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Abstract— We propose a novel blind image deconvolution
(BID) regularization framework for compressive sensing (CS)
based imaging systems capturing blurred images. The proposed
framework relies on a constrained optimization technique, which
is solved by a sequence of unconstrained sub-problems, and
allows the incorporation of existing CS reconstruction algorithms
in compressive BID problems. As an example, a non-convex l p

quasi-norm with 0 < p < 1 is employed as a regularization term
for the image, while a simultaneous auto-regressive regularization
term is selected for the blur. Nevertheless, the proposed approach
is very general and it can be easily adapted to other state-of-
the-art BID schemes that utilize different, application specific,
image/blur regularization terms. Experimental results, obtained
with simulations using blurred synthetic images and real passive
millimeter-wave images, show the feasibility of the proposed
method and its advantages over existing approaches.

Index Terms— Inverse methods, compressive sensing, blind
image deconvolution, constrained optimization.

I. INTRODUCTION

D
IGITAL imaging devices have improved considerably

over the years, thus becoming increasingly popular in

many different technical areas. Two of their basic requirements

are the fulfillment of acquisition and compression. During the

acquisition process, the challenge is to capture an image with

the highest possible spatial resolution. On the other hand,

during compression, the challenge is to store images efficiently

and reliably. Often, improved visual quality is synonymous

to greater number of imaging sensors and therefore higher

sampling rates. In conventional imaging systems the accurate

representation of the captured scene is achieved by enforcing

the Nyquist sampling theorem. The Nyquist theorem states

that the image acquisition sampling rate should be at least

twice the scene’s highest frequency.

Recently, several imaging devices have been proposed in

which acquisition and compression are performed simulta-

neously, [2]–[4]. They are based on the compressive sens-

ing (CS) theory and require that the signals of interest are

sparse or have an approximately sparse representation in a
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transformation domain (basis), such as Wavelet or Fourier.

Through a CS setting, far fewer measurements, than the

desired resolution, are required to accurately reconstruct such

signals, [5]–[7]. These measurements, however, are different

from the samples that traditional analog-to-digital converters

utilize. Instead of simple point evaluations, each measurement

is obtained through an inner product of the signal with a

different measurement vector. Measurement reduction allows

the front ends of imaging devices to become simpler, smaller,

and cheaper. This property is desirable for all imaging devices

but especially for cumbersome and expensive ones, such

as those that capture radiation in the non-visible spectrum

(e.g., X-rays, infrared or millimeter wave cameras).

The standard formulation of the CS model is given in

matrix-vector form by

y = �x + n, (1)

where the N ×1 vector x and the M ×1 vector n represent the

lexicographically ordered unknown image and the observation

noise, respectively. The M × N matrix � represents the CS

measurement matrix while the M × 1 vector y corresponds to

the CS observations. The unknown image, x, is assumed to be

of size m × n = N . Note that M ≪ N .

Extending the CS principles to general purpose acquisition

devices is not a straightforward task. Many signals are natu-

rally sparse (e.g., radar pulses) or compressible (e.g., natural

images), yet the sparsity assumption for the vector x is often an

oversimplification which does not exploit possible knowledge

about the structure of a signal. Although structured sparsity

models (e.g., Markov random fields in [8]) have proven

efficient in capturing the sparsity structure of specific signals,

they cannot be generalized for any type of signal. For example,

in [9], [10], it was shown that the spikes present during

an electrophysiological recording of a neuron are far better

modeled by a stream of impulse responses rather than a series

of impulses. Furthermore, the authors in [9], [10] proposed

richer sparsity schemes that capture the convolutional structure

of pulse streams by defining the following model,

y = �Hx + n, (2)

where the N × N matrix H represents the convolution matrix

created from the neuron’s impulse response (denoted by the

N × 1 vector h), and the N × 1 vector x is assumed to

be sparse. The authors in [10] derived the lower bound for

the number of measurements needed to accurately reconstruct

the sparse vector x, and proposed a reconstruction algorithm

which recovers simultaneously the unknown vectors x and h

for several real-world acquisition systems (e.g., neuronal pulse

streams and astronomical imaging). One of the disadvantages

1057-7149 © 2013 IEEE
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of the method in [10] is its inability to recover the unknown

vectors when pulses overlap.

Neuronal pulse streams fall in the category of filtered sparse

processes [11]. However, filtered sparse processes arise in a

number of contexts, such as nuclear radiation [12], reflection

seismology [13], [14], or communications [11]. The authors in

[15] use the same model as in (2) for filtered sparse processes

and establish sufficient conditions for exact recovery of both

x and h when the unknown system H is auto-regressive of a

known order.

Similarly, in [16] the authors proposed the model in (2)

to reduce the measurements performed by satellites and

aerospace probes of the next generation deep-space imaging

systems, hence alleviating the problems of storage, power

consumption and transmission without degrading the spatial

resolution or the picture quality. In [16], the authors assumed

that the acquired images are sparse in a transformed domain

and that the N × N matrix H represents the blurring matrix

created from a known blurring point spread function (PSF)

which exists due to the atmosphere, unsuited focal length

or relative motion, among other factors. The authors applied

curvelet regularization and the Poisson singular integral (PSI)

deblurring operator for the purposes of CS deconvolution.

Extensions of [16] were presented in [17], where curvelet

regularization was combined with total variation (TV) reg-

ularization for improved performance, and in [18], where

geometric transformations of the imaging system were taken

into account while the PSF was estimated through calibration

procedures.

The above analysis shows that the model introduced by (2)

has numerous applications which are recently being explored.

However, we should note an important distinction between

the aforementioned techniques. Methods [9], [10], [15] refer

to signals that are sparse in the spatial (or time) domain. For

such signals, a smooth impulse response h has the effect of

spreading out the signal (e.g., spikes), reducing its sparsity,

since the number of nonzero entries increases. On the other

hand, methods [16]–[18] deal with images that are sparse

in a transformed domain (e.g., frequency). In this case, the

effect of convolving the image with a PSF is equivalent to

low-pass filtering of the signal which reduces the nonzero

coefficients in the transformed domain, sparsifying the signal

further and therefore permitting easier reconstruction of its

blurred version. However, in this case, additional steps need

to be followed to obtain the blur-free version of the signal.

We adopt the second approach, assuming that the signals

of interest (images) are compressible and utilize the model

presented in (2) to describe the acquisition process of lens-

based CS imaging systems. Matrix H can be viewed as the

convolution matrix resulting from the PSF of the lens, limited

aperture dimensions, lack of focus, atmospheric turbulences

or combinations of the above. For an imaging system, in

general, h cannot always be known a priori and its esti-

mation is essential for the accurate reconstruction of sharp

images. In this work, we propose an approach to estimate

both the unknown image x and the blur h through CS

measurements. We provide a BID regularization framework,

based on constrained optimization techniques, which allow the

use of existing CS reconstruction algorithms in compressive

BID problems. To emphasize on the practical applications of

the acquisition model, in the experimental section, we pro-

pose the reconstruction/restoration of passive millimeter wave

(PMMW) images acquired through lens-based CS imaging

systems.

This paper is organized as follows. We provide an overview

of existing CS reconstruction algorithms and explain the basis

for the proposed compressive BID reconstruction algorithm

in section II. The proposed CS BID algorithm is analyzed in

section III. Finally, supporting experimental results are pro-

vided in section IV, and conclusions are drawn in section V.

II. COMPRESSIVE SENSING RECONSTRUCTION

ALGORITHMS

CS image recovery calls for estimating the sparse or com-

pressible vector x from the noisy observation y in (1). It is

widely known that this is an ill-conditioned problem, and that

simple recovery algorithms, based on least-squares techniques,

are unable to accurately recover the unknown sparse vector x.

Instead, the most commonly used approach is to solve the

following optimization problem,

minimize
x

‖y − �x‖2 + τ‖x‖1, (3)

where ‖ · ‖ denotes the Euclidean norm, ‖ · ‖1 denotes the

l1-norm, and τ is a non-negative regularization parameter. In

the last few years, numerous approaches have been proposed to

solve this optimization scheme; for example, linear program-

ing methods (e.g., [19]), stochastic approximation methods

(e.g., [20]), interior-point methods (e.g., [21]) or Bayesian for-

mulation methods (e.g., [22]), among others. Finding efficient

and accurate solutions for the sparse vector x is still a very

active research area.

A. Reconstruction of Compressible Signals

Many real-world signals are actually not sparse in the

acquisition domain and reconstruction methods, based on the

model shown in (1) and the optimization problem shown in

(3), cannot be applied directly. However, a commonly used

assumption is that the signal of interest x is sparse in the

transformed domain (i.e., x = Wa, where the sparse vector

a represents the transformed coefficients corresponding to N

basis vectors which span the column space of the N × N

matrix W). This assumption allows us to utilize state-of-the-art

CS algorithms, in their original forms, by solving the following

optimization problem,

minimize
a

‖y − �Wa‖2 + τ‖a‖1. (4)

To complicate things further, many signals of interest are not

even sparse in the transformed domain. A commonly used

assumption at this point is that such signals are compressible

(see [23], [24]). The term compressible refers to signals which

can be approximated well by a linear combination of K (K ≪

N) basis vectors from the column space of the matrix W. In

addition, the magnitude of their sorted transformed coefficients
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Fig. 1. Examples: 1st column represents the original images; 2nd column
represents rapidly decaying magnitudes of the sorted wavelet coefficients,
through the Haar wavelet transform, for their respective original images of
the 1st column. Note that the image intensities have been normalized.

(denoted by as) must decay rapidly. This rapid decay is often

modeled by the power-decay law

|as(i)| ≤ Const · i−q , i = 1, 2, . . . , N, (5)

where q ≥ 1. The magnitude exhibits higher decay rates for

larger q . Figure 1 demonstrates the rapid magnitude decay of

as for two standard images that are referenced in many image

processing papers.

In [23] it was shown that, if the magnitude of as decays

as described by the power-decay law in (5), the original

signal x can be well approximated by keeping only the

K -largest entries (in magnitude) of vector a and zeroing out

the remaining ones. Let us denote such approximation of the

original signal x by xK . The authors in [23] also provided an

upper bound for the error term for q ≥ 1 as follows,

‖x − xK ‖ ≤ C1 · K 1/2−q, (6)

where C1 is a non-negative constant. In Figure 2 we show

enlarged image patches of the reconstructions obtained by

keeping the K -largest entries of vector a. It is observed that

even the reconstructions obtained by keeping only 10% of the

largest entries yield visually acceptable results.

B. Reconstruction of Blurred Signals

As already discussed in section I, blurring is unavoidable

in many imaging systems. Here, we analyze some common

types of blur, encountered in real-world imaging systems, and

show that blurred signals are indeed compressible and usually

exhibit faster decay rates for the magnitude of their wavelet

coefficients than their respective original versions. Let us first

introduce the analytical models for such blurs.

Fig. 2. Examples: 1st column represents enlarged image patches of the

original normalized images in Figure 1; 2nd , 3rd and 4th columns represent,
respectively, the reconstructions obtained by keeping the largest 30%, 20%
and 10% of the wavelet coefficients, through the Haar wavelet transform.

1) Motion Blur: This type of blur represents the one-

dimensional (1D) local averaging of neighboring pixels, a

common result of camera panning or fast object motion. For

example, the horizontal motion blur can be modeled by

h(u) =

⎧

⎨

⎩

1

L + 1
, −

L

2
≤ u1 ≤

L

2
; u2 = 0

0 , otherwi se

, (7)

where L is assumed to be an even integer and u = (u1, u2).

Motion blur may also occur in two dimensions (2D), e.g.,

following a random trajectory, as a rotation, etc.

2) Atmospheric Turbulence Blur: This type of blur repre-

sents a long term exposure through the atmosphere which is

typically modeled by a Gaussian PSF,

h (u) = K e
−

|u|2

2σ2 , (8)

where K is a normalizing constant ensuring that the blur has

unit volume, and σ 2 is the variance that determines the severity

of the blur.

3) Uniform Out-of-Focus Blur: This type of blur is primar-

ily due to the effects at the camera aperture which depend

on various parameters. These parameters include focal length,

camera aperture size and shape, distance between camera and

observed scene, wavelength of the incoming radiation, and

the effects due to diffraction. Accurate knowledge of all these

parameters is not frequently available after a picture is taken.

When the blur due to poor focusing is large, the following

uniform model has been used as an approximation of such

PSFs,

h (u) =

⎧

⎨

⎩

1

πr2
, |u| ≤ r

0 , otherwi se

, (9)

where r denotes radius and controls the severity of the blur.

In Figure 3 we analyze the effect of blurring on the decay

rates of the magnitude of the sorted wavelet coefficients for

the standard “Cameraman" and “Lena" images, presented in

Figure 1. First we degrade the “Cameraman" image with

Gaussian blurs of variance 3 and 9. Second, we degrade the

“Lena” image with horizontal motion blurs of length 5 and

10 pixels. In both cases, blurring results in a more rapid

decay for the magnitude of the sorted wavelet coefficients,
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Fig. 3. Upper part: 1st column represents the original normalized image; 2nd

column shows the resulting degraded images with a Gaussian blur of variance

3 and 9, respectively; 3rd column depicts rapidly decaying magnitudes of
the sorted wavelet coefficients for the presented images. Lower part: 1st

column represents the original normalized image; 2nd column shows the
resulting degraded images with a horizontal motion blur of length 5 and

10 pixels, respectively; 3rd column depicts the rapidly decaying coefficients
for the presented images. In both graphs we provide the best fitting decaying
power-law that bounds the magnitude of the wavelet coefficients for the
original image, according to equation (5). For the calculation of the wavelet

coefficients, the Haar wavelet transform was used. Values smaller than 10−4

were pruned away for visualization purposes.

compared to the respective magnitudes of the original images.

At the same time, while the severity of the blur increases,

the decay rates increase as well. The upper part of Figure 4

presents the equivalent results for the “Shepp-Logan” image

degraded with uniform blurs of variance 3 and 9. In the

lower part of Figure 4, the same experiment is repeated for

an MRI image with Gaussian blurs of variance 1 and 4. At

first glance, the results for the “Shepp-Logan” image appear

to contradict the observations of Figure 3. Even though the

magnitude of the wavelet coefficients for the blurred images

decays faster initially, the rate of decrease soon changes and

becomes slower than the corresponding rate for the original

image. On the other hand, for the MRI image, the decay rates

for the blurred signal follow the observations of Figure 3.

Our analysis demonstrates that blurred signals are indeed

compressible, obeying the power-law decay of equation (5).

Examples for the values of the parameters Const and q of

equation (5), when it is fitted to the magnitudes of the wavelet

coefficients of the original images, are also presented in the

graphs of Figures 3 and 4. Similar experiments were conducted

with a series of images degraded with all three types of blur

presented here and converged to the following observation.

For natural images (e.g., “Cameraman”, “Lena”), which

usually contain a significant amount of edges while exhibiting

smooth variations of their image intensities, blurring leads

to faster decay rates for the magnitude of their wavelet
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Fig. 4. Upper part: 1st column represents the original normalized image; 2nd

column shows the resulting degraded images with a uniform blur of radius

3 and 9, respectively; 3rd column depicts the rapidly decaying magnitudes
of the sorted wavelet coefficients for the presented images. Lower part:

1st column represents the original normalized image; 2nd column shows
the resulting degraded images with a Gaussian blur of variance 1 and

4, respectively; 3rd column depicts the rapidly decaying coefficients for
the presented images. In both graphs we provide the best fitting decaying
power-law that bounds the magnitude of the wavelet coefficients for the
original image, according to equation (5). For the calculation of the wavelet

coefficients, the Haar wavelet transform was used. Values smaller than 10−4

were pruned away for visualization purposes.

coefficients. Although additional coefficients retain non-zero

values, their magnitude is insignificantly small and the blurred

signal can be well approximated by less coefficients than the

original one, hence making it more compressible and easier to

reconstruct. On the contrary, for piece-wise smooth (usually

synthetic) images, which contain only few edges with extreme

intensity variations (e.g., “Shepp-Logan”), blurring has the

opposite effect, since the additional wavelet coefficients in the

blurred signal still maintain significant magnitudes contain-

ing essential information for accurate signal reconstruction.

Nevertheless, piece-wise smooth images whose edges are not

as sharp, such as the MRI image, exhibit similar behavior to

the natural images. Therefore, fewer measurements would be

required to attain a certain reconstruction error, as dictated by

equation (6).

C. Simultaneous Compressive Sensing and Blind Deconvolu-

tion

In this paper, our focus is to establish a robust framework in

which existing, state-of-the-art, CS algorithms can be conve-

niently incorporated for solving the compressed BID problem,

as defined in (2), where both image x and blur h are unknown.

This goal is accomplished exploiting the compressibility of the

blurred signals, as explained in section II-B, and the relation

Hx = Wa. Therefore, we can now recover the blurred signal
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Hx by solving the typical CS optimization problem

minimize
a

‖y − �Wa‖2 + τ‖a‖1. (10)

The goal of BID algorithms is to recover the unknown

image and the unknown blur. Many existing BID approaches

are formulated as optimization problems (see [25] for the

most recent literature review), where a cost function, with a

number of regularization constraint terms, is minimized. Let us

denote the solution of (10) by â and the reconstructed blurred

signal by ẑ (i.e., ẑ = Wâ). The cost function is chosen as

the error function
∥

∥ẑ − Hx
∥

∥

2
which ensures fidelity to the

data. It is well-known that the BID problem is ill-posed, [25],

and that regularization terms for the image and the blur are

needed. The regularization terms are used to impose additional

constraints on the unknowns. The effect of the regularization

terms is controlled by regularization parameters, that basically

represent the trade-off between fidelity to the data and the

desirable properties (e.g., piece-wise smoothness) of the solu-

tion. A general form of the functional to be minimized, using

BID techniques, is

minimize
x,h

β

2
‖ẑ − Hx‖2 + αR1(x) + γ R2(h), (11)

where β, α, γ are non-negative regularization parameters, and

R1(·) and R2(·) are some regularization functionals. Note that,

we intentionally did not specify both the regularization terms

for the image and blur to keep the framework as general as

possible. In practice, the regularization terms should be chosen

based on some prior assumptions about the unknowns. For

example, if an image is expected to be piece-wise smooth,

introducing the total variation (TV) regularization for the

image is a popular choice (see [26]).

Based on the above analysis, a typical way to solve the

CS BID problem would be to follow a sequential approach.

That is, one first solves the CS reconstruction problem, using

(10), to obtain the blurred signal ẑ and then performs BID,

solving the regularized minimization problem (11). However,

combining both equations into a simultaneous optimization

problem leads to improved performance as we will show in

section IV.

Therefore, let us propose the constrained optimization prob-

lem which allows us to link the solutions of (10) and (11),

and recover, simultaneously, the transformed coefficients a of

the blurred image, the unknown image x, and the unknown

blur h,

minimize
x,h,a

β

2
‖y − �Wa‖2 + τ‖a‖1 + αR1(x) + γ R2(h)

subject to Hx = Wa. (12)

The advantage of (12) compared to the sequential CS BID

approach is the ability to impose an additional structural

constraint on the transformed coefficients a. We accomplish

this through the relation Hx = Wa and by exploiting the

convolutional inter-dependencies between the image x and the

blur h when solving for the transformed coefficients a.

III. REGULARIZATION BASED APPROACH

Let us now propose an algorithm that finds a solution of

the constrained optimization problem (12) by solving a series

of unconstrained sub-problems. In this work we adopted the

quadratic penalty method (see section 17.1 in [27] for more

details). This method suggests the formation of a quadratic

functional Q(a, h, x; η) by adding a quadratic penalty term to

the original objective function in (12), such that,

Q(a, h, x; η) =
β

2
‖y − �Wa‖2 +

η

2
‖Wa − Hx‖2+

+ τ‖a‖1 + αR1(x) + γ R2(h),

(13)

where the non-negative parameter η is the penalty parameter.

Now, with the addition of the quadratic penalty term to

the original objective, we replace the constrained optimization

problem defined in (12) by a series of unconstrained optimiza-

tion sub-problems, of the form,

minimize
x,h,a

Q(a, h, x; η). (14)

The solution of (14) coincides with the solution of (12) when

the non-negative parameter η approaches ∞ (see section 17.1

in [27] for more details). Some other popular approaches, that

could be employed here, are non-smooth exact penalty meth-

ods and the method of multipliers or augmented Lagrangian

method (see sections 17.2 and 17.3 in [27]). The augmented

Lagrangian method is known to reduce the possibility of ill-

conditioning by introducing explicit Lagrangian multipliers

into the function to be minimized. However, we did not

(experimentally) observe these ill-conditioning effects of the

quadratic penalty method, after performing an extensive set of

experiments with different blurs and noise levels.

We solve the aforementioned problem by alternating min-

imization (AM) solving for one unknown while fixing the

remaining ones. Clearly, the AM approach sets an optimization

framework, in which one can introduce existing state-of-the-

art CS reconstruction algorithms when solving for the sparse

vector a. The update strategy of the AM framework results in

the following sequence of unconstrained sub-problems,

xk+1 = arg min
x

Q(ak , hk, x; ηk), (15)

hk+1 = arg min
h

Q(ak , h, xk+1; ηk), (16)

ak+1 = arg min
a

Q(a, hk+1, xk+1; ηk), (17)

ηk+1 = θηk, (18)

where k is the iteration number, and θ > 1.

Note that various algorithms can, in fact, be used to cal-

culate the unknown vectors (e.g., steepest descent, conjugate

gradient, direct inversion in the discrete Fourier domain, etc.).

A. Implementation Details

First, let us specify the regularization terms utilized for

the image and blur. Their selection is application specific

and should be done based on some prior assumptions and

expectations. In this work, similarly to [28] and [29], we

utilize a non-convex lp quasi norm with 0 < p < 1 for the
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image, since the derivatives of blurry images are expected to

be sparse. The distributions of the image derivatives often have

heavier tails that are better modeled with the non-convex lp

quasi norm prior compared to the convex priors modeled with

p = 1, 2. We employ a variant of the lp quasi-norm as a

regularization term for the image,

R1(x) =

[

∑

d∈D

21−o(d)
∑

i

|�d
i (x)|p

]

, (19)

where o(d) ∈ {1, 2} denotes the order of the difference

operator �d
i (x), 0 < p < 1, and d ∈ D = {h, v, hh, vv, hv}.

�h
i (x) and �v

i (x) correspond, respectively, to the horizontal

and vertical first order differences, at pixel i , that is, �h
i (x) =

ui−ul(i) and �v
i (x) = ui−ua(i), where l(i) and a(i) denote the

nearest neighbors of i , to the left and above, respectively. The

operators �hh
i (x), �vv

i (x), �hv
i (x) correspond, respectively,

to horizontal, vertical and horizontal-vertical second order

differences, at pixel i .

For the blur, we utilize a simultaneous auto-regressive

(SAR) regularization, that is,

R2(h) = ‖Ch‖2, (20)

where C is the discrete Laplacian operator. The SAR reg-

ularization (see [30] for a Bayesian interpretation) imposes

smoothness on the blur estimates and it is typically applied

as a model for blurs that are expected to be smooth, as is the

case of atmospheric turbulence. Our motivation for choosing

a smooth prior for the blur is to blindly restore images

acquired by the PMMW imager from ANL, [31], for which

we are finding that the PSF of the imaging system is smooth.

Furthermore, additional studies on PMMW imaging systems

(e.g., [32]) have shown that their PSFs exhibit smoothness.

Nonetheless, the developed theory can handle non-smooth

blurs by appropriately modifying the blur model.

At the same time, as the minimization of the non-convex

functional in (14) is not straightforward, we employ the

majorization-minimization approach [33] to bound the non-

convex image regularizer R1(x) by the functional M1(x, V),

that is,

R1(x) ≤ M1(x, V), (21)

where M1(x, V) is defined as

M1(x, V) =
p

2

∑

d∈D

21−o(d)
∑

i

[�d
i (x)]2 +

2−p
p

vd,i

v
1−p/2
d,i

, (22)

and V is a matrix with elements vd,i > 0. Detailed derivation

of this bound is presented in [34].

Finally, we present our BID algorithm for compressive

sampling. In algorithm 1, we follow a general framework

for solving a constrained optimization problem by a series of

unconstrained ones (see Chapter 17 in [27] for more details).

Algorithm. Given α, β, γ , τ , η1, a1, and V1,1, where the

rows of Vk,l are denoted by v
k,l
d ∈ (R+)N , with d ∈

{h, v, hh, vv, hv}, and an initial estimate of the blur h1,1. For

k = 1, 2, . . . until a stopping criterion is met:

1) For l = 1, 2, . . . until a stopping criterion is met:

1.a) Calculate

xk,l =
[

ηk(Hk,l )t (Hk,l) + αp
∑

d 21−o(d)(�d )t B
k,l
d (�d)

]−1

×ηk(Hk,l)t Wak, (23)

where B
k,l
d is a diagonal matrix with entries

B
k,l
d (i, i) = (v

k,l
d,i )

p/2−1 and �
d is the convolution

matrix of the difference operator �d
i (·).

1.b) Calculate

hk,l+1 =
[

ηk(Xk,l)t (Xk,l) + γ Ct C
]−1

× ηk(Xk,l)t Wak,(24)

where Xk,l is the convolution matrix of the image xk,l .

1.c) For each d ∈ {h, v, hh, vv, hv} calculate

v
k,l+1
d,i = [�d

i (xk,l)]2. (25)

2) Set xk = xk,l , hk+1,1 = hk,l+1, Hk = Hk,l+1 and v
k+1,1
d,i =

v
k,l+1
d,i for each d ∈ {h, v, hh, vv, hv}.

3) Find

ak+1 = arg min a
β
2

‖ y − �Wa ‖2 +

+
ηk

2
‖ Wa − Hkxk ‖2 +τ‖a‖1. (26)

4) Set

ηk+1 = θηk, θ > 1. (27)

Note that, since (26) can be re-written as

ak+1 = arg min a ‖ y′ − �′Wa ‖2 +τ‖a‖1, (28)

where y′ =

⎡

⎣

√

β
2

y
√

ηk

2
Hkxk

⎤

⎦ and �′ =

⎡

⎣

√

β
2
�

√

ηk

2
I

⎤

⎦, then when

solving for the sparse vector a, existing CS reconstruction

algorithms (e.g., [21]) can be employed. Finally, as we have

already mentioned, different image and blur regularizers can

be used in our framework. This makes the proposed approach

a versatile model to solve compressive BID problems.

IV. EXPERIMENTAL RESULTS

In this section we conduct a series of experiments to support

our CS BID approach. In the first part, we perform synthetic

experiments and compare our algorithm with existing methods

while in the second part, we provide a brief description of

passive millimeter wave (PMMW) imaging systems and we

test our algorithm on real PMMW images.

For comparison purposes we use a set of state-of-the

art algorithms, namely l1-ls [21], GPSR [35], NESTA [36],

YALL1 [37], and CoSaMP [38], whose codes are available

online. These algorithms can solve for the signal x when

the CS observation is given by the model in (2) and the

convolution matrix H, or equivalently the blur h, is known

(non-blind case). Let us denote the vector of sparse coefficients

of the original signal in a transformed domain W by s, such

that the original signal is given by x = Ws.

Algorithms l1-ls and GPSR solve the problem

minimize
s

‖y − �HWs‖2 + τ‖s‖1. (29)
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Fig. 5. Average performance comparison of the non-blind and blind versions of the proposed approach with a series of state-of-the-art algorithms, namely,
l1-ls [21], GPSR [35], NESTA [36], YALL1 [37], and CoSaMP [38] that solve the non-blind reconstruction/restoration problem. All images are degraded with
a Gaussian PSF of variance 5 and Gaussian noise is added to the CS measurements so that SNR = 40 dB. Values smaller than 20 dB were pruned away for
visualization purposes.

Algorithms NESTA and YALL1 solve the analysis-based prob-

lem,

minimize ‖W−1x‖1 subject to ‖y − �Hx‖ < ǫ, (30)

which is equivalent to the problem in (29) when W corre-

sponds to a basis (e.g., Wavelet). Finally, CoSaMP is based

on Orthogonal Matching Pursuit (OMP) schemes and attempts

to find an approximation of the signal by restricting its support

to a user specified size of K .

A. Synthetic Experiments and Discussion

For the synthetic experiments we use the “Cameraman”,

“Lena”, and “Shepp-Logan” images of size 256 × 256 pixels.

All images are normalized, degraded with a Gaussian PSF

and Gaussian noise is added to the CS measurements. For

efficient implementation (due to the large size of the images)

we use circulant Gaussian measurement matrices (�). In

a detailed comparative study on various CS measurement

matrices, [39], circulant and toeplitz Gaussian and Bernoulli

measurement matrices have proven to perform equally well to

full random Gaussian or Bernoulli matrices. As a performance

metric, we use the peak signal to noise ratio (PSNR) which is

defined as

PSNR = 10 log10

N L2

‖x − x̂‖2
, (31)

where x and x̂ are the original and estimated images,

respectively, and the constant L represents the maximum

possible intensity value in image x. Furthermore, for all

experiments, we use the 3-level Haar wavelet transform as

our sparsifying basis W. Additional wavelet transforms from

the “Daubechies” family were tested providing similar relative

performance.

We perform two series of experiments for each image: non-

blind reconstructions/restorations when the blur h is assumed

to be known, and blind reconstructions/restorations when the

blur h is unknown and is being estimated.

For the non-blind experiments, the parameters in all the

aforementioned algorithms were optimized, based on the sug-

gestions of the authors as well as testing a large set of

different values and the best obtained results are presented

here. To achieve maximum performance, algorithms NESTA

and YALL1 were additionally fed with the real noise variance

as an indicator for the appropriate selection of the parameter ǫ,

whereas, for the CoSaMP algorithm, we provided an estimate

of the original signal sparsity in the wavelet domain by

counting the sparse coefficients that have magnitude greater

than 10−2. In our approach we, of course, skip step 1.b) of the

proposed algorithm in section III-A, since the blur is assumed

to be known. The parameters are set to {α, β, γ, τ, η1} =

{1, 1/σ 2, 5e5, 0.125, 1042} for the “Cameraman” and “Lena”

images and {α, β, γ, τ, η1} = {1, 1/σ 2, 25e5, 125, β/27} for

the “Shepp-Logan” image, where σ 2 denotes the noise vari-

ance. The rest of the algorithmic parameters, p and θ are

set to 0.8 and 1.3, respectively, for all images. The number

of iterations for the inner loop of the proposed algorithm

is set to 2 (in the quadratic penalty method, see [27], it

is suggested to calculate an approximate solution for the

unknowns at each iteration k). The algorithm is terminated

when the convergence criterion ‖xk − xk−1‖/‖xk−1‖ < 10−3

is satisfied. For the blind experiments, the parameters of

our algorithm stay unaltered but we change the conver-

gence criterion to ‖xk − xk−1‖/‖xk−1‖ < 10−2. Finally,

the initial blur estimate h1,1 is set to a Gaussian PSF of

variance 2.

We conduct experiments for compressive ratios 0.1 to 1

with step 0.1 for all algorithms. 10 experiments are conducted

per algorithm for each compressive ratio and the average per-

formance is reported. We test each algorithm under different

degradations and noise realizations. Specifically, we degrade

each of the tested images with Gaussian PSFs of variance

3, 5 and 9 and add Gaussian noise to the CS measurements

so that the signal to noise ratio (SNR) becomes 30 dB or 40

dB. The results for all conducted experiments are summarized

in Table I (on page 4003) where the step of CS ratios is

0.2 due to space limitations. Entries of the table in bold

denote the highest average PSNR for each tested set of: image,

blur variance, SNR and CS ratio. Additionally, a graphical

performance comparison is presented in Figure 5 for all tested

images, when they are degraded with a Gaussian PSF of
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Fig. 6. 1st column represents the original images; 2nd column depicts the

images of the 1st column, degraded with a Gaussian PSF of variance 5; 3rd

column shows the non-blind reconstruction/restoration for SNR = 40 dB and
100% of CS measurements, using the proposed algorithm; that is the best
image quality one can obtain using the proposed approach.

variance 5 and SNR = 40 dB. Both Table I and Figure 5 docu-

ment that, even though the non-blind version of our approach

exhibits low PSNRs for compressive ratios smaller than 0.3

it soon outperforms most compared algorithms for greater CS

ratios. However, note that image quality for ratios 0.1 − 0.2

is poor for all the tested approaches and the most meaningful

results appear when more CS measurements are acquired. The

algorithms that have competitive performance to our approach

are GPSR and, CoSaMP only for SNR = 40 dB. Note,

however, that the presented results were obtained by setting the

convergence tolerance of GPSR to 10−5 (much lower than our

approach). Additionally, CoSaMP requires and was provided

with an estimate of the image sparsity which is not usually

known a priori. For the blind reconstructions/restorations, our

algorithm performs reasonably well, achieving PSNRs close to

the non-blind case, especially for the “Shepp-Logan” image.

Furthermore, the blind results outperform the non-blind results

of some of the compared algorithms for CS ratios over 0.3.

Figures 6 and 7 depict the tested images, their blurry

degraded versions with a Gaussian PSF of variance 5, and

a series of non-blind and blind reconstructions/restorations

for various CS ratios when SNR = 40 dB. The presented

images correspond to the highest achieved PSNR out of the

10 tested cases for each CS ratio. It is apparent that images

of high visual quality are obtained following the proposed

framework. Additionally, in Figure 8, we provide the estimated

PSFs for the images presented in Figure 7 together with

the real Gaussian PSF of variance 5 used to degrade the

original images (in gray background). One can observe that

the accuracy of the PSF estimation reduces as compressive

Fig. 7. Blind reconstruction/restoration results, using the proposed algorithm,
for the images in Figure 6 (Gaussian PSF of variance 5 and SNR = 40 dB)
and for compressive ratios 0.8, 0.6, and 0.4 from left to right, respectively.
All presented images correspond to the maximum achieved PSNR from the
10 conducted experiments for each compressive ratio.
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Fig. 8. Estimated PSFs (17 × 17 central part) for the blind reconstruc-
tion/restoration results presented in Figure 7 (Gaussian PSF of variance 5 and

SNR = 40 dB). 1st row corresponds to the “Cameraman” image; 2nd row

corresponds to the “Lena” image; 3rd row corresponds to the “Shepp-Logan”
image for compressive ratios 0.8, 0.6 and 0.4 from left to right, respectively.
Note that the bottom-left graph with the gray background corresponds to the
original Gaussian PSF of variance 5, with which the original images were
degraded.

ratio decreases, resulting in lower image quality and some

ringing artifacts (e.g., “Cameraman” image for CS ratio 0.4 at

the upper-right corner of Figure 7). However, for the “Shepp-

Logan” image, PSF estimation is almost exact for a broad

range of CS ratios.

Now, we support our claim, in section II-C, that the

proposed simultaneous CS BID approach is superior to the
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Fig. 9. Average starting (B-PSNRẑ1 ) and ending (B-PSNR
ẑ

k f
) Blurred PSNRs, using the proposed CS BID algorithm, for all tested images. All images are

degraded with a Gaussian PSF of variance 5 and Gaussian noise is added to the CS measurements so that SNR = 30 dB or SNR = 40 dB.

Fig. 10. Example restorations: 1st column represents three different
uncompressed blurred PMMW images of size 41 × 43 pixels, obtained from
[31]. The PMMW images depict two cars and the middle part of a pair of

scissors; 2nd column represents the blind deconvolution result, without CS,

using the algorithm in [34]; 3rd , 4th , and 5th columns represent, respectively,
the restorations obtained by the proposed algorithm for compressive ratios
0.8, 0.6 and 0.4, where � is a binary S-cyclic matrix (see [53]–[55] for more
details).

sequential solution of problems (10) and (11). Let us denote

the initially estimated blurred signal, resulting from the solu-

tion of (10), by ẑ1 = Wa1 and the final estimated blurred

signal by ẑk f = Wak f , where k f denotes the final iteration

k of our proposed algorithm. We compare ẑ1 and ẑk f to

the original blurred signal z = Hx using the Blurred-PSNR

(B-PSNR) metric denoted by

B-PSNRẑ = 10 log10

N L2

‖z − ẑ‖2
, (32)

where the constant L represents the maximum possible

intensity value in image z. High B-PSNR for a signal ẑ

is expected to increase the accuracy to the solution of

(11). Therefore, showing that B-PSNR
ẑ

k f > B-PSNRẑ1 ,

means that the simultaneous approach is able to provide

improved performance compared to the sequential one, in the

experiments.

Figure 9 shows the average starting (B-PSNRẑ1 ) and ending

(B-PSNR
ẑ

k f ) B-PSNRs for all tested images when they are

blurred with a Gaussian PSF of variance 5 for different noise
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Fig. 11. Estimated PSFs (17 × 17 central part) for the blind reconstruc-
tion/restoration results of PMMW images, presented in the last three columns

of Figure 10. 1st and 2nd rows correspond to the car images; 3rd row
corresponds to the scissors image for compressive ratios 0.8, 0.6 and 0.4
from left to right, respectively.

realizations. The clear increase in blurred signal quality at

the final iteration of our algorithm effectively supports our

previous discussion. Similar results, which are not reported

here due to space limitations, were obtained for PSFs of

different variance.

Let us emphasize that an appealing fact of our framework is

that it is not restricted to specific algorithms when solving for

the sparse vector a in equation (26). Therefore, if the accuracy

of this step improves, higher image quality is expected to be

obtained. In our implementation, we use the l1-ls algorithm,

[21], for the solution of this step, but certainly the selection

of another, more robust, algorithm could potentially provide

improved performance overall.

In this work, we provide a robust framework, which com-

bines and simultaneously solves a CS and BID problem.

Unfortunately, we cannot utilize existing CS theory directly

in our problem since the restricted isometry property (RIP)
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TABLE I

AVERAGE PERFORMANCE COMPARISON OF THE NON-BLIND AND BLIND VERSIONS OF THE PROPOSED APPROACH WITH A SERIES OF

STATE-OF-THE-ART ALGORITHMS, NAMELY, l1-ls [21], GPSR [35], NESTA [36], YALL1 [37], AND CoSaMP [38] THAT SOLVE THE NON-BLIND

RECONSTRUCTION/RESTORATION PROBLEM. EXPERIMENTS WERE CONDUCTED WITH GAUSSIAN BLURS OF DIFFERENT VARIANCE AND VARIOUS

NOISE LEVELS. FOR EACH TESTED IMAGE (“CAMERAMAN”, “LENA”, “SHEPP-LOGAN”) 10 EXPERIMENTS WERE CONDUCTED FOR EACH

COMPRESSIVE RATIO 0.2 TO 1 WITH STEP 0.2 AND THE MEAN PNSR IS REPORTED HERE. ENTRIES OF THE TABLE IN BOLD DENOTE THE HIGHEST

AVERAGE PSNR FOR EACH TESTED SET OF: IMAGE, BLUR VARIANCE, SNR AND CS RATIO

might not always hold when the measurement matrix takes

the form �H, and therefore restoration guarantees imposed

by CS theory might not be achieved. However, as we have

shown in section II, the blurred image Hx is compressible and

consequently can be recovered using existing CS techniques

(in our case the measurement matrix is � alone), while

the regularization terms on the image x and the blur h are

employed to decouple the obtained signal Hx. In addition,

the regularization term on the image (i.e., R1(x)) aids in

combating the ill-posedness of the BID sub-problem by appro-

priately modeling the sparse edges of the image (similar to TV

regularization). Equivalent regularization terms have proven

very efficient in modeling images in a series of recent BID

algorithms presented in the literature, [40]–[47]. Furthermore,

the introduced form of the constrained optimization problem

is even more critical. The constraint Hx = Wa which is

incorporated in the minimization of equation (26) (step 3 of

the algorithm) provides refinement in the estimation of a at

each “outer-iteration” of the algorithm. Note that equation

(26) not only tries to minimize the ℓ1 norm of the sparse

coefficients a but, at the same time, tries to match them to

the currently estimated blurred signal Hkxk , hence providing

increasingly accurate estimates per iteration. This behavior

is also documented in the experimental results provided in

Figure 9. Older methods, solving the minimization problems

of equations (29) and (30), which clearly were not designed

for the solution of the CS deblurring problem, lack this

additional constraint. However, image deblurring is an ill-

posed problem. Therefore, direct minimization of the ℓ1 norm

of the sparse coefficients, without additional constraints to

the solution, per iteration, is not able to provide as high

performance, at least for CS ratios greater than 40%, as

the provided experimental results of Figure 5 and Table I

document.

The average time needed to complete one run of the pro-

posed algorithm for the tested images (size 256×256 pixels) is

around 4 − 5 minutes. The experiments were conducted using

MATLAB on a 2.7 GHz 4-core workstation with 4 GB of

RAM. However, our implementation is not optimized for com-

putational complexity purposes. The main goal of our work is

to develop a general framework for CS BID problems where

off-the-shelf CS algorithms can be selected for the solution of

step 3 of the algorithm as well as appropriately chosen priors

for the image and blur modeling. Therefore, computational

complexity is directly tied to the chosen methods for the

solution of each step.
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B. PMMW Imaging and Experiments

As mentioned in section I, the observation model in (2) can

be beneficial in numerous applications, ranging from aerospace

optical imaging devices to communications. Another important

area where CS ideas have been recently incorporated, for cost

reduction, is imaging systems for low-energy radiation spec-

tra (e.g., PMMW imaging). PMMW imagers collect natural

millimeter-wave radiation from the scene. The literature on

PMMW imaging technology is rich (see [48] for a review).

The millimeter-wave regime is part of the electromagnetic

spectrum, in the frequency band between 30 and 300 GHz,

and has significant advantages over conventional (e.g., vis-

ible light) imaging in low-visibility conditions during day

or night. In environments dominated by clouds, fog, smoke,

rain, snow and dust-storms, the millimeter-wave radiation is

attenuated a few orders of magnitude less than the visual

or infrared radiation. The ability to capture the scene in

low-visibility conditions has led to various applications of

PMMW technology over the course of years, [48]. Further-

more, advances in millimeter-wave radiometry (e.g., [49]) and

integrated-circuit technologies (e.g., [50]) extended their use

while technological breakthroughs led to the development of

PMMW video devices (e.g., [51]). More recently, active and

passive millimeter-wave scanners have been successfully intro-

duced at airports to detect a broad range of concealed threats

(e.g., [52]).

Conventional PMMW imaging systems consist of two main

components, [31]. The first is responsible for measuring the

incoming radiation while the second is responsible for direct-

ing the measurements and forming the image. The main dis-

advantage of these early devices is their complexity and their

long acquisition times. Recently, several imaging systems have

been proposed, [31], [53]–[56], to overcome these problems

by incorporating CS concepts.

We now evaluate the performance of the proposed algo-

rithm using real PMMW images (from [31]). To emphasize

on the practical applications of our approach, we test our

algorithm using binary (0/1) measurement matrices which

are realizable in the millimeter-wave spectrum. Specifically,

we employ binary S-cyclic matrices for PMMW imaging

systems, proposed and analyzed by the authors in [53]–[55].

For such matrices, the size of the image must be restricted to

p × q where p and q are consecutive prime numbers. Hence,

we use PMMW images of size 41 × 43 pixels to perform

experiments. In this experiment, the parameter space was set

to {α, β, γ, τ, η1} = {204.8, 76e3, 8e5, 100, β/27}. Also, we

assume a priori that the size of the blur is 11×11, and enforce

symmetry on the blur estimate after each iteration.

The resulting images, using this realizable sampling scheme,

are presented in Figure 10 for different compressive ratios. It

is evident that the resulting images are effectively enhanced

and the blur is removed to a high extent. Note that the

blurred-uncompressed images on the 1st column of Figure 10

correspond to the best achievable reconstruction when the

blurring function is not taken into consideration. Furthermore,

for comparison purposes, we provide a blind deconvolution

result, without CS, using the method presented in [34].

Figure 11 depicts the estimated PSFs, using our approach,

for the reconstruction/restoration of the PMMW images in

Figure 10. One can observe the consistency of the PSF

estimation across different compressive ratios for each image.

Moreover, the estimated PSFs for the two car images (first two

rows) look similar, while the PSF shape for the scissors image

(third row) appears spikier. Both car images were obtained

in an outdoors environment, whereas, the scissors image

was acquired indoors. The different acquisition configuration

(positioning of lenses, distance between object and imager)

supports such variations to the PSF shape.

V. CONCLUSION

In this paper, we presented a novel blind image decon-

volution (BID) framework for imaging systems based on

the principles of compressive sensing (CS). The proposed

algorithm solves a constrained optimization problem reformu-

lating it into a series of unconstrained sub-problems using the

quadratic penalty method. It extends existing CS state-of-the-

art algorithms that cannot be easily employed for the solution

of the BID problem. In addition, the proposed framework is

general and can be easily adapted to accomodate different

BID approaches which utilize alternative regularization terms

for the image and blur. Simultaneous reconstructions and

restorations of blurred synthetic images and real PMMW

images are presented to demonstrate the robustness of our

approach. We clearly show that modeling of the unknown

blur is desirable when restoring images obtained through lens-

based CS imaging systems.
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