
Journal of Database Management, 25(1), 1-28, January-March 2014 1

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT
Although there have been many compression schemes for reducing data effectively, most schemes do not
consider the reordering of data. In the case of unordered data, if the users change the data order in a given
data set, the compression ratio may be improved compared to the original compression before reordering
data. However, in the case of ordered data, the users need a mapping table that maps the original position
to the changed position in order to recover the original order. Therefore, reordering ordered data may be
disadvantageous in terms of space. In this paper, the authors consider two compression schemes, run-length
encoding and bucketing scheme as bases for showing the impact of data reordering in compression schemes.
Also, the authors propose various optimization techniques related to data reordering. Finally, the authors
show that the compression schemes with data reordering are better than the original compression schemes
in terms of the compression ratio.

Compression Schemes with Data
Reordering for Ordered Data

Chun-Hee Lee, Department of Computer Science, KAIST (Korea Advanced Institute of
Science and Technology), Daejeon, Korea

Chin-Wan Chung, Department of Computer Science, KAIST (Korea Advanced Institute of
Science and Technology), Daejeon, Korea

Keywords: Bucketing Scheme, Compression Scheme, Data Reordering, Ordered Data, Run-Length
Encoding

INTRODUCTION

Currently, a large volume of data in various
environments is generated. Such a large vol-
ume of data consumes valuable resources such
as space, network bandwidth, and CPU. In
order to save the resources, data compression
schemes have been developed and applied in
many applications.

However, they do not consider the effect of
data reordering. If we reorganize data, the com-
pression ratio for the reorganized data may be
improved compared to that for the original data.
Some papers deal with data reordering problems
in very limited environments (Apaydin, Tosun

& Ferhatosmanoglu, 2008; Blandford & Blel-
loch, 2002; Johnson, Krishnan, & Chhugani,
2004; Pinar, Tao & Ferhatosmanoglu, 2005).
The work of Apaydin et al. (2008), Blandford
and Blelloch (2002), Johnson et al. (2004),
and Pinar et al (2005) assumes that the order
of data does not have to be preserved, that is,
the input data is unordered data. However, in
general, the order of data should be preserved
and has the important information. For example,
time series data should be ordered by the time.
If we change the order of the time series data,
it will lose much information. Therefore, the
approaches in Apaydin et al. (2008), Blandford
and Blelloch (2002), Johnson et al. (2004), and

DOI: 10.4018/jdm.2014010101

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

2 Journal of Database Management, 25(1), 1-28, January-March 2014

Pinar et al. (2005) cannot be applied to the
ordered data such as time series data (Chen,
Dong, Han, Wah, & Wan, 2002; Korn, Jagadish,
& Faloutsos, 1997; Reeves, Liu, Nath, & Zhao,
2009; Elmeleegy, Elmagarmid, Cecchet, Aref,
& Zwaenepoel, 2009).

Consider the run-length encoding with the
ordered data D = {1, 1, 1, 3, 3, 1, 1, 4, 4, 4}.
The run-length encoding is one of the widely
used lossless compression schemes. It replaces
repeated values with <value, count>, where
count is the number of repeated values. We
can represent D by the run-length encoding as
follows. Note that RLE(D) is the compressed
data for D using the run-length encoding. See
Table 1 for the detailed notational convention.

RLE(D) = {<1,3>,<3,2>,<1,2>,4,3>},
where in the pair <a,b>, a is value and b is

count.

We can reduce the number of elements in
RLE(D) by reordering elements in D. Consider
D′ = {1, 1, 1, 1, 1, 3, 3, 4, 4, 4} which is the data
after reordering elements in D. Then, RLE(D′)

= {<1,5>,<3,2>,<4,3>}. Since |RLE(D′)| = 3
is less than |RLE(D)| = 4, we can improve the
compression ratio by reorganizing data if the
data is unordered data. However, if the data is
ordered data, we should keep the following map-
ping table (presented in Box 1) to reconstruct
the original data from RLE(D′),

The space benefit by data reordering may
be less than the space overhead for storing the
mapping table. That is, the compression ratio by
the compression scheme with data reordering
may be worse than that by the original com-
pression scheme without data reordering. In
this case, data reordering is useless. Therefore,
we should carefully consider how to store the
mapping table effectively in order to apply data
reordering techniques for ordered data.

In this paper, we first investigate general
principles to improve compression schemes
by data reordering. We do not keep the total
mapping table since the size of the mapping
table is too big. Instead, we keep the movement
information for the portion of a whole data
set. The movement information is represented
by ≪start, end, newStart≫. It means that the

Table 1. Notational convention

Notation Meaning

RLE(D) Compressed data for D
using the run-length encoding

BUCKET(D, ε) Compressed data for D using the bucketing
scheme with an error bound ε

di the i-th element in data set D

di,j {di, di+1, · · ·, dj−1, dj}, where i≤ j

<X> token X in the run-length encoding or
the bucketing scheme

≪X≫ movement information X

Box 1.
                    Original position:  1   2   3   4   5   6   7   8   9  10 
                                       ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓   ↓ 
                    Changed position:   1   2   3   6   7   4   5   8   9  10

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Database Management, 25(1), 1-28, January-March 2014 3

portion of data between start position and end
position is moved to newStart position. In the
above ordered data D, the movement informa-
tion is represented by ≪6,7,4≫ (i.e., <start
position, end position, new start position>)
instead of the total mapping table. And, we
reorganize data when the space for storing the
list of movement information is less than the
space benefit by data reordering. Based on
the principles, we consider two compression
schemes, run-length encoding (Salomon, 2004;
Wikipedia, 2012; Abadi, Madden, & Ferreira,
2006) and bucketing scheme (Buragohain,
Shrivastava, & Suri, 2007; Gandhi, Nath, Suri,
& Lie, 2009), which have similar properties. The
compressed data form in the bucketing scheme
is the same as that in the run-length encoding.

Although storing the list of the movement
information ≪start, end, newStart≫ needs less
space than storing the total mapping table, it
still needs much space. Therefore, we propose
a method to represent the movement informa-
tion compactly in the run-length encoding and
the bucketing scheme. Based on the compact
movement representation, we devise an effec-
tive run-length encoding and bucketing scheme
with data reordering. Also, by analyzing the
characteristics of the run-length encoding and
the bucketing scheme, we propose various op-
timization techniques related to data reordering.

Our contributions are as follows:

• General principles to improve a com-
pression scheme by data reordering Al-
though previous compression schemes can
reduce a large volume of data effectively,
there are still new approaches to reduce
data further. If we reorganize data, the
compression ratio may be improved. Based
on this observation, we establish general
principles to improve the compression
ratio for ordered data by data reordering.

• Run-length encoding with data reor-
dering We propose run-length encoding
and decoding algorithms with data re-
ordering. While data compressed by the
original run-length encoding is composed
of the list of <value, count>, that by the

run-length encoding with data reordering
has additionally a list of compact move-
ment information.

• Bucketing scheme with data reorder-
ing We propose encoding and decoding
algorithms for the bucketing scheme with
data reordering which are similar to run-
length encoding and decoding algorithms
with data reordering.

• Various optimizations for data reorder-
ing in the run-length encoding and the
bucketing scheme Although the run-length
encoding and bucketing scheme with data
reordering can improve the compression
ratio compared to the original compres-
sion schemes, we can reduce data more
effectively by two optimization tech-
niques, Movement Dropping and Neighbor
Merging.

• Experimentation to evaluate our pro-
posed approaches Through an experimen-
tal study, we show that the compression
ratio of the compression schemes with
data reordering is considerably improved
compared to that of the original compres-
sion schemes.

Related Work

Data compression schemes have been developed
in a wide range of areas to reduce the amount
of space, transmission bandwidth, data mining
time, or query processing time. In the case of
multimedia data, time series data and graph
data, the volume of data is too huge and data
has similar patterns. Therefore, we can reduce
the volume of data using compression schemes
(DeVore, Jawerth, & Lucier, 1992; Elmeleegy,
Elmagarmid, Cecchet, Aref, & Zwaenepoel,
2009; Pennebaker & Mitchell, 1993; Rao &
Yip, 1990; Reeves, Liu, Nath, & Zhao, 2009).
In networking systems, to reduce the transmis-
sion bandwidth, various compression schemes
have been used (Chen, Li, & Mohapatra, 2004;
Degermark, Engan, Nordgren, & Pink, 1996;
Deligiannakis, Kotidis, & Roussopoulos, 2004;
Deligiannakis, Kotidis, & Roussopoulos, 2007).
In the data mining area, the compression or

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

4 Journal of Database Management, 25(1), 1-28, January-March 2014

synopsis techniques have been applied to
improve the efficiency of mining (Zhang, Liu,
Ling, Bruckner, & Tjoa, 2006; Hai, Lenco,
Poncelet, & Teisseire, 2013). Also, in the
database literature, in order to improve the ex-
ecution time of query processing, compression
schemes have been applied (Abadi, Madden,
& Ferreira, 2006; Graefe & Shapiro, 1991;
Goldstein, Ramakrishnan, & Shaft, 1998; Iyer
& Wilhite, 1994; Johnson, 1999; Ray, Haritsa,
& Seshadri, 1995). Although there are many ef-
fective compression schemes as data reduction
tools, they may have a further chance to reduce
data by data reordering techniques.

Some papers deal with data ordering prob-
lems in compression schemes. Blandford and
Blelloch (2002) consider document reordering
problems in the inverted index. Since there are
too many documents in the web environment,
the size of the inverted index is very large.
Therefore, we can apply the difference cod-
ing to the list of document numbers in order
to reduce the size of the index. If we permute
document numbers considering the difference
coding, we can improve the compression ratio
of the difference coding. Therefore, Blandford
et al. use a hierarchical clustering technique for
numbering documents effectively. They first
construct a similarity graph for documents us-
ing consine measures and apply the hierarchical
clustering to the graph. Then, they order clusters
hierarchically.

Ouyang et al. (2002) propose a framework
for compressing a collection of files based on
the delta compression. Since the delta com-
pression is applied to a collection of files, a
sequence for performing the delta-compression
affects the compression ratio. They transform
the problem of finding an optimal sequence to
that of finding the maximum branching in the
graph theory. However, it needs a large amount
of the computation time to construct a graph
and find the maximum branching. Therefore, to
reduce the computation time, Ouyang et al. use
the techniques in document clustering.

Johnson et al. (2004) deal with the boolean
matrix reordering problem. In many environ-
ments, large boolean matrices are generated. To

store a large boolean matrix effectively, we can
use the run-length encoding. If we reorganize
columns in the matrix, we can reduce the num-
ber of runs. An example (Johnson, Krishnan,
& Chhugani, 2004) for reordering the matrix
is shown in Figure 1.

If we reorder columns like Figure 1 (b),
we can reduce the number of runs compared
to that of the original matrix in Figure 1 (a).
However, the matrix reordering problem is NP-
hard. Therefore, Johnson et al. (2004) transform
the matrix reordering problem to the traveling
salesman problem in the Hamming space. To
solve the large traveling salesman problem,
they propose instancepartitioning and sampling
as heuristics.

Pinar et al. (2005) solve the problem
similar to the work of John et al. (2004). They
consider the tuple reordering problem in the
bitmap table which is used for various scientific
applications. They propose gray code ordering
as heuristics for tuple reordering. The gray code
ordering arranges numbers with respect to the
gray code in which adjacent numbers differ at
only one-bit. In addition, Apaydin and Tosun
(2008) theoretically analyze two data reordering
techniques, lexicographical ordering and gray
code ordering, in the context of bitmap indexes.

However, the approaches in Apaydin and
Tosun (2008), Blandford and Blelloch (2002),
Johnson et al. (2004), and Pinar et al. (2005)
assume the environment that the input data
is unordered. Thus, we do not need to store a
mapping information in such an environment.
Therefore, we cannot apply them to ordered
data. In this paper, we consider compression
schemes with data reordering for ordered data.

As a string transformation technique for
compression, Burrows-Wheeler Transform
(BWT) (Burrows & Wheeler, 1994) is a well-
known compression scheme. BWT transforms
a string into the string which is easy to com-
press. The transformed string by BWT may
contain many repeated alphabets. Therefore,
the transformed string is more compressible
than the original string. A string transformed
by BWT should be compressed by another
compression scheme. Therefore, our approach

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Database Management, 25(1), 1-28, January-March 2014 5

is orthogonal to BWT. We can use our approach
after applying BWT.

Preliminaries

In this section, we explain the run-length
encoding (Abadi, Madden, & Ferreira, 2006;
Salomon, 2004; Wikipedia, 2012) and the
bucketing scheme (Buragohain, Shrivastava, &
Suri, 2007; Gandhi, Nath, Suri, & Lie, 2009) as
preliminaries. The notational convention used
in this paper is shown in Table 1.

Run-Length Encoding

The run-length encoding as one of lossless
compressions replaces repeated values with
<value, count>, where count is the number of
repeated values. In the case of data sets that have
many repeated values, the run-length encoding
can reduce space significantly. Although there
are run-length encoding algorithms in many
versions, we use the run-length encoding al-
gorithm in Figure 2.

In this paper, we assume that the size of
value and the size of count are fixed. Thus, in
Statement 7, we add the condition count ==
2RUN LENGTH SIZE - 1 since if the number of repeated
values is more than the possible maximum
number for count, the allocated space for count
is exceeded. Since the algorithm in Figure 2 is
trivial, we skip the detailed explanation.

Example 1: Let D = {1, 1, 1, 1, 1, 2, 2, 3, 3, 1,
1, 1} and RUN_LENGTH_SIZE = 2. By
the algorithm of Figure 2, D is encoded
into RLE(D) = {<1, 3>,<1, 2>,<2, 2>,<3,
2>,<1, 3>}.

Bucketing Scheme

The bucketing scheme (Buragohain, Shrivas-
tava, & Suri, 2007; Gandhi, Nath, Suri, & Lie,
2009) as one of lossy compressions is based on
piece-wise constant approximations. It repre-
sents data by piece-wise constant functions. In
the bucketing scheme, we make a bucket for a
portion of data D = {d1, d2, …, dn} which has

Figure 1. Example for the boolean matrix reordering (Johnson et al., 2004)

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

6 Journal of Database Management, 25(1), 1-28, January-March 2014

the minimum value (minVal), the maximum
value (maxVal) and the length (count) of the
bucket. We add data di to one bucket if the
difference between minVal and maxVal in the
bucket is less than or equal to 2ε, where ε is
the given error bound. If the difference is more
than 2ε, we make a new bucket. We approximate
elements in the bucket by the average value
(=(minVal+maxVal)/2). Therefore, we can
guarantee maxi |di - ˆdij| <= ε, where ˆdi is the
approximate value for di.

The algorithm for the bucketing scheme
is shown in Figure 3. In Statement 1-4, we
initialize the bucket. Then, in Statement 9-16,
if the difference between the minimum value
and the maximum value is more than 2ε, we
make the token with the bucket by computing

the average value, append the token to the result
list and create a new bucket. Note that in the
bucketing scheme, the form of compressed data
is the same as that of the run-length encoding.
Otherwise, we add the data to the bucket and
update the variables of the bucket in State-
ment 17-22. Finally, we make the token for
the remaining elements in Statement 24. Like
the algorithm of Figure 2, we add the condition
count == 2BUCKET LENGTH SIZE - 1 in Statement 10.

Example 2: Let D = {1, 1.2, 1.4, 1.3, 1.1, 2.4,
2.6, 4}, BUCKET LENGTH SIZE = 2
and ε = 0.5. By the algorithm of Figure
3, D is encoded into BUCKET(D, 0.5) =
{<1.2,3>,<1.2,2>,<2.5,2>,<4, 1>}.

Figure 2. Run-length encoding algorithm

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Database Management, 25(1), 1-28, January-March 2014 7

Motivation

In the case of unordered data, we can generally
improve compression schemes by reorganizing
data. However, reordering ordered data may be
disadvantageous. This is because we need much
space to store a mapping table that maps the
original position to the changed position. In the

case of ordered data, if we can devise a method
to store or encode the mapping table effectively
so that the space benefit by data reordering is
more than the space overhead for storing the
mapping table, it is beneficial to reorganize data
in order to reduce the amount of data further.

Motivated by this point, we consider
compression schemes with data reordering for

Figure 3. Bucketing scheme algorithm

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

8 Journal of Database Management, 25(1), 1-28, January-March 2014

ordered data. Since we need much space to keep
the mapping table, we keep a list of movement
information instead of the mapping table. The
movement information consists of ≪start,
end, newStart≫, where start and end are the
start and end position of data to be moved, and
newStart is the position to be inserted. Figure 4
shows how the data movement is represented
by ≪start, end, newStart≫. If we use the move-
ment information to reorganize data, we do not
have to keep the mapping table with a big size.

Based on the movement information, we
make general principles to improve compression
schemes by data reordering as follows:

• We do not keep a mapping table. Instead,
we store a list of movement information
with the form ≪start, end, newStart≫.
Therefore, we reduce the space cost for
reorganizing data.

• The space overhead for storing a list of
movement information should be less
than the space benefit generated from data
reordering. If the space benefit is small
compared to the space overhead for the
list of movement information, we should
not reorganize data.

As bases for showing the impact of data re-
ordering, we choose two compression schemes,
run-length encoding and bucketing scheme,
since we can exploit data reordering techniques
well in the two compression schemes. Through

the proposed run-length encoding and bucket-
ing scheme with data reordering, we show the
possibility to improve compression schemes
by data reordering.

Run-Length Encoding
With Data Reordering

In this section, we consider the run-length
encoding with data reordering. By merging the
run-length encoding and data reordering, we
propose a more effective run-length encoding
with data reordering.

According to the general principles, we
move the portion of data in order to improve
the compression ratio of the run-length encod-
ing. For the sake of explanation, we explain our
technique with the ordered data D = {1, 1, 2,
2, 2, 3, 3, 2, 2, 4, 4, 5, 5, 2, 5, 5, 5}. In the data
D, we can move d8,9 = {2, 2} to the position
between d5 and d6. Now, we should check if we
can reduce the space through such a movement.
In this case, we can decrease the space for one
token corresponding to d8,9 = {2, 2} since d8,9
= {2, 2} is integrated with d3,5 = {2, 2, 2}, and
{d3, d4, d5, d8, d9} composes one token <2,5>.
On the other hand, we need the space for the
movement information ≪8,9,6≫.

Therefore, if the size of the movement
information is less than the size of one token
in the run-length encoding, we can improve the
run-length encoding by reorganizing data. For
example, if the size of the value is 8 bytes, the

Figure 4. Movement information

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Database Management, 25(1), 1-28, January-March 2014 9

size of the run length is 2 bytes and the size of
the position is 2 bytes, we can get the space
benefit 4 bytes = (8+2)-2*3. However, if the
size of the value is not much bigger than the
size of the position, we cannot get the space
benefit by reorganizing data.

By analyzing the characteristics of the
run-length encoding, we propose an effective
representation for the movement information
in the run-length encoding. Since in the run-
length encoding, continually repeated values
are represented by only one token, we move
data by the unit of one token. Therefore, we
describe data reordering in the encoded data
using the original run-length encoding.

In the run-length encoding, one token is
composed of <value, count>. If we utilize count
(i.e., run length) and impose some constraints
for the movement, we can represent the move-
ment information very effectively by ≪start,
newStart≫. Consider the following example.

D = {1, 1, 2, 2, 2, 3, 3, 2, 2, 4, 4, 5, 5, 2, 5, 5,
5}
R = RLE(D) = {<1,2>,<2,3>,<3,2>,<2,2>,<4
,2>,<5,2>,<2,1>,<5,3>}

We can move token r4=<2,2> in RLE(D)
to the position after r2 =<2,3> with the compact
movement representation ≪8,6≫. Then, the
above data D is transformed as follows:

D′ = {1, 1, 2, 2, 2, 2,2, 3, 3, 4, 4, 5, 5, 2, 5, 5,
5}
R′ = RLE(D′) = {<1,2>,<2,5>,<3,2>,<4,2>,<
5,2>,<2,1>,<5,3>}

The problem is that how we can decode
R′ = RLE(D′) with the compact movement
representation ≪8,6≫. In the movement rep-
resentation ≪8,6≫, the new start position is
6. By accumulating count of the token in R′
sequentially, we can know that the new start
position newStart is contained in the token
r′2=<2,5> since start position for r2 < newStart
position < end position for r2 (3 < 6 < 7). If
we assume that token ri=<vi, ci> is moved and

integrated with rj=<vj, cj> such that 1) vi = vj,
2) rj is a preceding token (j < i), and 3) ri is
integrated with rj at the back (i.e., newStart =
the end position of rj +1) as shown in Figure
5, we can know that r′2 was made by merging
two tokens in R. Therefore, we can separate r′2
into original two tokens, <2,3> and <2,2> by
cutting off r′2 at the position between newStart-1
and newStart.

Lemma 1. Let R = {<v1, c1>, <v2, c2>, · · ·, <vn,
cn>} be the encoded data by the original
run-length encoding. If vi = vj(j < i), we
can move token <vi, ci> to the position
after token <vj,cj>. Let RLE(D′) = {<v′1,
c′1>,<v′2, c′2>, · · ·, <v′n−1, c′n−1>} be the
data after <vi, ci> is merged with <vj, cj>.
Let start = c

aa

i

=

−

∑ +
1

1
1 and newStart=

c
aa

j

=∑ +
1

1 . Then,

c c newStart
i aa

k

= − +
=∑ '
1

1 and

c c c
j j i
= −' , if

c newStart c
aa

k

aa

k

' '+ < ≤
=

−

=∑ ∑1
1

1

1
 (Note

that k=j).

Proof . We can derive the formula intuitively
in Figure 5.

From Lemma 1, we can recover the changed
data by reordering of data using R′ and the
movement information. Generally, since the size
of the position × 2 is less than the size of one
token, we can improve the compression ratio
of the run-length encoding by data reordering.
Until now, we considered only one movement
information. In the case that there are many
movements, if we keep track of movement
information, we can decode data by applying
Lemma 1 sequentially. We can move the token r′6
to the position after r′2 in R′ with the movement
≪14,8≫. Then, D′ is transformed as follows:

D′′ = {1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 5,
5, 5}

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

10 Journal of Database Management, 25(1), 1-28, January-March 2014

R′′ = RLE(D′) = {<1,2>,<2,6>,<3,2>,<4,2>,<
5,2>,<5,3>}

From R′′ and the movement list ≪8,6≫,
≪14,8≫, we can reconstruct R. To reconstruct
R, we traverse the movement list reversely. The
decoding process for R′′ is shown in Figure 6.
We first perform decoding with the movement
information ≪14,8≫. Using Lemma 1, we
reconstruct D′. Then, we perform decoding
with the movement information ≪8,6≫ in
the same way.

The run-length encoding algorithm with
data reordering is shown in Figure 7. In the
algorithm of Figure 7, we first encode data using
the original run-length encoding in Statement
1. tokenList consists of the list of tokens that

have <value, start, count> instead of <value,
count>. In the original run-length encoding,
we keep only <value, count> for each token,
but we revise the run-length encoding to keep
<value, start, count>. Then, we read tokens
(currToken) sequentially in Statement 6. In
the first loop, currToken is set to the second
token in tokenList. If currToken can be merged
with prevToken (Statement 14), we store the
movement information in the form of ≪start,
newStart≫ (Statement 16) and merge currToken
with prevToken (Statement 17). After that, we
set flag to TRUE in order to update the start posi-
tion of the following tokens (Statement 18). In
Statement 13, we update the start position since
the current token is moved. In Statement 21-22,
if the current token is merged with the previous

Figure 5. Movement information

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Database Management, 25(1), 1-28, January-March 2014 11

token, we remove the current token. Finally, we
store <value, count> for each token in tokenList
and the movement list in Statement 24.

The run-length decoding algorithm with
data reordering is shown in Figure 8. The decod-
ing algorithm is based on Lemma 1. First, we
reverse the order in the movement list (moveL-
ist) in Statement 1. Then, we read the current
movement (currMove) sequentially from the
movement list. In Statement 6 and 7, we find
the merged token (mToken) corresponding to
the current movement (currMove) and divide
the merged token (mToken) into the left token
(leftToken) and the right token (rightToken)

using Lemma 1. leftToken and rightToken are
rj and ri in Lemma 1, respectively. Note that

(. .) .

'

mToken start mToken count currMove newStart

c
aa

k

+ −

=
=

−

∑ (1

1
++ + − =

− +
=∑

1

1
1

c currMove newStart

c currMove newStart St

k

aa

k

') .

' . (aatement7)

Finally, we move the right token (rightTo-
ken) separated from the merged token (mToken)
to the original position, and change the start
positions of tokens following rightToken due
to the removal of rightToken.

Figure 6. Decoding process for R′′

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

12 Journal of Database Management, 25(1), 1-28, January-March 2014

Figure 7. Run-length encoding algorithm with data reordering

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Database Management, 25(1), 1-28, January-March 2014 13

Optimization and Partitioning

Observe R′ and R′′ carefully. By moving token
r′6=<2,1>, r′5=<5,2> and r′7=<5,3> become
adjacent in R′′. When we merge r′′5=<5,2> and
r′′6=<5,3>, we store the movement information
≪15,15≫. In this case, we can drop the move-
ment information. We call this optimization

Movement Dropping. In Movement Dropping,
when two tokens become adjacent by moving
tokens between the two tokens, we merge the
two tokens and drop the movement information
≪start, newStart≫, where start=newStart. By
merging two tokens, r′′5 and r′′6, in R′′, the data
D′′ is transformed as follows:

Figure 8. Run-length decoding algorithm with data reordering

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

14 Journal of Database Management, 25(1), 1-28, January-March 2014

D′′′ = D′′ = {1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 5,
5, 5, 5, 5}
R′′′ = RLE(D′′) =
{<1,2>,<2,6>,<3,2>,<4,2>,<5,5>}

Consider the decoding process with R′′′ and
two movement information ≪8,6≫and≪14,8≫.
We do not have the movement information
for dividing r′′′5 =<5,5> into r′′5=<5,2> and
r′′6=<5,3>. We use a similar idea to dropping
of end information in the movement repre-
sentation ≪start, end, newStart≫. Figure 9
shows the decoding process with R′′′ and the
movement information ≪14,8≫. With the new
start position 8, we divide the merged tokens
into two tokens <2,5> and <2,1> as shown in
State 1 of Figure 9. Then, we insert <2,1> to
the proper position with the start position 14.
However, the 14-th position is in token <5,4>.
If we do not drop the movement information
for adjacent tokens, the start position should
be the start position of some token. However,
since we drop the movement information for
adjacent tokens, if the start position is in the

token, we divide the token into two tokens.
Thus, we divide token <5,4> into token <5,2>
and token <5,2> as shown in State 2 of Figure
9. Then, we insert token <2,1> between token
<5,2> and <5,2> in State 3 of Figure 9.

To apply Movement Dropping, we revise
the encoding algorithm of Figure 7 and the de-
coding algorithm of Figure 8. Figure 10 shows
the run-length encoding with data reordering
using Movement Dropping. In Statement 6-7,
we check whether the adjacent two tokens (i.e.,
leftAdjToken, currToken) are merged. If so, we
can merge adjacent two tokens and do not store
the movement information (Statement 9-10).
Otherwise, we perform the same process in the
encoding algorithm of Figure 7.

Figure 11 shows the run-length decoding
algorithm with data reordering using Movement
Dropping. In Statement 1, we find and divide
the merged token corresponding to currMove.
newStart in the same way as the decoding
algorithm of Figure 8. Then, with currMove.
start, we find and divide the merged token by
Movement Dropping in Statement 2-4. We

Figure 9. Decoding process for R′′′

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Database Management, 25(1), 1-28, January-March 2014 15

traverse the token list (tokenList) in order to
find tToken which satisfies condition (A or B)
in Statement 2. If tToken satisfies condition
A, it means that tToken is the merged token
and the movement dropping occurred. If there
is no token which satisfies condition A, there
should be the token which satisfies condition
B. In Statement 3, if condition A is satisfied,
we divide tToken into two tokens, Token1 and
Token3. Then, we insert rightToken (Token2)
between Token1 and Token3. Otherwise, we
insert rightToken after tToken in Statement 4.

The proposed run-length encoding with
data reordering can improve the compression
ratio compared to the original run-length en-
coding. However, if the number of elements
is large, the size of the position will be large.
Then, we cannot get the space benefit by data
reordering. In this case, we can partition ordered
data D into segments, seg1, seg2, and segk, with
the same size. Then, we compress each segment
using the above run-length encoding with data
reordering. Finally, we store compressed data
for each segment with the format of Figure 12.

Figure 10. Run-length encoding algorithm with data reordering using Movement Dropping

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

16 Journal of Database Management, 25(1), 1-28, January-March 2014

Figure 11. Run-length decoding algorithm with data reordering using movement dropping

Figure 12. Format to store segments

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Database Management, 25(1), 1-28, January-March 2014 17

Since we partition data, we record the number
of tokens for segi and the number of movement
information for segi to distinguish segments.
The header information includes the size of the
value, the size of the count, and the size of the
position. Some applications may need real-time
processing. To utilize our approach in the ap-
plications, we can also apply the above partition
concept. If a small number of data is collected
at the application, we apply the data reordering
techniques to the collected data immediately.
Therefore, we can reduce the compression time.

Bucketing Scheme with
Data Reordering

In this section, we consider the bucketing
scheme with data reordering. The basic concept
in the bucketing scheme with data reordering is
similar to that in the run-length encoding with
data reordering. We explain our technique with
the following example. Note that we assume
that a token in the bucketing scheme with data
reordering is composed of <minVal, maxVal,
count> and | means the delimiter between
buckets for easy understanding. At the end
of the encoding algorithm for the bucketing
scheme with data reordering, we store token
<(minVal+maxVal)/2, count>.

D = {1.3, 1.45|2.0, 2.2|1.45, 1.35, 1.4|1.6,
1.7, 1.8|1.4, 1.5|1.7, 1.8}
B = BUCKET(D, 0.1) =
{<1.3,1.45,2>,<2.0,2.2,2>,
<1.35,1.45,3>,<1.6,1.8,3>,<1.4,1.5,2>,<1.7,1
.8,2>}

In the run-length encoding with data reor-
dering, if values in two tokens are the same, the
two tokens are merged. However, the condition
for merging two buckets in the bucketing scheme
with data reordering is different from that in
the run-length encoding with data reordering.
In the bucketing scheme with data reordering,
we merge two buckets, bi and bj, if they satisfy
the following condition instead of the condi-
tion vi = vj .

M − m ≤ 2ε,
where m = min(bi.minVal, bj.minVal),
and M = max(bi.maxVal, bj.maxVal)

That is, if the difference between the
minimum value and the maximum value in
the merged bucket is less than or equal to
2ε, we can merge two buckets guaranteeing
maxi |di− ˆdi| ≤ ε, where d′i is the approximate
value for di. For example, in B, we can merge
b1=<1.3,1.45,2> and b3=<1.35,1.45,3> with the
movement information ≪5,3≫. Then, the data
D is transformed as follows:

D′ = {1.3, 1.45, 1.45, 1.35, 1.4|2.0, 2.2|1.6,
1.7, 1.8|1.4, 1.5|1.7, 1.8}
B′ = BUCKET(D′, 0.1) = {<1.3,1.45,5>,<2.0,
2.2,2>,<1.6,1.8,3>,<1.4,1.5,2>,<1.7,1.8,2>}

Also, we can merge b′1=<1.3,1.45,5> and
b′4=<1.4,1.5,2> with the movement information
≪11,6≫ as follows:

D′′ = {1.3, 1.45, 1.45, 1.35, 1.4, 1.4, 1.5|2.0,
2.2|1.6, 1.7, 1.8|1.7, 1.8}
B′′ = BUCKET(D′′, 0.1) = {<1.3,1.5,7>,<2.0,
2.2,2>,<1.6,1.8,3>,<1.7,1.8,2> }

Since the encoding and decoding algo-
rithms for the bucketing algorithm with data
reordering are similar to those of the run-length
encoding and decoding algorithms with data
reordering, we do not mention them in detail.

Optimization and Partitioning

In the bucketing scheme with data reordering, we
can also use Movement Dropping. Consider B′
and B′′. By moving the bucket b′4=<1.4,1.5,2>,
b′3=<1.6,1.8,3> and b′5=<1.7,1.8,2> become
adjacent. Therefore, without storing the move-
ment≪13,13≫, we merge b′′3=<1.6,1.8,3> and
b′′4=<1.7,1.8,2> as follows:

D′′′ = {1.3, 1.45, 1.45, 1.35, 1.4, 1.4, 1.5|2.0,
2.2|1.6, 1.7, 1.8, 1.7, 1.8}

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

18 Journal of Database Management, 25(1), 1-28, January-March 2014

B′′′ = BUCKET(D′′, 0.1) = {<1.3,1.5,7>,<2.0
,2.2,2>,<1.6,1.8,5>}

Finally, we store the following compressed
data.

Token List:{<1.4,7>,<2.1,2>,<1.7,5>}

Movement List:{≪ 5, 3 ≫,≪ 11, 6 ≫}

The decoding process for the above com-
pressed data is shown in Figure 13. We divide the
merged token <1.4,7> into two tokens, <1.4,5>
and <1.4,2> using newStart 6 (State 1). Then,
we find and divide the merged token with start

Figure 13. Example for Bucketing Scheme with data reordering

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Database Management, 25(1), 1-28, January-March 2014 19

11 (State 2). We insert token <1.4,2> between
token <1.7,3> and token <1.7,2> (State 3). Next,
we find the merged token with newStart 3 (State
4). Then, we find the position to be inserted. In
this case, Movement Dropping does not occur.
Finally, we insert token <1.4,3> (State 5).

In the bucketing scheme with data reorder-
ing, we devise another optimization technique,
Neighbor Merging, as an improved version of
Movement Dropping. Consider the following
example.

D = {1.3, 1.45|1, 1.1, 1.25|1.35, 1.3, 1.2,
1.3|1.5, 1.6}
B = BUCKET(D, 0.1) = {<1.3,1.45,2>,<1,1.

25,3>,<1.2,1.35,4>,<1.5,1.6,2>}

Observe d6,9 = {1.35, 1.3, 1.2, 1.3} cor-
responding to b3 carefully. {1.2, 1.3} which is
the right portion of d6,9 can be merged with b2,
and {1.35, 1.3} which is the left portion of d6,9

can be merged with b1. If we move d6,7 = {1.35,
1.3}, d8,9 = {1.2, 1.3} will become adjacent to
b2 so we will be able to drop the movement
information. Although b3 cannot be merged
with any other bucket, we can merge b3 by
dividing it into two parts, {1.35, 1.3} and {1.2,
1.3}. We move {1.35, 1.3} with the movement
information ≪6,3≫ as follows:

D′ = {1.3, 1.45, 1.35, 1.3, |1, 1.1, 1.25, 1.2,
1.3|1.5, 1.6}
B′ = BUCK(D′, 0.1) = {<1.3,1.45,4>,<1,1.3,

5>,<1.5,1.6,2>}

There are Left Neighbor Merging and Right
Neighbor Merging in Neighbor Merging as
shown in Figure 14. If the current bucket can-
not be merged with any other previous buckets,
we try to do Left Neighbor or Right Neighbor
Merging. In Left Neighbor Merging, RIGHT
is the maximum right portion of the current

Figure 14. Neighbor merging

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

20 Journal of Database Management, 25(1), 1-28, January-March 2014

bucket which is merged with Left Neighbor
and LEFT is the portion of the current bucket
except RIGHT. Therefore, if we move LEFT,
RIGHT can be merged with Left Neighbor. We
find a preceding bucket which will be merged
with LEFT. If there is such the preceding bucket,
we merge the preceding bucket with LEFT, and
Left Neighbor with RIGHT. In Right Neighbor
Merging, LEFT is the maximum left portion
of the current bucket which is merged with
Right Neighbor and RIGHT is the portion of
the current bucket except LEFT. Similarly, we
merge the preceding bucket with RIGHT, and
LEFT with Right Neighbor. The decoding is
performed like Movement Dropping. Note that
each bucket should keep elements which are
contained in the bucket to apply Left Neighbor
or Right Neighbor Merging, while the original
bucketing scheme keeps only minVal, maxVal,
and Count for the bucket.

If the number of elements is large, we
partition data into various segments like the
run-length encoding with data reordering.

Due to lack of space, the time complexity
analysis is described in the supplemental docu-
ment (http://islab.kaist.ac.kr/JDM_Reorder-
ing_Supplemental_Document.pdf).

Experiments

In this section, we show the effectiveness of
compression schemes with data reordering.
By comparing our compression schemes with
the original compression schemes, we present
that our approaches are better than the original
compression schemes in terms of the compres-
sion ratio.

Experimental Environment

To evaluate the run-length encoding with data
reordering and the bucketing scheme with data
reordering, we use 10000 temperature readings
and 10000 wind speed readings which are
collected at one place every minute and are
rounded off to the first decimal place (DataSet,
2012). Both readings contain repeated values.
However, the temperature readings show more
regular patterns than the wind speed readings.

The detailed data set description is shown in the
supplemental document (http://islab.kaist.ac.kr/
JDM_Reordering_Supplemental_Document.
pdf). We assume that the size of the value is
4 bytes. We determine the optimal size of the
count and the optimal size of the position with
1000 sample data.

Experimental Results

We show experimental results for the run-length
encoding with data reordering in Section 7.2.1
and those for the bucketing scheme with data
reordering in Section 7.2.2.

Run-Length Encoding
with Data Reordering

Figure 15 shows the amount of space accord-
ing to the number of data in temperature read-
ings. Varying the number of data from 1000
to 10000, we conduct experiments. In graphs,
we denote the original run-length encoding
by RLE, the proposed run-length encoding
with data reordering by RLE REORDER, and
the proposed run-length encoding with data
reordering using Movement Dropping by RLE
REORDER(MD). In Figure 15-(a), the space
increases in proportion to the number of data
in all approaches as expected. RLE REORDER
and RLE REORDER(MD) are better than RLE
in terms of space. Also, RLE REORDER(MD)
spends a little less space than RLE REORDER.
Therefore, we can improve the run-length en-
coding by data reordering. Figure 15-(b) shows
the relative space ratio for temperature readings.
We define the relative space ratio as follows:

Relative Space Ratio =
(Compressed data size by compression

scheme with data reordering) /
(Compressed data size by original compres-

sion scheme)

Since RLE is the original compression
scheme, the relative space ratio of RLE is 1.
The relative space ratio of RLE REORDER
is approximately between 0.70 and 0.73 and

http://islab.kaist.ac.kr/JDM_Reordering_Supplemental_Document.pdf
http://islab.kaist.ac.kr/JDM_Reordering_Supplemental_Document.pdf
http://islab.kaist.ac.kr/JDM_Reordering_Supplemental_Document.pdf
http://islab.kaist.ac.kr/JDM_Reordering_Supplemental_Document.pdf
http://islab.kaist.ac.kr/JDM_Reordering_Supplemental_Document.pdf

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Database Management, 25(1), 1-28, January-March 2014 21

that of RLE REORDER(MD) is between 0.67
to 0.71. Therefore, if we use the run-length
encoding with data reordering, we can get the
space benefit approximately 30% compared to
the original run-length encoding. Also, if we
use Movement Dropping, we can get the space
benefit 3% compared to the method without

Movement Dropping. Meantime, since the rela-
tive space ratio is nearly constant, we do not
scale up to the large sized data. Although the
data set is small, we can show the effectiveness
of our approach.

Figure 16 depicts the performance of com-
pression schemes with wind speed readings.

Figure 15. Experiment according to the number of data with temperature readings (Run-length
encoding)

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

22 Journal of Database Management, 25(1), 1-28, January-March 2014

The tendency in Figure 16 is similar to that in
Figure 15. However, the relative space ratios
of RLE REORDER and RLE REORDER(MD)
in Figure 16 are better than those in Figure 15.
In Figure 16, the relative space ratio of RLE
REORDER is approximately between 0.65
and 0.69 and that of RLE REORDER(MD) is

between 0.64 and 0.69. Temperature readings
are considered as a more well-organized data
set than wind speed readings since the wind
speed readings change more sharply than the
temperature readings. It means that the tempera-
ture readings have less data to be reorganized
than the wind speed readings. In addition, since

Figure 16. Experiment according to the number of data with wind speed readings (Run-length
encoding)

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Database Management, 25(1), 1-28, January-March 2014 23

the wind speed readings have irregular patterns,
Movement Dropping does not occur frequently
as shown in Figure 16.

The size of the position affects the compres-
sion ratio of the run-length encoding with data
reordering. Figure 17 shows how the amount
of space changes according to the size of the
position. Note that we partition data with the

size 2the size of the position. Therefore, if the size of
the position is too small, one segment contains
a small number of data. In this case, the chance
that a token is moved and merged with other
token is reduced. Therefore, the amount of space
is big when the size of the position is small in
Figure 17. On the other hand, if the size of the
position is too big, we need a large amount of

Figure 17. Experiment according to the size of the position in the run-length encoding with data
reordering

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

24 Journal of Database Management, 25(1), 1-28, January-March 2014

space to store the movement information al-
though we can merge a large number of tokens.
Therefore, in Figure 17, the amount of space
is big when the size of the position is big. The
size of the position is set when the amount of
space is minimized.

Bucketing Scheme with
Data Reordering

To show the effectiveness of the bucketing
scheme with data reordering, we conduct
experiments with temperature readings and
wind speed readings. In these experiments,

we set the error bound to 0.3. Also, we denote
the original bucketing scheme by BUCKET,
the bucketing scheme with data reordering by
BUCKET REORDER, the bucketing scheme
with data reordering using Movement Drop-
ping by BUCKET REORDER(MD), and the
bucketing scheme with data reordering using
Movement Dropping and Neighbor Merging
by BUCKET REORDER(NM).

Figure 18-(a) shows the experiment ac-
cording to the number of data with temperature
readings. We can see that the three approaches
with data reordering are better than the original

Figure 18. Experiment according to the number of data with temperature readings (Bucketing
scheme)

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Database Management, 25(1), 1-28, January-March 2014 25

bucketing scheme. Figure 18-(b) shows the
relative space ratio according to the number
of data. Among three approaches with data
ordering, RLE REORDER(NM) shows the
best performance as expected. And, BUCKET
REORDER(MD) is a little better than BUCEKT
REORDER.

Figure 19 shows the experiment according
to the number of data with wind speed readings.
As mentioned before, the temperature readings

change smoothly compared to the wind speed
readings. It means that the temperature data
has less data to be reorganized than the wind
speed data. Therefore, the relative space ratios
in Figure 19 are much better than those in Figure
18. The ratios in Figure 18 are between 0.80
and 0.90, while those in Figure 19 are between
0.51 and 0.61.

Experimental results for compression/de-
compression time are shown in the supplemental

Figure 19. Experiment according to the number of data with wind speed readings (Bucketing
scheme)

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

26 Journal of Database Management, 25(1), 1-28, January-March 2014

document (http://islab.kaist.ac.kr/JDM_Reor-
dering_Supplemental_Document.pdf).

CONCLUSION

The compression schemes can be considered
with data reordering. Some previous works
have dealt with data reordering in compression
schemes. However, it can be applied to only
unordered data. In this paper, we consider the
run-length encoding with data reordering and
the bucketing scheme with data reordering for
ordered data. By analyzing the compression
schemes, we represent the data movement
information for reorganizing data by the com-
pact representation≪start, newStart≫. Based
on the compact representation, we propose the
encoding and decoding algorithms for both com-
pression schemes. Moreover, we propose two
optimization techniques, Movement Dropping
and Neighbor Merging. Finally, experimental
results show that our approaches with data
reordering are better than the original compres-
sion schemes in terms of space. Through the
experimental results, we show the possibility
that we can improve compression schemes by
combining data reordering. Based on these
results, we will analyze other compression
schemes with data reordering.

ACKNOWLEDGMENT

We would like to thank the editor and anony-
mous reviewers. This work was supported by
the National Research Foundation of Korea
grant funded by the Korean government (MSIP)
(No. NRF-2009-0081365).

REFERENCES

Abadi, D. J., Madden, S., & Ferreira, M. (2006).
Integrating compression and execution in column-
oriented database systems. In Proceedings of the ACM
SIGMOD International Conference on Management
of Data, Chicago, IL (pp. 671–682).

Apaydin, T., Tosun, A. S., & Ferhatosmanoglu, H.
(2008). Analysis of basic data reordering techniques.
In Proceedings of the Scientific and Statistical Da-
tabase Management Conference (SSDBM), Hong
Kong, China (pp. 517-524).

Blandford, D., & Blelloch, G. (2002). Index compres-
sion through document reordering. In Proceedings of
the Data Compression Conference (DCC), Snowbird,
UT (pp. 342-351).

Buragohain, C., Shrivastava, N., & Suri, S. (2007).
Space efficient streaming algorithms for the maxi-
mum error histogram. In Proceedings of the Inter-
national Conference on Data Engineering (ICDE),
Istanbul, Turkey (pp. 1026–1035).

Burrows, M., & Wheeler, D. J. (1994). Block-sorting
lossless data compression algorithm. Digital Equip-
ment Corporation.

Chen, H., Li, J., & Mohapatra, P. (2004). RACE:
Time series compression with rate adaptivity and
error bound for sensor networks. In Proceedings of
the IEEE International Conference on Mobile Ad-
hoc and Sensor Systems (MASS), Fort Lauderdale,
FL (pp. 124-133).

Chen, Y., Dong, G., Han, J., Wah, B. W., & Wan, J.
(2002). Multi-dimensional regression analysis of
time-series data stream. In Proceedings of the Very
Large Data Bases (VLDB), Hong Kong, China (pp.
323-334).

DataSet. (2012). Earth climate and weather. Re-
trieved October 1, 2012, from http://www-k12.atmos.
washington.edu/k12/grayskies/

Degermark, M., Engan, M., Nordgren, B., & Pink, S.
(1996). Low-loss tcp/ip header compression for wire-
less networks. In Proceedings of the International
Conference on Mobile Computing and Networking
(MOBICOM), Rye (pp. 1–14).

Deligiannakis, A., Kotidis, Y., & Roussopoulos, N.
(2004). Compressing historical information in sen-
sor networks. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
Paris, France (pp. 527-538).

Deligiannakis, A., Kotidis, Y., & Roussopoulos,
N. (2007). Dissemination of compressed historical
information in sensor networks. The VLDB Journal,
16(4), 439–461. doi:10.1007/s00778-005-0173-5

DeVore, R. A., Jawerth, B., & Lucier, B. J. (1992).
Image compression through wavelet transform
coding. IEEE Transactions on Information Theory,
38(2), 719–746. doi:10.1109/18.119733

http://islab.kaist.ac.kr/JDM_Reordering_Supplemental_Document.pdf
http://islab.kaist.ac.kr/JDM_Reordering_Supplemental_Document.pdf
http://www-k12.atmos.washington.edu/k12/grayskies/
http://www-k12.atmos.washington.edu/k12/grayskies/
http://dx.doi.org/10.1007/s00778-005-0173-5
http://dx.doi.org/10.1109/18.119733

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Database Management, 25(1), 1-28, January-March 2014 27

Elmeleegy, H., Elmagarmid, A. K., Cecchet, E., Aref,
W. G., & Zwaenepoel, W. (2009). Online piece-wise
linear approximation of numerical streams with
precision guarantees. In Proceedings of the VLDB
Endowment (PVLDB), Lyon, France (pp. 145-156).

Gandhi, S., Nath, S., Suri, S., & Lie, J. (2009).
GAMPS: Compressing multi sensor data by grouping
and amplitude scaling. In Proceedings of the ACM
SIGMOD International Conference on Management
of Data, Providence, RI (pp. 771-784).

Goldstein, J., Ramakrishnan, R., & Shaft, U. (1998).
Compressing relations and indexes. In Proceedings
of the International Conference on Data Engineering
(ICDE), Orlando, FL (pp. 370–379).

Graefe, G., & Shapiro, L. D. (1991). Data compres-
sion and database performance. In Proceedings of
the ACM/IEEE-CS Symp. On Applied Computing
(pp. 22–27).

Hai, P. N., Lenco, D., Poncelet, P., & Teisseire, M.
(2013). Mining representative movement patterns
through compression. Advances in Knowledge Dis-
covery and Data mining, 7818, 314-326.

Iyer, B. R., & Wilhite, D. (1994). Data compression
support in databases. In Proceedings of the Very Large
Data Bases (VLDB), Santiago, Chile, (pp. 695–704).

Johnson, D., Krishnan, S., Chhugani, J., Kumar, S., &
Venkatasubramanian, S. (2004). Compressing large
boolean matrices using reordering techniques. In
Proceedings of the Very Large Data Bases (VLDB),
Toronto, Canada (pp. 13-23).

Johnson, T. (1999). Performance measurements of
compressed bitmap indice. In Proceedings of the
Very Large Data Bases (VLDB), Edinburgh, Scotland
(pp. 278-289).

Korn, F., Jagadish, H. V., & Faloutsos, C. (1997).
Efficiently supporting ad hoc queries in large data-
sets of time sequences. In Proceedings of the ACM
SIGMOD International Conference on Management
of Data, Tucson, AZ (pp. 289-300).

Liu, W., Kan, A., Chan, J., Bailey, J., Leckie, C., Pei,
J., & Ramamohanarao, K. (2012). On compressing
weighted time-evolving graphs. In Proceedings of
the ACM International Conference on Information
and Knowledge Management (CIKM), Maui, HI
(pp. 2319-2322).

Ouyang, Z., Memon, N., Suel, T., & Trendafilov, D.
(2002). Cluster-based delta compression of a col-
lection of files. In Proceedings of the International
Conference on Web Information Systems Engineering
(WISE), Singapore (pp. 257-268).

Pennebaker, W. B., & Mitchell, J. L. (1993). Still
image data compression standards. Springer.

Pinar, A., Tao, T., & Ferhatosmanoglu, H. (2005).
Compressing bitmap indices by data reorganization.
In Proceedings of the International Conference
on Data Engineering (ICDE), Tokyo, Japan (pp.
310-321).

Rao, K. R., & Yip, P. (1990). Discrete cosine
transforms - Algorithms, advantages, applications.
Academic Press.

Ray, G., Haritsa, J. R., & Seshadri, S. (1995). Da-
tabase compression: A performance enhancement
tool. In Proceedings of the International Conference
on Management of Data (COMAD), Pune, India.

Reeves, G., Liu, J., Nath, S., & Zhao, F. (2009). Man-
aging massive time series streams with multi-scale
compressed trickles. In Proceedings of the VLDB
Endowment (PVLDB), Lyon, France (pp. 97-108).

Salomon, D. (2004). Data compression: The complete
reference. Springer.

Toivonen, H., Zhou, F., Hartikainen, A., & Hinkka, A.
(2011). Compression of weighted graphs. In Proceed-
ings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Diego,
CA (pp. 965-973).

Wikipedia. (2012). Run-legnth encoding. Retrieved
October 1, 2012, from http://en.wikipedia.org/wiki/
Run-length_encoding

Zhang, J., Liu, H., Ling, T. W., Bruckner, R. M.,
& Tjoa, A. M. (2006). A framework for efficient
association rule mining in XML data. Journal of
Database Management, 17, 19–49. doi:10.4018/
jdm.2006070102

http://en.wikipedia.org/wiki/Run-length_encoding
http://en.wikipedia.org/wiki/Run-length_encoding
http://dx.doi.org/10.4018/jdm.2006070102
http://dx.doi.org/10.4018/jdm.2006070102

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

28 Journal of Database Management, 25(1), 1-28, January-March 2014

Chun-Hee Lee received the Ph.D. degree in computer science from the Korea Advanced Institute
of Science and Technology (KAIST) in 2010. His research interests include data compression,
sensor networks, stream data management, and graph databases.

Chin-Wan Chung is a professor in the Department of Computer Science at the Korea Advanced
Institute of Science and Technology (KAIST), Korea. He received a B.S. degree in electrical en-
gineering from Seoul National University, Korea, and a Ph.D. degree in computer engineering
from the University of Michigan, Ann Arbor, USA. He was a Senior Research Scientist and a
Staff Research Scientist in the Computer Science Department at the General Motors Research
Laboratories. He has published 118 papers in the international journals and conferences, pub-
lished 120 papers in the domestic journals and conferences, and registered 24 international
and domestic patents. He received the best paper award at ACM SIGMOD in 2013. He was in
the program committees of major international conferences including ACM SIGMOD, VLDB,
IEEE ICDE, and WWW. He was an associate editor of ACM TOIT, and is an associate editor
of WWW Journal. He will be the General Chair of WWW 2014. His current research interests
include Web, social networks, graph databases, and spatio-temporal databases.

	Reference r1
	Reference r2
	Reference r3
	Reference r4
	Reference r5
	Reference r6
	Reference r7
	Reference r8
	Reference r9
	Reference r10
	Reference r11
	Reference r12
	Reference r13
	Reference r14
	Reference r15
	Reference r16
	Reference r17
	Reference r18
	Reference r19
	Reference r20
	Reference r21
	Reference r22
	Reference r23
	Reference r24
	Reference r25
	Reference r26
	Reference r27
	Reference r28
	Reference r29
	Reference r30
	Reference r31
	Reference r32
	Table t1
	Boxed Text b1 Text
	Figure f01
	Figure f02
	Figure f03
	Figure f04
	Figure f05
	Figure f06
	Figure f07
	Figure f08
	Figure f09
	Figure f10
	Figure f11
	Figure f12
	Figure f13
	Figure f14
	Figure f15
	Figure f16
	Figure f17
	Figure f18
	Figure f19

