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ABSTRACT
Although there have been many compression schemes for reducing data effectively, most schemes do not 
consider the reordering of data. In the case of unordered data, if the users change the data order in a given 
data set, the compression ratio may be improved compared to the original compression before reordering 
data. However, in the case of ordered data, the users need a mapping table that maps the original position 
to the changed position in order to recover the original order. Therefore, reordering ordered data may be 
disadvantageous in terms of space. In this paper, the authors consider two compression schemes, run-length 
encoding and bucketing scheme as bases for showing the impact of data reordering in compression schemes. 
Also, the authors propose various optimization techniques related to data reordering. Finally, the authors 
show that the compression schemes with data reordering are better than the original compression schemes 
in terms of the compression ratio.
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INTRODUCTION

Currently, a large volume of data in various 
environments is generated. Such a large vol-
ume of data consumes valuable resources such 
as space, network bandwidth, and CPU. In 
order to save the resources, data compression 
schemes have been developed and applied in 
many applications.

However, they do not consider the effect of 
data reordering. If we reorganize data, the com-
pression ratio for the reorganized data may be 
improved compared to that for the original data. 
Some papers deal with data reordering problems 
in very limited environments (Apaydin, Tosun 

& Ferhatosmanoglu, 2008; Blandford & Blel-
loch, 2002; Johnson, Krishnan, & Chhugani, 
2004; Pinar, Tao & Ferhatosmanoglu, 2005). 
The work of Apaydin et al. (2008), Blandford 
and Blelloch (2002), Johnson et al. (2004), 
and Pinar et al (2005) assumes that the order 
of data does not have to be preserved, that is, 
the input data is unordered data. However, in 
general, the order of data should be preserved 
and has the important information. For example, 
time series data should be ordered by the time. 
If we change the order of the time series data, 
it will lose much information. Therefore, the 
approaches in Apaydin et al. (2008), Blandford 
and Blelloch (2002), Johnson et al. (2004), and 
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Pinar et al. (2005) cannot be applied to the 
ordered data such as time series data (Chen, 
Dong, Han, Wah, & Wan, 2002; Korn, Jagadish, 
& Faloutsos, 1997; Reeves, Liu, Nath, & Zhao, 
2009; Elmeleegy, Elmagarmid, Cecchet, Aref, 
& Zwaenepoel, 2009).

Consider the run-length encoding with the 
ordered data D = {1, 1, 1, 3, 3, 1, 1, 4, 4, 4}. 
The run-length encoding is one of the widely 
used lossless compression schemes. It replaces 
repeated values with <value, count>, where 
count is the number of repeated values. We 
can represent D by the run-length encoding as 
follows. Note that RLE(D) is the compressed 
data for D using the run-length encoding. See 
Table 1 for the detailed notational convention.

RLE(D) = {<1,3>,<3,2>,<1,2>,4,3>}, 
where in the pair <a,b>, a is value and b is 

count. 

We can reduce the number of elements in 
RLE(D) by reordering elements in D. Consider 
D′ = {1, 1, 1, 1, 1, 3, 3, 4, 4, 4} which is the data 
after reordering elements in D. Then, RLE(D′) 

= {<1,5>,<3,2>,<4,3>}. Since |RLE(D′)| = 3 
is less than |RLE(D)| = 4, we can improve the 
compression ratio by reorganizing data if the 
data is unordered data. However, if the data is 
ordered data, we should keep the following map-
ping table (presented in Box 1) to reconstruct 
the original data from RLE(D′),

The space benefit by data reordering may 
be less than the space overhead for storing the 
mapping table. That is, the compression ratio by 
the compression scheme with data reordering 
may be worse than that by the original com-
pression scheme without data reordering. In 
this case, data reordering is useless. Therefore, 
we should carefully consider how to store the 
mapping table effectively in order to apply data 
reordering techniques for ordered data.

In this paper, we first investigate general 
principles to improve compression schemes 
by data reordering. We do not keep the total 
mapping table since the size of the mapping 
table is too big. Instead, we keep the movement 
information for the portion of a whole data 
set. The movement information is represented 
by ≪start, end, newStart≫. It means that the 

Table 1. Notational convention 

Notation Meaning

RLE(D) Compressed data for D
using the run-length encoding

BUCKET(D, ε) Compressed data for D using the bucketing
scheme with an error bound ε

di the i-th element in data set D

di,j {di, di+1, · · ·, dj−1, dj}, where i≤ j

<X> token X in the run-length encoding or
the bucketing scheme

≪X≫ movement information X

Box 1.
                    Original position:  1   2   3   4   5   6   7   8   9  10 
                                       ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓ 
                    Changed position:   1   2   3   6   7   4   5   8   9  10
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portion of data between start position and end 
position is moved to newStart position. In the 
above ordered data D, the movement informa-
tion is represented by ≪6,7,4≫ (i.e., <start 
position, end position, new start position>) 
instead of the total mapping table. And, we 
reorganize data when the space for storing the 
list of movement information is less than the 
space benefit by data reordering. Based on 
the principles, we consider two compression 
schemes, run-length encoding (Salomon, 2004; 
Wikipedia, 2012; Abadi, Madden, & Ferreira, 
2006) and bucketing scheme (Buragohain, 
Shrivastava, & Suri, 2007; Gandhi, Nath, Suri, 
& Lie, 2009), which have similar properties. The 
compressed data form in the bucketing scheme 
is the same as that in the run-length encoding.

Although storing the list of the movement 
information ≪start, end, newStart≫ needs less 
space than storing the total mapping table, it 
still needs much space. Therefore, we propose 
a method to represent the movement informa-
tion compactly in the run-length encoding and 
the bucketing scheme. Based on the compact 
movement representation, we devise an effec-
tive run-length encoding and bucketing scheme 
with data reordering. Also, by analyzing the 
characteristics of the run-length encoding and 
the bucketing scheme, we propose various op-
timization techniques related to data reordering.

Our contributions are as follows:

• General principles to improve a com-
pression scheme by data reordering Al-
though previous compression schemes can 
reduce a large volume of data effectively, 
there are still new approaches to reduce 
data further. If we reorganize data, the 
compression ratio may be improved. Based 
on this observation, we establish general 
principles to improve the compression 
ratio for ordered data by data reordering.

• Run-length encoding with data reor-
dering We propose run-length encoding 
and decoding algorithms with data re-
ordering. While data compressed by the 
original run-length encoding is composed 
of the list of <value, count>, that by the  

run-length encoding with data reordering 
has additionally a list of compact move-
ment information.

• Bucketing scheme with data reorder-
ing We propose encoding and decoding 
algorithms for the bucketing scheme with 
data reordering which are similar to run-
length encoding and decoding algorithms 
with data reordering.

• Various optimizations for data reorder-
ing in the run-length encoding and the 
bucketing scheme Although the run-length 
encoding and bucketing scheme with data 
reordering can improve the compression 
ratio compared to the original compres-
sion schemes, we can reduce data more 
effectively by two optimization tech-
niques, Movement Dropping and Neighbor 
Merging.

• Experimentation to evaluate our pro-
posed approaches Through an experimen-
tal study, we show that the compression 
ratio of the compression schemes with 
data reordering is considerably improved 
compared to that of the original compres-
sion schemes.

Related Work

Data compression schemes have been developed 
in a wide range of areas to reduce the amount 
of space, transmission bandwidth, data mining 
time, or query processing time. In the case of 
multimedia data, time series data and graph 
data, the volume of data is too huge and data 
has similar patterns. Therefore, we can reduce 
the volume of data using compression schemes 
(DeVore, Jawerth, & Lucier, 1992; Elmeleegy, 
Elmagarmid, Cecchet, Aref, & Zwaenepoel, 
2009; Pennebaker & Mitchell, 1993; Rao & 
Yip, 1990; Reeves, Liu, Nath, & Zhao, 2009). 
In networking systems, to reduce the transmis-
sion bandwidth, various compression schemes 
have been used (Chen, Li, & Mohapatra, 2004; 
Degermark, Engan, Nordgren, & Pink, 1996; 
Deligiannakis, Kotidis, & Roussopoulos, 2004; 
Deligiannakis, Kotidis, & Roussopoulos, 2007). 
In the data mining area, the compression or 



Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

4   Journal of Database Management, 25(1), 1-28, January-March 2014

synopsis techniques have been applied to 
improve the efficiency of mining (Zhang, Liu, 
Ling, Bruckner, & Tjoa, 2006; Hai, Lenco, 
Poncelet, & Teisseire, 2013). Also, in the 
database literature, in order to improve the ex-
ecution time of query processing, compression 
schemes have been applied (Abadi, Madden, 
& Ferreira, 2006; Graefe & Shapiro, 1991; 
Goldstein, Ramakrishnan, & Shaft, 1998; Iyer 
& Wilhite, 1994; Johnson, 1999; Ray, Haritsa, 
& Seshadri, 1995). Although there are many ef-
fective compression schemes as data reduction 
tools, they may have a further chance to reduce 
data by data reordering techniques.

Some papers deal with data ordering prob-
lems in compression schemes. Blandford and 
Blelloch (2002) consider document reordering 
problems in the inverted index. Since there are 
too many documents in the web environment, 
the size of the inverted index is very large. 
Therefore, we can apply the difference cod-
ing to the list of document numbers in order 
to reduce the size of the index. If we permute 
document numbers considering the difference 
coding, we can improve the compression ratio 
of the difference coding. Therefore, Blandford 
et al. use a hierarchical clustering technique for 
numbering documents effectively. They first 
construct a similarity graph for documents us-
ing consine measures and apply the hierarchical 
clustering to the graph. Then, they order clusters 
hierarchically.

Ouyang et al. (2002) propose a framework 
for compressing a collection of files based on 
the delta compression. Since the delta com-
pression is applied to a collection of files, a 
sequence for performing the delta-compression 
affects the compression ratio. They transform 
the problem of finding an optimal sequence to 
that of finding the maximum branching in the 
graph theory. However, it needs a large amount 
of the computation time to construct a graph 
and find the maximum branching. Therefore, to 
reduce the computation time, Ouyang et al. use 
the techniques in document clustering.

Johnson et al. (2004) deal with the boolean 
matrix reordering problem. In many environ-
ments, large boolean matrices are generated. To 

store a large boolean matrix effectively, we can 
use the run-length encoding. If we reorganize 
columns in the matrix, we can reduce the num-
ber of runs. An example (Johnson, Krishnan, 
& Chhugani, 2004) for reordering the matrix 
is shown in Figure 1.

If we reorder columns like Figure 1 (b), 
we can reduce the number of runs compared 
to that of the original matrix in Figure 1 (a). 
However, the matrix reordering problem is NP-
hard. Therefore, Johnson et al. (2004) transform 
the matrix reordering problem to the traveling 
salesman problem in the Hamming space. To 
solve the large traveling salesman problem, 
they propose instancepartitioning and sampling 
as heuristics.

Pinar et al. (2005) solve the problem 
similar to the work of John et al. (2004). They 
consider the tuple reordering problem in the 
bitmap table which is used for various scientific 
applications. They propose gray code ordering 
as heuristics for tuple reordering. The gray code 
ordering arranges numbers with respect to the 
gray code in which adjacent numbers differ at 
only one-bit. In addition, Apaydin and Tosun 
(2008) theoretically analyze two data reordering 
techniques, lexicographical ordering and gray 
code ordering, in the context of bitmap indexes.

However, the approaches in Apaydin and 
Tosun (2008), Blandford and Blelloch (2002), 
Johnson et al. (2004), and Pinar et al. (2005) 
assume the environment that the input data 
is unordered. Thus, we do not need to store a 
mapping information in such an environment. 
Therefore, we cannot apply them to ordered 
data. In this paper, we consider compression 
schemes with data reordering for ordered data.

As a string transformation technique for 
compression, Burrows-Wheeler Transform 
(BWT) (Burrows & Wheeler, 1994) is a well-
known compression scheme. BWT transforms 
a string into the string which is easy to com-
press. The transformed string by BWT may 
contain many repeated alphabets. Therefore, 
the transformed string is more compressible 
than the original string. A string transformed 
by BWT should be compressed by another 
compression scheme. Therefore, our approach 
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is orthogonal to BWT. We can use our approach 
after applying BWT.

Preliminaries

In this section, we explain the run-length 
encoding (Abadi, Madden, & Ferreira, 2006; 
Salomon, 2004; Wikipedia, 2012) and the 
bucketing scheme (Buragohain, Shrivastava, & 
Suri, 2007; Gandhi, Nath, Suri, & Lie, 2009) as 
preliminaries. The notational convention used 
in this paper is shown in Table 1.

Run-Length Encoding

The run-length encoding as one of lossless 
compressions replaces repeated values with 
<value, count>, where count is the number of 
repeated values. In the case of data sets that have 
many repeated values, the run-length encoding 
can reduce space significantly. Although there 
are run-length encoding algorithms in many 
versions, we use the run-length encoding al-
gorithm in Figure 2.

In this paper, we assume that the size of 
value and the size of count are fixed. Thus, in 
Statement 7, we add the condition count == 
2RUN LENGTH SIZE - 1 since if the number of repeated 
values is more than the possible maximum 
number for count, the allocated space for count 
is exceeded. Since the algorithm in Figure 2 is 
trivial, we skip the detailed explanation.

Example 1: Let D = {1, 1, 1, 1, 1, 2, 2, 3, 3, 1, 
1, 1} and RUN_LENGTH_SIZE = 2. By 
the algorithm of Figure 2, D is encoded 
into RLE(D) = {<1, 3>,<1, 2>,<2, 2>,<3, 
2>,<1, 3>}.

Bucketing Scheme

The bucketing scheme (Buragohain, Shrivas-
tava, & Suri, 2007; Gandhi, Nath, Suri, & Lie, 
2009) as one of lossy compressions is based on 
piece-wise constant approximations. It repre-
sents data by piece-wise constant functions. In 
the bucketing scheme, we make a bucket for a 
portion of data D = {d1, d2, …, dn} which has 

Figure 1. Example for the boolean matrix reordering (Johnson et al., 2004)
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the minimum value (minVal), the maximum 
value (maxVal) and the length (count) of the 
bucket. We add data di to one bucket if the 
difference between minVal and maxVal in the 
bucket is less than or equal to 2ε, where ε is 
the given error bound. If the difference is more 
than 2ε, we make a new bucket. We approximate 
elements in the bucket by the average value 
(=(minVal+maxVal)/2). Therefore, we can 
guarantee maxi |di - ˆdij| <= ε, where ˆdi is the 
approximate value for di.

The algorithm for the bucketing scheme 
is shown in Figure 3. In Statement 1-4, we 
initialize the bucket. Then, in Statement 9-16, 
if the difference between the minimum value 
and the maximum value is more than 2ε, we 
make the token with the bucket by computing 

the average value, append the token to the result 
list and create a new bucket. Note that in the 
bucketing scheme, the form of compressed data 
is the same as that of the run-length encoding. 
Otherwise, we add the data to the bucket and 
update the variables of the bucket in State-
ment 17-22. Finally, we make the token for 
the remaining elements in Statement 24. Like 
the algorithm of Figure 2, we add the condition 
count == 2BUCKET LENGTH SIZE - 1 in Statement 10.

Example 2: Let D = {1, 1.2, 1.4, 1.3, 1.1, 2.4, 
2.6, 4}, BUCKET LENGTH SIZE = 2 
and ε = 0.5. By the algorithm of Figure 
3, D is encoded into BUCKET(D, 0.5) = 
{<1.2,3>,<1.2,2>,<2.5,2>,<4, 1>}.

Figure 2. Run-length encoding algorithm
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Motivation

In the case of unordered data, we can generally 
improve compression schemes by reorganizing 
data. However, reordering ordered data may be 
disadvantageous. This is because we need much 
space to store a mapping table that maps the 
original position to the changed position. In the 

case of ordered data, if we can devise a method 
to store or encode the mapping table effectively 
so that the space benefit by data reordering is 
more than the space overhead for storing the 
mapping table, it is beneficial to reorganize data 
in order to reduce the amount of data further.

Motivated by this point, we consider 
compression schemes with data reordering for 

Figure 3. Bucketing scheme algorithm
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ordered data. Since we need much space to keep 
the mapping table, we keep a list of movement 
information instead of the mapping table. The 
movement information consists of ≪start, 
end, newStart≫, where start and end are the 
start and end position of data to be moved, and 
newStart is the position to be inserted. Figure 4 
shows how the data movement is represented 
by ≪start, end, newStart≫. If we use the move-
ment information to reorganize data, we do not 
have to keep the mapping table with a big size.

Based on the movement information, we 
make general principles to improve compression 
schemes by data reordering as follows:

• We do not keep a mapping table. Instead, 
we store a list of movement information 
with the form ≪start, end, newStart≫. 
Therefore, we reduce the space cost for 
reorganizing data.

• The space overhead for storing a list of 
movement information should be less 
than the space benefit generated from data 
reordering. If the space benefit is small 
compared to the space overhead for the 
list of movement information, we should 
not reorganize data.

As bases for showing the impact of data re-
ordering, we choose two compression schemes, 
run-length encoding and bucketing scheme, 
since we can exploit data reordering techniques 
well in the two compression schemes. Through 

the proposed run-length encoding and bucket-
ing scheme with data reordering, we show the 
possibility to improve compression schemes 
by data reordering.

Run-Length Encoding 
With Data Reordering

In this section, we consider the run-length 
encoding with data reordering. By merging the 
run-length encoding and data reordering, we 
propose a more effective run-length encoding 
with data reordering.

According to the general principles, we 
move the portion of data in order to improve 
the compression ratio of the run-length encod-
ing. For the sake of explanation, we explain our 
technique with the ordered data D = {1, 1, 2, 
2, 2, 3, 3, 2, 2, 4, 4, 5, 5, 2, 5, 5, 5}. In the data 
D, we can move d8,9 = {2, 2} to the position 
between d5 and d6. Now, we should check if we 
can reduce the space through such a movement. 
In this case, we can decrease the space for one 
token corresponding to d8,9 = {2, 2} since d8,9 
= {2, 2} is integrated with d3,5 = {2, 2, 2}, and 
{d3, d4, d5, d8, d9} composes one token <2,5>. 
On the other hand, we need the space for the 
movement information ≪8,9,6≫.

Therefore, if the size of the movement 
information is less than the size of one token 
in the run-length encoding, we can improve the 
run-length encoding by reorganizing data. For 
example, if the size of the value is 8 bytes, the 

Figure 4. Movement information
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size of the run length is 2 bytes and the size of 
the position is 2 bytes, we can get the space 
benefit 4 bytes = (8+2)-2*3. However, if the 
size of the value is not much bigger than the 
size of the position, we cannot get the space 
benefit by reorganizing data.

By analyzing the characteristics of the 
run-length encoding, we propose an effective 
representation for the movement information 
in the run-length encoding. Since in the run-
length encoding, continually repeated values 
are represented by only one token, we move 
data by the unit of one token. Therefore, we 
describe data reordering in the encoded data 
using the original run-length encoding.

In the run-length encoding, one token is 
composed of <value, count>. If we utilize count 
(i.e., run length) and impose some constraints 
for the movement, we can represent the move-
ment information very effectively by ≪start, 
newStart≫. Consider the following example.

D = {1, 1, 2, 2, 2, 3, 3, 2, 2, 4, 4, 5, 5, 2, 5, 5, 
5} 
R = RLE(D) = {<1,2>,<2,3>,<3,2>,<2,2>,<4
,2>,<5,2>,<2,1>,<5,3>} 

We can move token r4=<2,2> in RLE(D) 
to the position after r2 =<2,3> with the compact 
movement representation ≪8,6≫. Then, the 
above data D is transformed as follows:

D′ = {1, 1, 2, 2, 2, 2,2, 3, 3, 4, 4, 5, 5, 2, 5, 5, 
5} 
R′ = RLE(D′) = {<1,2>,<2,5>,<3,2>,<4,2>,<
5,2>,<2,1>,<5,3>} 

The problem is that how we can decode 
R′ = RLE(D′) with the compact movement 
representation ≪8,6≫. In the movement rep-
resentation ≪8,6≫, the new start position is 
6. By accumulating count of the token in R′ 
sequentially, we can know that the new start 
position newStart is contained in the token 
r′2=<2,5> since start position for r2 < newStart 
position < end position for r2 (3 < 6 < 7). If 
we assume that token ri=<vi, ci> is moved and 

integrated with rj=<vj, cj> such that 1) vi = vj, 
2) rj is a preceding token (j < i), and 3) ri is 
integrated with rj at the back (i.e., newStart = 
the end position of rj +1) as shown in Figure 
5, we can know that r′2 was made by merging 
two tokens in R. Therefore, we can separate r′2 
into original two tokens, <2,3> and <2,2> by 
cutting off r′2 at the position between newStart-1 
and newStart.

Lemma 1. Let R = {<v1, c1>, <v2, c2>, · · ·, <vn, 
cn>} be the encoded data by the original 
run-length encoding. If vi = vj(j < i), we 
can move token <vi, ci> to the position 
after token <vj,cj>. Let RLE(D′) = {<v′1, 
c′1>,<v′2, c′2>, · · ·, <v′n−1, c′n−1>} be the 
data after <vi, ci> is merged with <vj, cj>. 
Let start = c

aa

i

=

−

∑ +
1

1
1  and newStart= 

c
aa

j

=∑ +
1

1 . Then,

c c newStart
i aa

k

= − +
=∑ '
1

1  and 

c c c
j j i
= −' , if 

c newStart c
aa

k

aa

k

' '+ < ≤
=

−

=∑ ∑1
1

1

1
 (Note 

that k=j). 

Proof . We can derive the formula intuitively 
in Figure 5.

From Lemma 1, we can recover the changed 
data by reordering of data using R′ and the 
movement information. Generally, since the size 
of the position × 2 is less than the size of one 
token, we can improve the compression ratio 
of the run-length encoding by data reordering. 
Until now, we considered only one movement 
information. In the case that there are many 
movements, if we keep track of movement 
information, we can decode data by applying 
Lemma 1 sequentially. We can move the token r′6 
to the position after r′2 in R′ with the movement 
≪14,8≫. Then, D′ is transformed as follows:

D′′ = {1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 5, 
5, 5} 
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R′′ = RLE(D′) = {<1,2>,<2,6>,<3,2>,<4,2>,<
5,2>,<5,3>} 

From R′′ and the movement list ≪8,6≫, 
≪14,8≫, we can reconstruct R. To reconstruct 
R, we traverse the movement list reversely. The 
decoding process for R′′ is shown in Figure 6. 
We first perform decoding with the movement 
information ≪14,8≫. Using Lemma 1, we 
reconstruct D′. Then, we perform decoding 
with the movement information ≪8,6≫ in 
the same way.

The run-length encoding algorithm with 
data reordering is shown in Figure 7. In the 
algorithm of Figure 7, we first encode data using 
the original run-length encoding in Statement 
1. tokenList consists of the list of tokens that 

have <value, start, count> instead of <value, 
count>. In the original run-length encoding, 
we keep only <value, count> for each token, 
but we revise the run-length encoding to keep 
<value, start, count>. Then, we read tokens 
(currToken) sequentially in Statement 6. In 
the first loop, currToken is set to the second 
token in tokenList. If currToken can be merged 
with prevToken (Statement 14), we store the 
movement information in the form of ≪start, 
newStart≫ (Statement 16) and merge currToken 
with prevToken (Statement 17). After that, we 
set flag to TRUE in order to update the start posi-
tion of the following tokens (Statement 18). In 
Statement 13, we update the start position since 
the current token is moved. In Statement 21-22, 
if the current token is merged with the previous 

Figure 5. Movement information
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token, we remove the current token. Finally, we 
store <value, count> for each token in tokenList 
and the movement list in Statement 24.

The run-length decoding algorithm with 
data reordering is shown in Figure 8. The decod-
ing algorithm is based on Lemma 1. First, we 
reverse the order in the movement list (moveL-
ist) in Statement 1. Then, we read the current 
movement (currMove) sequentially from the 
movement list. In Statement 6 and 7, we find 
the merged token (mToken) corresponding to 
the current movement (currMove) and divide 
the merged token (mToken) into the left token 
(leftToken) and the right token (rightToken) 

using Lemma 1. leftToken and rightToken are 
rj and ri in Lemma 1, respectively. Note that

( . . ) .

'

mToken start mToken count currMove newStart

c
aa

k

+ −

=
=

−

∑ ( 1

1
++ + − =

− +
=∑

1

1
1

c currMove newStart

c currMove newStart St

k

aa

k

' ) .

' . ( aatement7)

 

Finally, we move the right token (rightTo-
ken) separated from the merged token (mToken) 
to the original position, and change the start 
positions of tokens following rightToken due 
to the removal of rightToken.

Figure 6. Decoding process for R′′
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Figure 7. Run-length encoding algorithm with data reordering



Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Database Management, 25(1), 1-28, January-March 2014   13

Optimization and Partitioning

Observe R′ and R′′ carefully. By moving token 
r′6=<2,1>, r′5=<5,2> and r′7=<5,3> become 
adjacent in R′′. When we merge r′′5=<5,2> and 
r′′6=<5,3>, we store the movement information 
≪15,15≫. In this case, we can drop the move-
ment information. We call this optimization 

Movement Dropping. In Movement Dropping, 
when two tokens become adjacent by moving 
tokens between the two tokens, we merge the 
two tokens and drop the movement information 
≪start, newStart≫, where start=newStart. By 
merging two tokens, r′′5 and r′′6, in R′′, the data 
D′′ is transformed as follows:

Figure 8. Run-length decoding algorithm with data reordering



Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

14   Journal of Database Management, 25(1), 1-28, January-March 2014

D′′′ = D′′ = {1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 5, 
5, 5, 5, 5} 
R′′′ = RLE(D′′) = 
{<1,2>,<2,6>,<3,2>,<4,2>,<5,5>} 

Consider the decoding process with R′′′ and 
two movement information ≪8,6≫and≪14,8≫. 
We do not have the movement information 
for dividing r′′′5 =<5,5> into r′′5=<5,2> and 
r′′6=<5,3>. We use a similar idea to dropping 
of end information in the movement repre-
sentation ≪start, end, newStart≫. Figure 9 
shows the decoding process with R′′′ and the 
movement information ≪14,8≫. With the new 
start position 8, we divide the merged tokens 
into two tokens <2,5> and <2,1> as shown in 
State 1 of Figure 9. Then, we insert <2,1> to 
the proper position with the start position 14. 
However, the 14-th position is in token <5,4>. 
If we do not drop the movement information 
for adjacent tokens, the start position should 
be the start position of some token. However, 
since we drop the movement information for 
adjacent tokens, if the start position is in the 

token, we divide the token into two tokens. 
Thus, we divide token <5,4> into token <5,2> 
and token <5,2> as shown in State 2 of Figure 
9. Then, we insert token <2,1> between token 
<5,2> and <5,2> in State 3 of Figure 9.

To apply Movement Dropping, we revise 
the encoding algorithm of Figure 7 and the de-
coding algorithm of Figure 8. Figure 10 shows 
the run-length encoding with data reordering 
using Movement Dropping. In Statement 6-7, 
we check whether the adjacent two tokens (i.e., 
leftAdjToken, currToken) are merged. If so, we 
can merge adjacent two tokens and do not store 
the movement information (Statement 9-10). 
Otherwise, we perform the same process in the 
encoding algorithm of Figure 7.

Figure 11 shows the run-length decoding 
algorithm with data reordering using Movement 
Dropping. In Statement 1, we find and divide 
the merged token corresponding to currMove.
newStart in the same way as the decoding 
algorithm of Figure 8. Then, with currMove.
start, we find and divide the merged token by 
Movement Dropping in Statement 2-4. We 

Figure 9. Decoding process for R′′′
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traverse the token list (tokenList) in order to 
find tToken which satisfies condition (A or B) 
in Statement 2. If tToken satisfies condition 
A, it means that tToken is the merged token 
and the movement dropping occurred. If there 
is no token which satisfies condition A, there 
should be the token which satisfies condition 
B. In Statement 3, if condition A is satisfied, 
we divide tToken into two tokens, Token1 and 
Token3. Then, we insert rightToken (Token2) 
between Token1 and Token3. Otherwise, we 
insert rightToken after tToken in Statement 4.

The proposed run-length encoding with 
data reordering can improve the compression 
ratio compared to the original run-length en-
coding. However, if the number of elements 
is large, the size of the position will be large. 
Then, we cannot get the space benefit by data 
reordering. In this case, we can partition ordered 
data D into segments, seg1, seg2, and segk, with 
the same size. Then, we compress each segment 
using the above run-length encoding with data 
reordering. Finally, we store compressed data 
for each segment with the format of Figure 12. 

Figure 10. Run-length encoding algorithm with data reordering using Movement Dropping
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Figure 11. Run-length decoding algorithm with data reordering using movement dropping

Figure 12. Format to store segments
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Since we partition data, we record the number 
of tokens for segi and the number of movement 
information for segi to distinguish segments. 
The header information includes the size of the 
value, the size of the count, and the size of the 
position. Some applications may need real-time 
processing. To utilize our approach in the ap-
plications, we can also apply the above partition 
concept. If a small number of data is collected 
at the application, we apply the data reordering 
techniques to the collected data immediately. 
Therefore, we can reduce the compression time.

Bucketing Scheme with 
Data Reordering

In this section, we consider the bucketing 
scheme with data reordering. The basic concept 
in the bucketing scheme with data reordering is 
similar to that in the run-length encoding with 
data reordering. We explain our technique with 
the following example. Note that we assume 
that a token in the bucketing scheme with data 
reordering is composed of <minVal, maxVal, 
count> and | means the delimiter between 
buckets for easy understanding. At the end 
of the encoding algorithm for the bucketing 
scheme with data reordering, we store token 
<(minVal+maxVal)/2, count>.

D = {1.3, 1.45|2.0, 2.2|1.45, 1.35, 1.4|1.6, 
1.7, 1.8|1.4, 1.5|1.7, 1.8} 
B = BUCKET(D, 0.1) = 
{<1.3,1.45,2>,<2.0,2.2,2>, 
<1.35,1.45,3>,<1.6,1.8,3>,<1.4,1.5,2>,<1.7,1
.8,2>} 

In the run-length encoding with data reor-
dering, if values in two tokens are the same, the 
two tokens are merged. However, the condition 
for merging two buckets in the bucketing scheme 
with data reordering is different from that in 
the run-length encoding with data reordering. 
In the bucketing scheme with data reordering, 
we merge two buckets, bi and bj, if they satisfy 
the following condition instead of the condi-
tion vi = vj .

M − m ≤ 2ε, 
where m = min(bi.minVal, bj.minVal), 
and M = max(bi.maxVal, bj.maxVal) 

That is, if the difference between the 
minimum value and the maximum value in 
the merged bucket is less than or equal to 
2ε, we can merge two buckets guaranteeing 
maxi |di− ˆdi| ≤ ε, where d′i is the approximate 
value for di. For example, in B, we can merge 
b1=<1.3,1.45,2> and b3=<1.35,1.45,3> with the 
movement information ≪5,3≫. Then, the data 
D is transformed as follows:

D′ = {1.3, 1.45, 1.45, 1.35, 1.4|2.0, 2.2|1.6, 
1.7, 1.8|1.4, 1.5|1.7, 1.8} 
B′ = BUCKET(D′, 0.1) = {<1.3,1.45,5>,<2.0,
2.2,2>,<1.6,1.8,3>,<1.4,1.5,2>,<1.7,1.8,2>} 

Also, we can merge b′1=<1.3,1.45,5> and 
b′4=<1.4,1.5,2> with the movement information 
≪11,6≫ as follows:

D′′ = {1.3, 1.45, 1.45, 1.35, 1.4, 1.4, 1.5|2.0, 
2.2|1.6, 1.7, 1.8|1.7, 1.8} 
B′′ = BUCKET(D′′, 0.1) = {<1.3,1.5,7>,<2.0,
2.2,2>,<1.6,1.8,3>,<1.7,1.8,2> } 

Since the encoding and decoding algo-
rithms for the bucketing algorithm with data 
reordering are similar to those of the run-length 
encoding and decoding algorithms with data 
reordering, we do not mention them in detail.

Optimization and Partitioning

In the bucketing scheme with data reordering, we 
can also use Movement Dropping. Consider B′ 
and B′′. By moving the bucket b′4=<1.4,1.5,2>, 
b′3=<1.6,1.8,3> and b′5=<1.7,1.8,2> become 
adjacent. Therefore, without storing the move-
ment≪13,13≫, we merge b′′3=<1.6,1.8,3> and 
b′′4=<1.7,1.8,2> as follows:

D′′′ = {1.3, 1.45, 1.45, 1.35, 1.4, 1.4, 1.5|2.0, 
2.2|1.6, 1.7, 1.8, 1.7, 1.8} 
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B′′′ = BUCKET(D′′, 0.1) = {<1.3,1.5,7>,<2.0
,2.2,2>,<1.6,1.8,5>} 

Finally, we store the following compressed 
data.

Token List:{<1.4,7>,<2.1,2>,<1.7,5>} 

Movement List:{≪ 5, 3 ≫,≪ 11, 6 ≫} 

The decoding process for the above com-
pressed data is shown in Figure 13. We divide the 
merged token <1.4,7> into two tokens, <1.4,5> 
and <1.4,2> using newStart 6 (State 1). Then, 
we find and divide the merged token with start 

Figure 13. Example for Bucketing Scheme with data reordering
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11 (State 2). We insert token <1.4,2> between 
token <1.7,3> and token <1.7,2> (State 3). Next, 
we find the merged token with newStart 3 (State 
4). Then, we find the position to be inserted. In 
this case, Movement Dropping does not occur. 
Finally, we insert token <1.4,3> (State 5).

In the bucketing scheme with data reorder-
ing, we devise another optimization technique, 
Neighbor Merging, as an improved version of 
Movement Dropping. Consider the following 
example.

D = {1.3, 1.45|1, 1.1, 1.25|1.35, 1.3, 1.2, 
1.3|1.5, 1.6} 
B = BUCKET(D, 0.1) = {<1.3,1.45,2>,<1,1.

25,3>,<1.2,1.35,4>,<1.5,1.6,2>} 

Observe d6,9 = {1.35, 1.3, 1.2, 1.3} cor-
responding to b3 carefully. {1.2, 1.3} which is 
the right portion of d6,9 can be merged with b2, 
and {1.35, 1.3} which is the left portion of d6,9 

can be merged with b1. If we move d6,7 = {1.35, 
1.3}, d8,9 = {1.2, 1.3} will become adjacent to 
b2 so we will be able to drop the movement 
information. Although b3 cannot be merged 
with any other bucket, we can merge b3 by 
dividing it into two parts, {1.35, 1.3} and {1.2, 
1.3}. We move {1.35, 1.3} with the movement 
information ≪6,3≫ as follows:

D′ = {1.3, 1.45, 1.35, 1.3, |1, 1.1, 1.25, 1.2, 
1.3|1.5, 1.6} 
B′ = BUCK(D′, 0.1) = {<1.3,1.45,4>,<1,1.3,

5>,<1.5,1.6,2>} 

There are Left Neighbor Merging and Right 
Neighbor Merging in Neighbor Merging as 
shown in Figure 14. If the current bucket can-
not be merged with any other previous buckets, 
we try to do Left Neighbor or Right Neighbor 
Merging. In Left Neighbor Merging, RIGHT 
is the maximum right portion of the current 

Figure 14. Neighbor merging
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bucket which is merged with Left Neighbor 
and LEFT is the portion of the current bucket 
except RIGHT. Therefore, if we move LEFT, 
RIGHT can be merged with Left Neighbor. We 
find a preceding bucket which will be merged 
with LEFT. If there is such the preceding bucket, 
we merge the preceding bucket with LEFT, and 
Left Neighbor with RIGHT. In Right Neighbor 
Merging, LEFT is the maximum left portion 
of the current bucket which is merged with 
Right Neighbor and RIGHT is the portion of 
the current bucket except LEFT. Similarly, we 
merge the preceding bucket with RIGHT, and 
LEFT with Right Neighbor. The decoding is 
performed like Movement Dropping. Note that 
each bucket should keep elements which are 
contained in the bucket to apply Left Neighbor 
or Right Neighbor Merging, while the original 
bucketing scheme keeps only minVal, maxVal, 
and Count for the bucket.

If the number of elements is large, we 
partition data into various segments like the 
run-length encoding with data reordering.

Due to lack of space, the time complexity 
analysis is described in the supplemental docu-
ment (http://islab.kaist.ac.kr/JDM_Reorder-
ing_Supplemental_Document.pdf).

Experiments

In this section, we show the effectiveness of 
compression schemes with data reordering. 
By comparing our compression schemes with 
the original compression schemes, we present 
that our approaches are better than the original 
compression schemes in terms of the compres-
sion ratio.

Experimental Environment

To evaluate the run-length encoding with data 
reordering and the bucketing scheme with data 
reordering, we use 10000 temperature readings 
and 10000 wind speed readings which are 
collected at one place every minute and are 
rounded off to the first decimal place (DataSet, 
2012). Both readings contain repeated values. 
However, the temperature readings show more 
regular patterns than the wind speed readings. 

The detailed data set description is shown in the 
supplemental document (http://islab.kaist.ac.kr/
JDM_Reordering_Supplemental_Document.
pdf). We assume that the size of the value is 
4 bytes. We determine the optimal size of the 
count and the optimal size of the position with 
1000 sample data.

Experimental Results

We show experimental results for the run-length 
encoding with data reordering in Section 7.2.1 
and those for the bucketing scheme with data 
reordering in Section 7.2.2.

Run-Length Encoding 
with Data Reordering

Figure 15 shows the amount of space accord-
ing to the number of data in temperature read-
ings. Varying the number of data from 1000 
to 10000, we conduct experiments. In graphs, 
we denote the original run-length encoding 
by RLE, the proposed run-length encoding 
with data reordering by RLE REORDER, and 
the proposed run-length encoding with data 
reordering using Movement Dropping by RLE 
REORDER(MD). In Figure 15-(a), the space 
increases in proportion to the number of data 
in all approaches as expected. RLE REORDER 
and RLE REORDER(MD) are better than RLE 
in terms of space. Also, RLE REORDER(MD) 
spends a little less space than RLE REORDER. 
Therefore, we can improve the run-length en-
coding by data reordering. Figure 15-(b) shows 
the relative space ratio for temperature readings. 
We define the relative space ratio as follows:

Relative Space Ratio = 
(Compressed data size by compression 

scheme with data reordering) / 
(Compressed data size by original compres-

sion scheme) 

Since RLE is the original compression 
scheme, the relative space ratio of RLE is 1. 
The relative space ratio of RLE REORDER 
is approximately between 0.70 and 0.73 and 

http://islab.kaist.ac.kr/JDM_Reordering_Supplemental_Document.pdf
http://islab.kaist.ac.kr/JDM_Reordering_Supplemental_Document.pdf
http://islab.kaist.ac.kr/JDM_Reordering_Supplemental_Document.pdf
http://islab.kaist.ac.kr/JDM_Reordering_Supplemental_Document.pdf
http://islab.kaist.ac.kr/JDM_Reordering_Supplemental_Document.pdf
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that of RLE REORDER(MD) is between 0.67 
to 0.71. Therefore, if we use the run-length 
encoding with data reordering, we can get the 
space benefit approximately 30% compared to 
the original run-length encoding. Also, if we 
use Movement Dropping, we can get the space 
benefit 3% compared to the method without 

Movement Dropping. Meantime, since the rela-
tive space ratio is nearly constant, we do not 
scale up to the large sized data. Although the 
data set is small, we can show the effectiveness 
of our approach.

Figure 16 depicts the performance of com-
pression schemes with wind speed readings. 

Figure 15. Experiment according to the number of data with temperature readings (Run-length 
encoding)
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The tendency in Figure 16 is similar to that in 
Figure 15. However, the relative space ratios 
of RLE REORDER and RLE REORDER(MD) 
in Figure 16 are better than those in Figure 15. 
In Figure 16, the relative space ratio of RLE 
REORDER is approximately between 0.65 
and 0.69 and that of RLE REORDER(MD) is 

between 0.64 and 0.69. Temperature readings 
are considered as a more well-organized data 
set than wind speed readings since the wind 
speed readings change more sharply than the 
temperature readings. It means that the tempera-
ture readings have less data to be reorganized 
than the wind speed readings. In addition, since 

Figure 16. Experiment according to the number of data with wind speed readings (Run-length 
encoding)
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the wind speed readings have irregular patterns, 
Movement Dropping does not occur frequently 
as shown in Figure 16.

The size of the position affects the compres-
sion ratio of the run-length encoding with data 
reordering. Figure 17 shows how the amount 
of space changes according to the size of the 
position. Note that we partition data with the 

size 2the size of the position. Therefore, if the size of 
the position is too small, one segment contains 
a small number of data. In this case, the chance 
that a token is moved and merged with other 
token is reduced. Therefore, the amount of space 
is big when the size of the position is small in 
Figure 17. On the other hand, if the size of the 
position is too big, we need a large amount of 

Figure 17. Experiment according to the size of the position in the run-length encoding with data 
reordering
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space to store the movement information al-
though we can merge a large number of tokens. 
Therefore, in Figure 17, the amount of space 
is big when the size of the position is big. The 
size of the position is set when the amount of 
space is minimized.

Bucketing Scheme with 
Data Reordering

To show the effectiveness of the bucketing 
scheme with data reordering, we conduct 
experiments with temperature readings and 
wind speed readings. In these experiments, 

we set the error bound to 0.3. Also, we denote 
the original bucketing scheme by BUCKET, 
the bucketing scheme with data reordering by 
BUCKET REORDER, the bucketing scheme 
with data reordering using Movement Drop-
ping by BUCKET REORDER(MD), and the 
bucketing scheme with data reordering using 
Movement Dropping and Neighbor Merging 
by BUCKET REORDER(NM).

Figure 18-(a) shows the experiment ac-
cording to the number of data with temperature 
readings. We can see that the three approaches 
with data reordering are better than the original 

Figure 18. Experiment according to the number of data with temperature readings (Bucketing 
scheme)
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bucketing scheme. Figure 18-(b) shows the 
relative space ratio according to the number 
of data. Among three approaches with data 
ordering, RLE REORDER(NM) shows the 
best performance as expected. And, BUCKET 
REORDER(MD) is a little better than BUCEKT 
REORDER.

Figure 19 shows the experiment according 
to the number of data with wind speed readings. 
As mentioned before, the temperature readings 

change smoothly compared to the wind speed 
readings. It means that the temperature data 
has less data to be reorganized than the wind 
speed data. Therefore, the relative space ratios 
in Figure 19 are much better than those in Figure 
18. The ratios in Figure 18 are between 0.80 
and 0.90, while those in Figure 19 are between 
0.51 and 0.61.

Experimental results for compression/de-
compression time are shown in the supplemental 

Figure 19. Experiment according to the number of data with wind speed readings (Bucketing 
scheme)
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document (http://islab.kaist.ac.kr/JDM_Reor-
dering_Supplemental_Document.pdf).

CONCLUSION

The compression schemes can be considered 
with data reordering. Some previous works 
have dealt with data reordering in compression 
schemes. However, it can be applied to only 
unordered data. In this paper, we consider the 
run-length encoding with data reordering and 
the bucketing scheme with data reordering for 
ordered data. By analyzing the compression 
schemes, we represent the data movement 
information for reorganizing data by the com-
pact representation≪start, newStart≫. Based 
on the compact representation, we propose the 
encoding and decoding algorithms for both com-
pression schemes. Moreover, we propose two 
optimization techniques, Movement Dropping 
and Neighbor Merging. Finally, experimental 
results show that our approaches with data 
reordering are better than the original compres-
sion schemes in terms of space. Through the 
experimental results, we show the possibility 
that we can improve compression schemes by 
combining data reordering. Based on these 
results, we will analyze other compression 
schemes with data reordering.
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