complexity
(the number of required multiplications) is studied for both methods
(conventional and DFT based) in the case of P = 5. This figure
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Figure 10. Computational load ratio of conventional and DFT based
methods versus code length (fs = 4P/tc, P = 5).
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Figure 11. Computational load ratio of conventional and FFT based
methods versus code length (fs = 4P/tc, P = 4).

shows that as the code length increases, the computational complexity
difference between the two methods increases. If the code length is
equal to 50, the computational complexity of the DFT based method is
5.5 times less for real codes and for the complex codes is approximately
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3.2 times less than that of the conventional method. Figure 11 is the
same as Figure 10 but for P = 4 where the FFT algorithms can be
used for calculation of DFT. As this figure show if the code length is
equal to 50, the computational complexity of the proposed method is
7.4 times less for real codes and for the complex codes is approximately
3.85 times less than that of the conventional method.

Figure 12 shows the ratio of computational load (total number
of additions and multiplications) of the first proposed method to the
second suggested one versus P , for M = 10. The sampling rate for
the first method or direct implementation of the DFT based method
is assumed to be 4P/tc and the oversampling factor for the second
method or polyphase implementation of the DFT based method is
L = 4. According to this figure increasing the number of subcarriers
results in increase of difference in computational load and for large
value of P the polyphase implementation of the DFT based method is
4 times more efficient than the direct implementation of DFT based
method.
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Figure 12. The ratio of computational load of the first proposed
method (fs = 4P/tc) to the second one (fs = P/tc) versus number of
subcarriers for M = 10.

8. CONCLUSIONS

In this paper a new approach for compressing the MCPC signals has
been proposed. The proposed method that is based on DFT and is
mathematically equivalent to the conventional method has two main
advantages in comparison with the conventional approach. The first
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advantage is the significant reduction in computational complexity that
the amount of reduction depends on signal parameters. The other
one is the possibility of phase and amplitude estimation for different
subcarriers frequencies that could be used for power management in
radar systems in various scenarios. This is a new concept in radar
systems and comprises our future research.
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