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Abstract. Compressive sensing (CS) is a new approach for the acqui-
sition and recovery of sparse signals and images that enables sampling
rates significantly below the classical Nyquist rate. Despite significant
progress in the theory and methods of CS, little headway has been made
in compressive video acquisition and recovery. Video CS is complicated
by the ephemeral nature of dynamic events, which makes direct exten-
sions of standard CS imaging architectures and signal models infeasible.
In this paper, we develop a new framework for video CS for dynamic
textured scenes that models the evolution of the scene as a linear dy-
namical system (LDS). This reduces the video recovery problem to first
estimating the model parameters of the LDS from compressive measure-
ments, from which the image frames are then reconstructed. We exploit
the low-dimensional dynamic parameters (the state sequence) and high-
dimensional static parameters (the observation matrix) of the LDS to
devise a novel compressive measurement strategy that measures only
the dynamic part of the scene at each instant and accumulates measure-
ments over time to estimate the static parameters. This enables us to
considerably lower the compressive measurement rate considerably. We
validate our approach with a range of experiments including classification
experiments that highlight the effectiveness of the proposed approach.

1 Introduction

Recent advances in the field of compressive sensing (CS) [4] have led to the
development of imaging devices that sense at measurement rates below than
the Nyquist rate. Compressive sensing exploits the property that the sensed
signal is often sparse in some transform basis in order to recover it from a small
number of linear, random, multiplexed measurements. Robust signal recovery
is possible from a number of measurements that is proportional to the sparsity
level of the signal, as opposed to its ambient dimensionality. While there hasÆ This research was partially supported by the Office of Naval Research under the
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been remarkable progress in CS for static signals such as images, its application
to sensing temporal sequences or videos has been rather limited. Yet, video
CS makes a compelling application towards dramatically reducing sensing costs.
This manifests itself in many ways including alleviating the data deluge problems
faced in the processing and storage of videos.

Existing methods for video CS work under the assumption of the availability
of multiple measurements at each time instant. To date, such measurements have
been obtained using a snapshot imager [20] or by stacking consecutive measure-
ments from a single pixel camera (SPC) [8]. Given such a sequence of compressive
measurements, reconstruction of the video has been approached in multiple di-
rections. Wakin et al. [21] use 3D space-time wavelets as the sparsifying basis for
recovering videos from snapshots of compressive measurements. Park and Wakin
[12] use a coarse-to-fine estimation framework wherein the video, reconstructed
at a coarse level, is used to estimate motion vectors that are subsequently used to
design dictionaries for reconstruction at a finer level. Vaswani [16] and Vaswani
and Lu [17] propose a sequential framework that exploits the similarity of sup-
port and the value the signal takes in this support between adjacent frames of a
video. All of these algorithms require a large number of measurements at each
time instant and, in most cases, the number of measurements is proportional to
the sparsity of an individual frame. This is unsatisfactory as at this compression
ratio it is possible to stably reconstruct the individual frames by themselves.

Video CS stands to benefit immensely with the use of strong models char-
acterizing the signals. Park and Wakin [12] use MPEG-like block-matching to
improve sparsity of the signal by tuning a wavelet. Veeraraghavan et al. [18]
propose a compressive sensing framework of periodic scenes using coded strob-
ing techniques. In this paper, we explore the use of predictive/generative signal
models for video CS that are characterized by static parameters. Predictive
modeling provides a prior for the evolution of the video in both forward and
reverse time. By relating video frames over small durations, predictive modeling
helps to reduce the number of measurements required at a given time instant.
Models that are largely characterized by static parameters help in eliminating
problems arising from the ephemeral nature of dynamic events. Under such a
model, measurements taken at all time instants contribute towards estimation
of the static parameters. At each time instant, it is only required to sense at the
rate sufficient to acquire the dynamic component of the scene, which could be
significantly lower than the sparsity of an individual frame of the video. One dy-
namic scene model that exhibits predictive modeling as well as high-dimensional
static parameters is the linear dynamical system (LDS). In this paper, we de-
velop methods for the CS of dynamic scenes modeled as LDS motivated, in part,
by the extensive use of such models in characterizing dynamic textures [5, 7, 14],
matching shape sequences [19], and activity modeling and video clustering [15].

In particular, the paper makes the following contributions. We propose a
framework called CS-LDS for video acquisition using a LDS model coupled with
sparse priors for the parameters of the LDS model. The core of the proposed
framework is a two-step measurement strategy that enables the recovery of LDS



parameters directly from compressive measurements. We solve for the param-
eters of the LDS using an efficient recovery algorithm that exploits structured
sparsity patterns in the observation matrix. Finally, we demonstrate stable re-
covery of dynamic textures at very low measurement rates.

2 Background and prior work

Compressive sensing: Consider a signal y P R
N , which is K-sparse in an

orthonormal basis Ψ ; that is, s P R
N , defined as s � ΨTy, has at most K non-

zero components. Compressive sensing [4, 6] deals with the recovery of y from
undersampled linear measurements of the form z � Φy � ΦΨs, where Φ P R

M�N

is the measurement matrix. For M   N , estimating y from the measurements
z is an ill-conditioned problem. Exploiting the sparsity of s, CS states that the
signal y can be recovered exactly from M � OpK logpN{Kqq measurements
provided the matrix ΦΨ satisfies the so-called restricted isometry property (RIP)
[1].

In practical scenarios with noise, the signal s (or equivalently, y) can be
recovered from z by solving a convex problem of the form

min }s}1 subject to }z� ΦΨs} ¤ ǫ (1)

with ǫ a bound on the measurement noise. It can be shown that the solution
to (1) is with high probability the K-sparse solution that we seek. The the-
oretical guarantees of CS have been extended to compressible signals [10]. In
a compressible signal, the sorted coefficients of s decay rapidly according to a
power-law.

There exist a wide range of algorithms that solve (1) under various approxi-
mations or reformulations [4, 3]. Greedy techniques such as CoSAMP [11] solve
(1) efficiently with strong convergence properties and low computational com-
plexity. It is also easy to impose structural constraints such as block sparsity
into CoSAMP giving variants such as model-based CoSAMP [2].

Dynamic textures and linear dynamical systems: Linear dynamical
systems represent a class of parametric models for time-series data. includ-
ing dynamic textures [7], traffic scenes [5], and human activities [19, 15]. Lettyt, t � 0, . . . , T u be a sequence of frames indexed by time t. The LDS model
parameterizes the evolution of yt as follows:

yt � Cxt �wt wt � Np0, Rq, R P R
N�N (2)

xt�1 � Axt � vt vt � Np0, Qq, Q P R
d�d (3)

where xt P R
d is the hidden state vector, A P R

d�d the transition matrix, and
C P R

N�d is the observation matrix.
Given the observations tytu, the truncated SVD of the matrix rys1:T �ry1,y2, . . . ,yT s can be used to estimate both C and A. In particular, an estimate



of the observation matrix C is obtained using the truncated SVD of rys1:T . Note
that the choice of C is unique only up to a d� d linear transformation. That is,
given rys1:T , we can define pC � UL, where L is an invertible d� d matrix. This
represents our choice of coordinates in the subspace defined by the columns of
C. This lack of uniqueness leads to structured sparsity patterns which can be
exploited in the inference algorithms.

3 Compressive acquisition of linear dynamical systems

For the rest of the paper, we use the following notation. At time t, the image
observation (the t-th frame of the video) is yt P R

N and the hidden state is
xt P R

d such that yt � Cxt, where C P R
N�d is the observation matrix. We use

z to denote compressive measurements and Φ and Ψ to denote the measurement
and sparsifying matrices respectively. We use “:” subscripts to denote sequences,
such as x1:T � tx1,x2, . . . ,xT u and r�s1:T to denote matrices, such as rys1:T is
the N � T matrix formed by y1:T such that the k-th column is yk.

One of the key features of an LDS is that the observations yt lie in the
subspace spanned by the columns of the matrix C. The subspace spanned by
C forms a static parameter of the system. Estimating C and the dynamics en-
coded in the state sequence x1:T is sufficient for reconstructing the video. For
most LDSs, N " d, thereby making C much higher dimensional than the state
sequence txtu. In this sense, the LDS models the video using high information
rate static parameters (such as C) and low information rate dynamic compo-
nents (such as xt). This relates to our initial motivation for identifying signal
models with parameters that are largely static. The subspace spanned by C is
static, and hence, we can “pool” measurements over time to recover C.

Further, given that the observations yt are compressible in a wavelet/Fourier
basis, we can argue that the columns of C need to be compressive as well, either
in a similar wavelet basis. This is also motivated by the fact that columns of
C encodes the dominant motion in the scene, and for a large set of videos,
this is smooth and has sparse representation in a wavelet/DCT basis or in a
dictionary learnt from training data. We can exploit this along the lines of the
theory of CS. However, note that yt � Cxt is a bilinear relationship in C and
xt which complicates direct inference of the unknowns. Towards alleviating this
non-linearity, we propose a two-step measurement process that allows to estimate
the state xt first and subsequently solve for a sparse approximation of C. We
refer to this as the CS-LDS framework.

3.1 Outline of the CS-LDS framework

At each time instant t, we take two sets of measurements:

zt � �qztrzt
 � � qΦrΦt

�
yt � Φtyt, (4)



Fig. 1. Block diagram of the CS-LDS framework.

where qzt P R
|M and rzt P R

�M , such that the total number of measurements at
each frame is M � |M � �M . Consecutive measurements from an SPC [8] can be
aggregated to provide multiple measurements at each t under the assumption
of a quasi-stationary scene. We denote qzt as common measurements since the
corresponding measurement matrix qΦ is the same at each time instant. We denoterz as the innovations measurements.

The CS-LDS, first, solves for the state sequence rxs1:T and subsequently, es-
timates the observation matrix C. The common measurements rqzs1:T are related
to the state sequence rxs1:T as follows:rqzs1:T � �qz1 qz2 � � � qzT � � qΦC �x1 x2 � � � xT

� � qΦCrxs1:T . (5)

The SVD of rqzs1:T � USV T allows us to identify rxs1:T up to a linear trans-
formation. In particular, the columns of V corresponding to the top d singular
values form an estimate of rxs1:T up to a d � d linear transformation (the am-
biguity being the choice of coordinate). When the video sequence is exactly an

LDS of d dimensions, this estimate is exact provided |M ¡ d. The estimate can
be very accurate, when the video sequence is approximated by a d-dimensional
subspace as discussed later in this section.

Once we have an estimate of the state sequence, say rpxs1:T , we can obtain C

by solving the following convex problem:pP1q min
ḑ

k�1

}ΨTck}1, subject to }zt � ΦtCpxt}2 ¤ ǫ,�t (6)

where ck is the k-th column of the matrix C, and Ψ is a sparsifying basis for the
columns of C. In Section 3.3, we show that the specifics of our measurements
induce a structured sparsity in the columns of C, and this naturally leads to an
efficient greedy solution.

To summarize (see Figure 1), the design of the measurement matrix as in
(4) enables the estimation of the state sequence using just the common mea-
surements, and subsequently solving for C using the diversity present in the
innovations measurements rrzst.
3.2 Random projections of LDS data

As mentioned earlier, when rys1:T lies exactly in the (column) span of thematrix

C, then rqzs1:T lies in the span of qΦC. Hence, the SVD of rqzs1:T can be used to



recover the state sequence up to a linear transformation, provided |M ¥ drqzs1:T � USV T , rpxs1:T � SdV
T
d (7)

where Sd is the d�d principal sub-matrix of S and Vd is the T �d matrix formed
by columns of V corresponding to the largest d singular values. In practice, the
observations yt lie close to the subspace spanned by C such that projection of
onto C makes for a highly accurate approximation of yt. In such a case, the
estimate of the state sequence from the SVD of rqzs1:T is accurate only when the
observations yt are compressible [9]. In our case, this is equivalent to imposing
a power-law decay on the singular values. Figure 2 shows the accuracy of the
approximation of the estimated state sequence for various values of |M . This
suggests that, in practice, xt can be reliably estimated with |M9d.

3.3 Structured sparsity and recovery with modified CoSAMP

The SVD of the common compressive measurements qzt introduces an ambiguity
in the estimates of the state sequence in the form of rpxs1:T � L�1rxs1:T , where L
is an invertible d� d matrix. Solving (P1) using this estimate will, at best, lead

to an estimate pC � CL satisfying zt � Φt
pCpxt. This ambiguity introduces addi-

tional concerns in the estimation of C. Suppose the columns of C are K-sparse
(equivalently, compressible for a certain value of K) each in Ψ with support Sk

for the k-th column. Then, the columns of CL are potentially dK-sparse with
identical supports S � �k Sk. The support is exactly dK-sparse when the Sk are
disjoint and L is dense. At first glance, this seems to be a significant drawback,
since the overall sparsity of pC has increased to d2K. However, this apparent
increase in sparsity is alleviated by the columns having identical supports. The
property of identical supports on the columns of CL can be exploited to solve
(P1) very efficiently using greedy methods.

Given the state sequence, we use a modified CoSAMP algorithm to estimate
C. The modification exploits the structured sparsity induced by the columns of
C having identical support. In this regard, the resulting algorithm is a particular
instance of the model-based CoSAMP algorithm [2]. One of the key properties
of model-based CoSAMP is that stable signal recovery requires only a num-
ber of measurements that is proportional to the model-sparsity of the signal,
which in our case is equal to dK. Hence, we can recover the observation matrix
from OpdK logpNdqq measurements [2]. Figure 3 summarizes the model-based
CoSAMP algorithm used for recovering the observation matrix C.

3.4 Performance and measurement rate

For a stable recovery of the observation matrixC, we need in totalOpdK logpNdqq
measurements. In addition to this, for recovering the state sequence, we need a
number of common measurements proportional to the dimensionality of the state
vectors

MT 9 dK logpNdq, |M 9 d. (8)
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Fig. 2. Average error in estimating the state sequence from common measurements for
various values of state dimension d and the ratio |M{d. Statistics were computed using
114 videos of 250 frames taken from the DynTex database [13].

Compared to Nyquist sampling, we obtain a measurement rate pM{Nq given by

M

N
9 dK logpNdq

NT
. (9)

This indicates extremely favorable operating scenarios for the CS-LDS frame-
work, especially when T is large (as in a high frame rate capture). Consider a
segment of a video of fixed duration observed at various sampling rates. The
effective number of frames, T , changes with the sampling rate, fs (in frames per
second), as T9fs. However, the complexity of the video measured using the state
space dimension d does not change. Hence, as the sampling rate fs increases,�M can be decreased while keeping Mfs constant. This will ensure that (8) is
satisfied, enabling a stable recovery of C. This suggests that as the sampling
rate fs increases our measurement rate decreases, a very desirable property for
high-speed imaging.

3.5 Extensions

Mean + LDS: In many instances, a dynamical scene is modeled better as an
LDS over a static background, that is, yt � Cxt � µ. This can be handled with
two minimal modifications to the algorithm described above. First, the state
sequence rx̂s1:T is obtained by performing SVD on the matrix rqzs1:T modified
such that the each row sums to zero. This works under the assumption that
the sample mean of qz1:T is equal to qΦµ, the compressive measurement of µ.
Second, we use model-based CoSAMP to estimate both C and µ simultaneously.
However, only the columns ofC enjoy the structured sparsity model. The support
of µ is not constrained to be similar to that of C.



pC = CoSaMP Model SparsitypΨ,K, zt, pxt, Φt, t � 1, . . . , T q
Notation:

supppvec;Kq returns the support of K largest elements of vec
A|Ω,� represents the submatrix of A with rows indexed by Ω and all columns.
A|�,Ω represents the submatrix of A with columns indexed by Ω and all rows.�t,Θt � ΦtΨ�t,vt � 0 P R

M

Ωold � φ

While (stopping conditions are not met)

R � °
t Θ

T
t vtpxT

t

�
R P R

N�d
�

k P r1, . . . , Ns, rpkq � °d

i�1
R2pk, iq �

r P R
N
�

Ω � Ωold

�
supppr; 2Kq

Find A P R
|Ω|�d that minimizes

°
t
}zt � pΘtq|�,ΩApxt}2

B|Ω,� � A

B|Ωc ,� � 0

k P r1, . . . , Ns,bpkq � °d

i�1
B2pk, iq �

b P R
N
�

Ω � supppb;Kq
S|Ω,� � B|Ω,� S|Ωc ,� � 0
Ωold � ΩpC � ΨB�t,vt � zt �ΘtSpxt

Fig. 3. Pseudo-code of the model-based CoSAMP algorithm for CS-LDS.

4 Experimental validation

We present a range of experiments validating various aspects of the CS-LDS
framework. Our test dataset comprises of videos from DynTex [13] and data we

collected using high speed cameras. For most experiments, we chose |M � 2d,
with d and K chosen appropriately. We used the mean+LDS model for all the
experiments with the 2D DCT as the sparsifying basis for the columns of C as
well as the mean. Finally, the entries of the measurement matrix were sampled
from iid standard Gaussian distribution. We compare against frame-by-frame

CS where each frame of the video is recovered separately using conventional CS
techniques. We use the term oracle LDS for parameters and video reconstruction
obtained by operating on the original data itself. The oracle LDS estimates
the parameters using a rank-d approximation to the ground truth data. The
reconstruction SNR of the oracle LDS gives an upper bound on achievable SNR.
Finally, the ambiguity in observation matrix (due to non-uniqueness of the SVD



Fig. 4. Reconstruction of T � 1024 frames of a scene of resolution N � 64� 64 pixels
shown as a mosaic. The original data was collected using a high speed camera operating
at 1000 fps. Compressive measurements were obtained with |M � 30 and �M � 20,
thereby giving a measurement rate M{N � 1.2%. Reconstruction was performed using
an LDS with d � 15 and K � 150. Shown above are 64 uniformly sampled frames from
the ground truth (left) and the reconstruction (right).

based factorization) as estimated by oracle LDS and CS-LDS is resolved for
visual comparison in Figures 5 and 6.

Reconstruction: Figure 4 shows reconstruction results from data collected
from a high speed camera of a candle flame. Figure 5 shows the estimated ob-
servation matrix as well as the state sequence.

Figure 6 shows video reconstruction of a dynamic texture from the DynTex
dataset [13]. Reconstruction results are under a measurement rateM{N � 1{234
(about 0.42% ), an operating point where a frame-to-frame CS recovery is com-
pletely infeasible. However, the dynamic component of the scene is relatively
small (d � 20) which allows us to recover the video from relatively few mea-
surements. The SNR of the reconstructions shown are as follows: Oracle LDS =
24.97 dB, frame-to-frame CS: 11.75 dB and CS-LDS: 22.08 dB.

Performance with measurement noise: It is worth noting that the
video sequences used in the experiments have moderate model fit error at a
given value of d. The columns of C with larger singular values are, inherently,
better conditioned to deal with this model error. The columns corresponding
to the smaller singular values are invariably estimated at higher error. This is
reflected in the estimates of the C matrix in Figures 5 and 6.

Figure 7 shows the performance of the recovery algorithm for various levels of
measurement noise. The effect of the measurement noise on the reconstructions
is perceived only at much lower SNR. This is, in part, due to the model fit error
dominating the performance of the algorithm when the measurement noise SNR
is very high. As the measurement SNR drops significantly below the model fit



(a) Ground truth observation matrix CG

(b) Estimated observation matrix pCL pL � pC:CGq
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Fig. 5. Ground truth and estimated parameters corresponding to Figure 4. Shown
are the top 10 columns of the observation matrix and state sequences. Matlab’s “jet”
colormap (red� �large and blue� �large) is used in (a) and (b).

error, predictably, it starts influencing the reconstructions more. This provides a
certain amount of flexibility in the design of potential CS-LDS cameras especially
in scenarios where we are not primarily interested in visualization of the sensed
video.

Sampling rate: Figure 8 shows reconstruction plots of the candle sequence
(of Figure 4) for 1 second of video at various sampling rates. We use (9) to
predict the required measurement rates at various sampling rates to maintain a
constant reconstruction SNR. As expected, the reconstruction SNR remains the
same, while the measurement rate decreases significantly with a linear increase in
the sampling rate. This makes the CS-LDS framework extremely promising for
high speed capture applications. In contrast, most existing video CS algorithms
have measurement rates that, at best, remain constant as the sampling rate
increases.

Application to scene classification: In this experiment, we study feasi-
bility of classification problems on the videos sensed and reconstructed under
the CS-LDS framework. We consider the UCSD traffic database used in [5]. The
dataset consists of 254 videos of length 50 frames capturing traffic of three types:
light, moderate, heavy. Figure 9 shows reconstruction results on a traffic sequence
from the dataset. We performed a classification experiment of the videos into
these three categories. There are 4 different train-test scenarios provided with
the dataset. Classification is performed using the subspace-angles based metric



(a) Mosaic of frames of a video, with each column a different time instant, and each row a different

algorithm. (top row to bottom) ground truth, oracle LDS, CS-LDS, and frame-by-frame CS.

(b) Mosaic of ground truth (top) and estimated (bottom) observation matrix

Fig. 6. Reconstruction of a fire texture of length 250 frames and resolution of N �
128 � 128 pixels. Compressive measurements were obtained at |M � 30 and �M � 40
measurements per frame, there by giving a measurement rate of 0.42% of Nyquist.
Reconstruction was performed with d � 20 and K � 30. Frames of the videos are
shown in false-color for better contrast.
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Fig. 7. Resilience of the CS-LDS framework to measurement noise. (Left) Reconstruc-
tion SNR as a function of measurement rates and input SNR levels computed using 32
Monte-Carlo simulations. The “black-dotted” line shows the reconstruction SNR for
an d � 20 oracle LDS. (Right) Snapshots at various operating points. The dynamic
texture of Figure 6 was used for this result.

with a nearest-neighbor classifier on the LDS parameters [14]. The experiment
was performed using the parameters estimated directly without reconstructing
the frames. For comparison, we also perform the same experiments with fitting



(a) Ground truth

(b) fs � 256 Hz, |M � 30, �M � 170, Meas. rate = 5%, SNR = 13.73 dB.

(c) fs � 512 Hz, |M � 30, �M � 70, Meas. rate = 2.44%, SNR = 13.73 dB.

(d) fs � 1024 Hz, |M � 30, �M � 20, Meas. rate = 1.22%, SNR = 12.63 dB.

Fig. 8. As the sampling frequency fs increases, we maintain the same reconstruction
capabilities for significantly lesser number of measurements. Shown are reconstructions
for N � 64 � 64 and various sampling frequencies, achieved measurement rates, and
reconstruction SNRs.

Table 1. Classification results (in %) on the traffic databases for two different values
of state space dimension d. Results are over a database of 254 videos, each of length
50 frames at a resolution of 64� 64 pixels under a measurement rate of 4%.

(a) d � 10

Expt 1 Expt 2 Expt 3 Expt 4

Oracle LDS 85.71 85.93 87.5 92.06
CS-LDS 84.12 87.5 89.06 85.71

(b) d � 5

Expt 1 Expt 2 Expt 3 Expt 4

Oracle LDS 77.77 82.81 92.18 80.95
CS-LDS 85.71 73.43 78.1 76.1

the LDS model on the original frames (oracle LDS). Table 4 shows classification
results. We see that we obtain comparable classification performance using the
proposed CS-LDS recovery algorithm to the oracle LDS. This suggests that the
CS-LDS camera is extremely useful in a wide range of applications not tied to
video recovery.

5 Discussion

In this paper, we proposed a framework for the compressive acquisition of dy-
namic scenes modeled as LDSs. We show that the strong scene model for the



(a) Original frames (b) Reconstructed frames

(c) Estimates of observation matrix C

Fig. 9. Reconstructions of a traffic scene of N � 64� 64 pixels at a measurement rate
4%, with d � 15 and K � 40. The quality of reconstruction and LDS parameters is
sufficient for capturing the flow of traffic.

video enables stable reconstructions at very low measurement rates. In partic-
ular, this emphasizes the power of video models that are predictive as well as
static.

Extensions of the CS-LDS framework: The CS-LDS algorithm proposed in
this paper requires, at best, Opdq measurements per time instant. This roughly
corresponds to the number of degrees of freedom in the dynamics of the video un-
der a d-dimensional LDS model. However, the state transition model of the LDS
further constrains the dynamics by providing a model for the evolution of the
signal. Incorporating this might help in reducing the number of measurements
required at each time instant. Another direction for future research is in fast re-
covery algorithms that operate at multiple spatio-temporal scales, exploiting the
fact that a global LDS model induces a local LDS model as well. Finally, much of
the proposed algorithm relies on sparsity of the observation matrix C. Wavelets
and Fourier (DCT) bases do not sparsify videos where the motion is localized in
space. This suggests the use of dyadic partition methods such as platelets [22],
which have been shown to have success in modeling bounded shapes.

Newer models for video CS: While the CS-LDS framework makes a com-
pelling case study of LDSs for video CS, its applicability to an arbitrary video
is limited. The LDS model is well-matched to a large class of dynamic textures
such as flames, water, traffic etc. but does not extend to simple non-stationary
scenes such as people walking. The importance of video models for CS motivates
the search for models that are more general than LDS. In this regard, a promis-
ing line of future research is to leverage our new understanding of video models
for compression algorithm-based CS recovery.
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