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Abstract—We propose and investigate a compressive architec-
ture for estimation and tracking of sparse spatial channels in
millimeter (mm) wave picocellular networks. The base stations
are equipped with antenna arrays with a large number of
elements (which can fit within compact form factors because
of the small carrier wavelength) and employ radio frequency
(RF) beamforming, so that standard least squares adaptation
techniques (which require access to individual antenna elements)
are not applicable. We focus on the downlink, and show
that “compressive beacons,” transmitted using pseudorandom
phase settings at the base station array, and compressively
processed using pseudorandom phase settings at the mobile
array, provide information sufficient for accurate estimation of
the two-dimensional (2D) spatial frequencies associated with the
directions of departure of the dominant rays from the base
station, and the associated complex gains. This compressive
approach is compatible with coarse phase-only control, and is
based on a near-optimal sequential algorithm for frequency
estimation which can exploit the geometric continuity of the
channel across successive beaconing intervals to reduce the
overhead to less than 1% even for very large (32 × 32) arrays.
Compressive beaconing is essentially omnidirectional, and hence
does not enjoy the SNR and spatial reuse benefits of beamforming
obtained during data transmission. We therefore discuss system
level design considerations for ensuring that the beacon SNR
is sufficient for accurate channel estimation, and that inter-cell
beacon interference is controlled by an appropriate reuse scheme.

Index Terms—Compressive, mm wave, 60 GHz, picocells, RF
beamforming

I. INTRODUCTION

The explosive growth in demand for wireless mobile data,

driven by the proliferation of ever more sophisticated hand-

helds creating and consuming rich multimedia, calls for orders

of magnitude increases in the capacity of cellular data net-

works [1]. Millimeter wave communication from picocellular

base stations to mobile devices is a particularly promising

approach for meeting this challenge because of two reasons.

First, there are huge amounts of available spectrum, enabling

channel bandwidths of the order of GHz, 1-2 orders of mag-

nitude higher than those in existing systems at lower carrier

frequencies. Indeed, channel bandwidths could potentially

increase even further with advances in transceiver technology

such as bandwidth/power consumption/linearity tradeoffs for

ultra high-speed analog electronics, and speed/precision/power

consumption tradeoffs for analog-to-digital converters. Sec-

ond, the small carrier wavelength enables the realization of
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highly directive steerable arrays, with a large number of

antenna elements, in compact form factors, thus significantly

enhancing spatial reuse. In this paper, we address fundamental

signal processing challenges associated with channel estima-

tion and tracking for such large arrays, placed within the

context of system design for a mm wave picocellular network.

While the signal processing and system design concepts

presented here are of rather general applicability, our numer-

ical results are for a particular setting that we feel has great

promise, as also discussed in some of our prior publications

[2], [3]. We propose to employ the 60 GHz unlicensed band

for base station to mobile communication in outdoor picocells.

The base stations can be deployed on lampposts, rooftops or

ledges, and have multiple “faces,” with each face containing

one or more antenna arrays. An example deployment on

lampposts in a zig-zag configuration (successive base stations

on opposite sides of the street) along an urban canyon is

shown in Figure 1. At the base station, we consider very

large 32× 32 arrays (such 1000-element arrays are still only

palm-sized at a carrier wavelength of 5 mm) targeting the long

term, as well as “moderately sized” 8×8 arrays (which can fit

within an area of about half a square inch) which are currently

realizable. Note that 16-element arrays were reported several

years ago [4], and are already deployed in existing 60 GHz

products, while 32-element arrays have been prototyped [5].

We assume that mobile devices are equipped with smaller 4×4
antenna arrays. We focus on 60 GHz in order to leverage the

significant advances that have occurred over the past few years

targeting indoor wireless networks: once 60 GHz transceivers

are embedded in mobile devices, one could use them to extend

coverage to outdoor picocells, albeit with different approaches

to medium access than in standard indoor wireless networking

protocols. We focus on downlink 60 GHz communication, with

the goal of enabling base station arrays to perform transmit

beamforming towards mobile devices, despite the challenges

posed by mobility and blockage (which occurs more easily

at smaller wavelengths). We do not count on reciprocity. The

uplink could be a standard LTE or WiFi link at lower carrier

frequencies, used both for uplink data (not modeled here)

and feedback for enabling spatial channel estimation at the

transmitter.

Multiple antenna systems at lower carrier frequencies have

a relatively small number of elements, each with its own

radio frequency (RF) chain. This provides control of the

individual baseband signals associated with each element, en-

abling sophisticated adaptation, including frequency-selective

spatiotemporal processing (e.g., per subcarrier beamforming
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Fig. 1: Picocellular network deployed along an urban canyon

Fig. 2: Channel sounding scheme: The transmitter repeats the

M transmit beacons L times so that receivers can measure the

channel vi,j between every virtual transmit-receive pair

in OFDM systems). This approach does not scale when we

have a large number of antenna elements packed into a tiny

form factor. Instead, we consider RF beamforming, in which

a common baseband signal is routed to/from the antenna

elements, and we can only control the amplitude and phase for

each element. Indeed, we go even further, assuming that the

amplitude for each element is fixed, and that we can only apply

coarse four-phase control for each element. Standard least

squares array adaptation and channel estimation techniques,

which require access to the baseband signals associated with

each element, do not apply in this setting. Instead, we consider

here a compressive approach which exploits the sparsity of the

mm wave channel, so that relatively few measurements are

required for channel estimation despite the large number of

array elements.

Contributions: Our contributions are summarized as follows:

Architecture: We propose a novel architecture in which base

stations send out compressive beacons, with a different set

of pseudorandom phases used to transmit each beacon. Each

mobile measures the complex gains associated with each

beacon compressively, using pseudorandom control of the

phases of its receive array. The scheme, described in more

detail later, is depicted in Figure 2: the base station sends M
beacons, repeated L times, which permits the mobile to use

L different settings of its own array to measure the associated

complex gains. Each mobile feeds back appropriately chosen

functions of its measurements to the base stations on the uplink

(which can be a standard LTE link). Each base station use this

information to estimate and track the dominant paths to each

mobile that it receives feedback from.

Algorithms: For the regular two-dimensional (2D) arrays con-

sidered here, directions of arrival/departure map to 2D spatial

frequencies. The base station estimates the spatial frequencies

to each mobile using a simple sequential algorithm, shown

to be near-optimal (in terms of approaching the Cramer-Rao

Bound) in related publications. The algorithm exploits the

geometric continuity of the channel across successive beacon-

ing intervals to reduce the required number of compressive

measurements.

System Design: While we do not provide a complete system

design centered around our compressive strategy, we do pro-

vide preliminary results addressing some of the most important

issues. We show that the overhead incurred by our beaconing

scheme is very small (less than 1%). Furthermore, while com-

pressive beacons are essentially omnidirectional (in contrast

to the highly directive beams employed for communication),

the link budget suffices for accurate channel estimation, and a

simple beacon reuse strategy suffices to control inter-beacon

interference across picocells.

II. BACKGROUND AND RELATED WORK

There is a significant body of recent literature on the poten-

tial for mm wave communication for next generation mobile

cellular networks [6], [7], [8], [9], [10], [3]. For these outdoor

settings, most of the attention has focused on bands other than

60 GHz; for example, [10] studies blockage probabilities and

achievable throughput based on measurements in the 28, 38,

71-76 and 81-86 GHz bands. However, as pointed out in our

prior work [3], 60 GHz has immense potential at the relatively

short ranges of interest in urban picocells, with the oxygen

absorption characteristic of this band only having a marginal

impact on the link budget (e.g., only 1.6 dB at 100m). While

studies such as [7], [8], [9], [10] focus on coarse-grained

channel statistics (and their implications on system design and

performance), our focus here is on signal processing for fine-

grained channel estimation.

We assume that the channel is well described by a relatively

small number of discrete rays with delays and angles of

arrival/departure taking values in a continuum. The key contri-

bution of this paper is to provide a super-resolution framework

for estimating and tracking these rays, with model-based

estimation allowing us to go beyond (spatial) bandwidth based

resolution limits. To the best of our knowledge, the existing lit-

erature on mm wave measurements does not attempt to super-

resolve channels in this fashion, hence we do not know, for

example, whether the continuous power-delay profiles reported

in [10] are consistent with a parsimonious channel model such

as ours. However, preliminary experimental results [11], which

use compressive measurements to successfully recover power-

angle profiles for a controlled experiment (a small number

of reflectors in an anechoic chamber), indicate that a simple

ray-based model like ours may well suffice. Validating this

assertion would require application of the more sophisticated
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compressive estimation techniques discussed here, as opposed

to the standard basis pursuit algorithms employed in [11]. Note

that existing models for simulation-based evaluations, such as

the channel models standardized for IEEE 802.11ad indoor

60 GHz channels, typically assume more complex models

which are variants of the Saleh-Valenzuela model, with a

number of clusters, each consisting of multiple closely spaced

rays. Such cluster-based models could be motivated by the

roughness of reflecting surfaces such as walls, but they have

not been experimentally demonstrated. While these issues fall

beyond the scope of the present paper, which aims to make a

fundamental contribution to signal processing for sparse spatial

channels, a sustained effort in measurement-based validation

of our model and approach is a critically important topic for

future work.

Alternative approaches to spatial channel estimation with

RF beamforming include codebook-based techniques; in an

indoor WPAN setting, it was shown in [12] that the minimum

number of scanning beams for RF beamforming to get beam-

forming gains close to (within a dB) that of exhaustive search

is twice the number of antenna elements. This approach does

not scale to the large arrays of interest to us. Hierarchical

codebook search [13] is more efficient, but still requires far

more overhead than our scheme, since it does not exploit

channel sparsity.

A hardware enhancement to pure RF beamforming as

considered here (where a single RF chain serves all antenna

elements) is to employ hybrid analog-digital beamforming,

with a number of RF chains smaller than the number of

antenna elements. We may term this an array of subarrays,

with RF-level control for subarrays, and digital processing

of subarray outputs. Such an approach is used in [14], [15]

for spatial channel estimation. Our work shows, however,

that a single RF beamformed array suffices for this purpose.

Of course, arrays of subarrays are certainly required for

more advanced functionalities such as multiuser MIMO [16],

spatial multiplexing [17], [18], [19], [20], [21], and spatial

diversity [19], [22], [23]. Integrating the compressive approach

proposed in this paper within an array of subarrays architecture

is an interesting area for future work.

The present paper builds on our prior conference papers on

compressive array adaptation [24], [2], but goes well beyond

them in several respects. In addition to a more detailed devel-

opment of the analytical framework underlying our estimation

algorithm, we now explicitly model the receive array at the

mobile, which requires a generalization of the beaconing and

feedback strategy. We also address system level design for

compressive tracking in far greater detail, discussing link

budget and overhead, and accounting for inter-cell beacon

interference. Our initial work on compressive array adaptation

[24] subsequently led to a general framework for compressive

estimation [25], [26], which identify the isometries required

to preserve fundamental bounds such as the Ziv-Zakai (ZZB)

and Cramer-Rao (CRB), and use the relationship between

these bounds to provide criteria for determining the minimum

number of compressive measurements required to preserve

geometry and to permit accurate parameter estimation based

on a signal corrupted by an AWGN. We now adapt these

general results here to develop guidelines for system-level

parameter choices.

III. SYSTEM MODEL

Given the high demand for wireless data in dense urban

environments, we focus our modeling and performance eval-

uation on the urban canyon setting depicted in Figure 1, with

streets flanked by buildings on both sides. Picocellular base

stations are deployed on lampposts in a zig-zag pattern on both

sides of the street. We consider mm wave transmission on the

downlink (for beaconing and downlink data) and LTE or WiFi

at lower carrier frequencies on the uplink (for feedback and

uplink data). In terms of channel estimation and tracking, this

could be viewed as a worst-case assumption, since two-way

transmission on the same mm wave band could potentially be

exploited using channel reciprocity. For the east-west street

shown, each base station has two faces, facing east and west,

respectively. Each face can have multiple antenna arrays, but

for simplicity, we consider a single antenna array for each

face, used for both compressive beaconing and downlink

data communication. Mobile stations are modeled as either

pedestrians walking along sidewalks, or cars moving along

the street.

In our simulations, we model K = 4 dominant paths from

base station to mobile in our simulations: the line of sight

(LoS), and the single bounce reflections from the ground

or the side walls. Some of these paths may be blocked by

obstacles (diffraction around obstacles is limited for small

carrier wavelengths). We ignore multiple bounces, since such

paths get attenuated significantly, especially because each

bounce sees a smaller angle of incidence than a typical single

bounce. However, our compressive estimation algorithm does

not use the preceding assumptions on number of dominant

paths as prior information, and automatically discovers and

tracks paths.

For a regular d-spaced square N1D × N1D antenna array

and a point transmitter in the far-field, the channel seen by

the array is a mixture of 2D sinusoids, each corresponding to

a propagation path, and is given by

hm,n =

l=K
∑

l=1

gle
j(ωx,lm+ωz,ln), gl ∈ C, 1 ≤ m,n,≤ N1D,

where gl is the propagation gain of the l-th path, ωl =
(ωx,l, ωz,l) are the spatial frequencies corresponding to the

l-th path (w.l.o.g. we have assumed that the square array

is placed in the x-z plane, with its sides aligned to the

coordinate axes) and hm,n refers the channel seen by the

m,n-th antenna element,. The spatial frequencies of the l-
th path are given by ωx,l = 2π(d/λ) sin θl cosφl and ωz,l =
2π(d/λ) sin θl sinφl, where d denotes the array spacing, λ the

carrier wavelength and (θl, φl) the inclination and azimuthal

angles of the l-th path relative to x − z plane. We vectorize

the 2D sinusoid
[

ej(ωxm+ωzn), 0 ≤ m,n ≤ N1D − 1
]

and

denote the resulting N2
1D long vector by x(N1D,ω), where

ω = (ωx, ωz) is the frequency of the 2D sinusoid. Vectorizing
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[hm,n, 1 ≤ m,n ≤ N1D] in an identical manner gives us

h =
l=K
∑

l=1

glx(N1D,ωl).

Now, consider a base station transmitter with a regularly

spaced 2D array of size Nt,1D×Nt,1D, and a mobile receiver

with a regular 2D antenna array of size Nr,1D × Nr,1D. Let

H denote the corresponding N2
t,1D × N2

r,1D channel matrix.

Denoting by hi the ith row of this matrix, hT
i is the response of

the receive antenna array to the ith transmit antenna. Denoting

x (Nt,1D,ω) by xt (ω) and x (Nr,1D,ω) by xr (ω), under the

far-field assumption, it can be shown that

H =

l=K
∑

l=1

glxt

(

ω
t
l

)

xT
r (ωr

l ) , gl ∈ C. (1)

Since we know the array geometries (in this case, a regu-

larly spaced 2D array), an estimate of the N2
t,1D × N2

r,1D

MIMO channel matrix H can be efficiently arrived at by

estimating the spatial frequencies and the associated gains:

{(gl,ωt
l ,ω

r
l ) , l = 1, . . . ,K}. Such a parametric approach is

far more efficient that direct estimation of individual entries

of H, and enables us to drastically reduce the number of

measurements required.

IV. COMPRESSIVE CHANNEL ESTIMATION

We now describe our compressive approach for spatial

channel estimation, which consists of a channel sounding

strategy and an estimation algorithm which allows a base

station to estimate the propagation gains {|gl|} and the spatial

frequencies {ωt
l} in parallel for all mobiles in the picocell.

A. Channel sounding

The basestation sounds the channel using M compressive

beacons. Each beacon is a known signal sent using a different

set of transmit weights. The weights are chosen uniformly and

independently at random from a small set of coarse phase

shifts (for e.g. from the set {±1,±j}, where j =
√
−1).

We may therefore view each beacon as being transmitted

from a different “virtual antenna” with a quasi-omnidirectional

pattern. Each of the M transmit beacons are repeated L times

by the basestation (see Figure 2). For each of these M transmit

beacons, a mobile receiver employs L “virtual antennas” to

measure the channel response, using receive weights chosen

uniformly at random from {±1,±j}. Let y(m,n) denote

the response at the (m,n)th receive element due to a given

transmit beacon. Letting b(m,n, k) ∈ {±1,±j} denote the

weight for (m,n)th receive element for the kth virtual receive

antenna, the response seen by the kth virtual receive antenna

is given by

r(k) =
∑

1≤m,n≤Nr,1D

b(m,n, k)× y(m,n), 1 ≤ k ≤ L. (2)

These measurements are used to construct the M×L Multiple

Input Multiple Output (MIMO) “virtual channel” matrix V

between the virtual transmit and receive antennas. Note that we

do not require that the base station know the receive weights

used by the mobile, or that the mobile know the transmit

weights used by the base station.

Denoting the vectorized version of weights of the i-th virtual

transmit antenna by ai (a vector of shape N2
t,1D × 1) and that

of the j-th virtual receive antenna by bj (N2
r,1D × 1), the

i, j-th element of V (the channel between the (i, j)-th virtual

transmit-receive pair) is given by vi,j = aTi Hbj . Letting A =
[a1 . . . aM ]T and B = [b1 . . . bL]

T , it is easy to see that

V = AHB
T . Using (1), we have that

V =

l=K
∑

l=1

gl
(

Axt

(

ω
t
l

))

(Bxr (ω
r
l ))

T
. (3)

The channel measurements are perturbed by i.i.d measurement

noise, and are given by

yi,j =
√

Pevi,j + zi,j , zi,j ∼ CN (0, σ2),

where Pe is the per-element transmit power. Letting Y and Z

denote M ×L matrices with their i, j-th entries given by yi,j
and zi,j respectively, the “measured virtual channel” is given

by

Y =
√

PeV+Z =
√

Pe

l=K
∑

l=1

gl
(

Axt

(

ω
t
l

))

(Bxr (ω
r
l ))

T
+Z.

(4)

B. Feedback strategies

Our goal is to track the mm-wave spatial channel as

seen from the basestation, described by the parameters P =
{(|gl| ,ωt

l ) , l = 1, . . . ,K}. To this end, every mobile in the

picocell needs to feed back a portion of the measured virtual

channel Y to the basestation. From (4), we see that the

information regarding the spatial channel as seen from the

basestation, given by P , is available in the column space of

Y. Building on this observation, we propose two feedback

strategies:

(i) The receiver feeds back the entire matrix Y.

(ii) A more elaborate strategy involves feeding back Q ≤ L
strongest left singular vectors of Y scaled by their corre-

sponding singular values. i.e., if Y =
∑l=L

l=1 σlulv
H
l with

σ1 ≥ σ2 ≥ · · · ≥ σL ≥ 0, the receivers feed back D ≡
[σ1u1 · · · σQuQ]. This strategy identifies the Q-dimensional

subspace of the column space of Y with maximum energy.

V. ESTIMATION ALGORITHM

We now present an algorithm to estimate the parameters

{(|gl| ,ωt
l ) , l = 1, . . . ,K} characterizing the mm-wave chan-

nel as seen from the basestation. The same algorithm applies

for both forms of feedback discussed in Section IV-B: the

entire measured virtual MIMO matrix Y or the dominant

weighted left singular vectors D.

The kth column of Y is given by

yk =

l=K
∑

l=1

hl,kAxt

(

ω
t
l

)

+ zk, k = 1, . . . , L (5)

where zk ∼ CN
(

0, σ2IM

)

denotes the k-th column of Z and

hl,k =
√
Peglb

T
k xr (ω

r
l ). We assume the weight sequence
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{bk} used to construct the receive virtual antennas at the

receive antenna array is not available at the transmitter, and

hence cannot jointly estimate ω
t
l and ω

r
l . However, since

{bk, k = 1, . . . , L} were picked in an i.i.d manner, we

have that {hl,k, k = 1, . . . , L} are i.i.d realizations of a

random variable with E |hl,k|2 = PeE
∣

∣glb
T
k xr (ω

r
l )
∣

∣

2
=

PeN
2
r,1D |gl|2. This allows us to estimate |gl|2 as follows:

Pe |ĝl|2 =
(

1
/(

LN2
r,1D

))

k=L
∑

k=1

∣

∣

∣
ĥl,k

∣

∣

∣

2

.

From here on, in Section V, we use the notation ωl to refer to

ω
t
l and x(ωl) to refer to Axt(ω

t
l ). Thus, the measurements

can be written as

yk =

l=K
∑

l=1

hl,kx (ωl) + zk, k = 1, . . . , L. (6)

We now provide an algorithm to estimate {ωl, {hl,k}}.

A. Single path

We first present an algorithm for estimating a single path

K = 1, which forms the basis for our sequential estimation

algorithm for K > 1. Omitting the path index l in (6), we

have

yk = hkx (ω) + zk, k = 1, . . . , L.

Given that {zl} are independent realizations of CN
(

0, σ2IM

)

,

the maximum likelihood (ML) estimates of ω, {hk} are given

by:

ω̂,
{

ĥk

}

= argmin
ω,{hk}

k=L
∑

k=1

‖yk − hkx (ω)‖2 . (7)

For any ω, the optimal hk-s are given by least-squares

estimates:

h⋆
k (ω) = 〈x (ω),yk〉

/

‖x (ω)‖2 (8)

where 〈x, y〉 denotes xHy. Plugging into (7), the ML estimate

of ω is given by:

ω̂ = argmax
ω

1

‖x (ω)‖2
k=L
∑

k=1

|〈x (ω) ,yk〉|2 (9)

and the ML estimate of hk is given by h⋆
k (ω̂). We employ a

two-step algorithm to arrive the ML estimates: a “detection”

phase followed by a “refinement” phase.

Detection phase: Using M two-dimensional FFT computa-

tions, we precompute x(ω) for frequencies of the form ω ∈
Φ ≡ {(2πk/T, 2πl/T ) , 0 ≤ k, l ≤ T − 1} , T = RN1D,t,

where R is the oversampling factor. We pick the frequency

ω̂ from Φ which maximizes (9). The corresponding gains are

given by ĥk = h⋆
k (ω̂). We remove the contribution of the

newly detected sinusoid from the measured channel response

and this residual measurement is given by

rk = yk − ĥkx (ω̂) . (10)

(This residue is used for sequential detection for K > 1, as

discussed shortly.)

Refinement phase: Our estimate from the detection phase is

restricted to the discrete set Φ and consequently we do not

expect ω̂ to be equal to the ML estimate given by (9) (where

the maximization is over [−2πd/λ, 2πd/λ]2 with d being the

spacing between transmitter antennas). However, if we make

the grid fine enough, the best estimate of ω in Φ is expected

to be close enough to the optimal solution to allow refinement

via local optimization. In order to do this, we first fix the

gain estimates {ĥk} and refine only the estimate of the spatial

frequency ω by seeking the minimizer of the ML cost function

C(ω) =

k=L
∑

k=1

∥

∥

∥
yk − ĥkx (ω)

∥

∥

∥

2

in the neighborhood of the current estimate ω̂ using the

Newton method. This involves evaluating the gradient vector

G (ω) and the Hessian matrix H(ω) of C(ω) at the current

estimate ω̂. The corresponding expressions are given by:

Gi(ω) =
∂C(ω)

∂ωi
= −2

k=L
∑

k=1

ℜ
{〈

rk, ĥk
∂x(ω)

∂ωi

〉}

,

Hij(ω) =
∂2C(ω)

∂ωi∂ωj
= −2

k=L
∑

k=1

ℜ
{

〈

rk, ĥk
∂2x(ω)

∂ωi∂ωj

〉

−

∣

∣

∣
ĥk

∣

∣

∣

2
〈

∂x(ω)

∂ωi
,
∂x(ω)

∂ωj

〉

}

, 1 ≤ i, j ≤ 2

where ω = [ω1, ω2]. {rk}-s are the residual measurements

given by (10). The Newton update for ω̂ is

ω̂ ← ω̂ −H−1 (ω̂)G (ω̂) . (11)

We follow this up by updating our estimates
{

ĥk

}

by plugging

the new value of ω̂ in (8), i.e.,

ĥk ← h⋆
k (ω̂) = 〈x (ω̂),yk〉

/

‖x (ω̂)‖2 (12)

and modifying the residues ({rk}) accordingly using (10). The

algorithm alternates between the updates in (11) and (12) for

a few iterations.

B. Multiple paths

We now build on the preceding single path algorithm

for the general setting of K ≥ 1. Suppose that our cur-

rent estimate of the sinusoids/paths is given by PK =
{(

ω̂l, {ĥl,k}
)

, l = 1, . . . ,K
}

. The residual measurements

corresponding to a set of estimated parameters P is given by:

vk(P) = yk −
∑

ωl,{hl,k}∈P hl,kx (ωl) .

Detect a new path: Assuming that the measurements yk are

given by the current residue vk(Pq) (corresponding to the

q detected paths), we use the single path algorithm in Sec-

tion V-A to detect and refine a new sinusoid (ω̂q+1, {ĥq+1,k}).
Let Pq+1 denote the new set of estimated parameters Pq ∪
{(ω̂q+1, {ĥq+1,k})}.
Refine existing paths: Once we add this new path, we refine

the parameters of all q + 1 sinusoids in Pq+1 one by one.

Consider the parameters (ω̂l, {ĥl,k}) of the l-th sinusoid.
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We use the refinement algorithm in Section V-A to refine

(ω̂l, {ĥl,k}) by assuming that the measurements yk are given

by the residual measurements after excluding the sinusoid of

interest. i.e, vk(Pq+1 \ {(ω̂l, {ĥl,k})}). Sinusoids are refined

in a round robin manner, and the process is repeated for a few

rounds: 1→ 2→ · · · → (q + 1)→ 1→ · · · → (q + 1).

Stopping criterion: The algorithm continues to add newly

detected paths as long as the payoff, determined by the total

amount by which the residue decreases is above a threshold

τ . i.e., if

k=L
∑

k=1

(

‖vk(Pq)‖2 − ‖vk(Pq+1)‖2
)

> τ, (13)

the (q + 1)-th path is added and the algorithm proceeds by

searching for a new path. On the contrary, if the reduction

in total residue is smaller than τ , the algorithm terminates

and returns the prior estimate of the parameters Pq . For the

stopping criterion, we use τ = 30σ2 log (20Nt,1D) in our

simulations. This stopping criterion is empirically determined,

such that the signal energy τ is large enough to comfortably

cross the ZZB threshold (so that we can expect the frequency

estimate to be accurate).

C. Tracking

We sound the channel often enough so that between any

two successive channel estimation cycles, the geometry of the

mm-wave channel, given by the spatial frequencies {ωl} of

the paths, do not change “significantly,” even if the path gains

{gl} do. This ensures that angle of departure estimates from

the prior sounding round do not become stale over the course

of the communication phase during which they are needed

for beamforming purposes. For example, if we do not wish to

tolerate a beamforming loss of 3dB or more, then our estimate

from the previous round ω̂ should be close enough to the

current ω so that

|〈x (ω̂),x (ω)〉|2
/

‖x (ω)‖2 > 0.5

over the entire communication phase. This condition is met if

‖ω − ω̂‖∞ < 0.5 × (2π/Nt,1D ). Therefore, the estimates of

spatial frequencies from the previous sounding round are good

approximations of their current true value (within a DFT spac-

ing of 2π
Nt,1D

). We exploit this by using {ω̂l, l = 1, . . . ,K}
from the prior round to initialize our algorithm (as opposed to

using the empty set {}). We do this by constructing the matrix

X = [x (ω̂1) . . . x (ω̂K)] and setting ĥi,j to be the (i, j)-th

entries of
(

XHX
)−1

XHY, where Y = [y1 . . . yL]. We

refine all parameters in PK = {(ω̂i, {ĥi,j}), i = 1, . . . ,K}
using the refinement algorithm in Section V-B before proceed-

ing to seek for new paths using the algorithm in Section V-B.

Deleting weak paths: Paths estimated in prior rounds may not

be viable at the current time instant (e.g, because of blockage).

Therefore, we need means to remove such stale paths. We

use the stopping criterion (13) as a means to delete weak

paths. If deleting the path under question and optimizing other

parameters increases the residue by an amount smaller than τ ,

we delete the path permanently. Otherwise we keep the path.

VI. PROTOCOL PARAMETER CHOICES

In this section, we give a principled approach to choosing

parameters of the compressive channel estimation protocol,

namely the number of unique transmit beacons M , the number

of receive measurement weights L and the minimum effective

Signal to Noise Ratio (SNR) needed for channel estimation,

which we use to choose the sounding bandwidth Ws. We then

turn to the question of how frequently the channel has to be

sounded. In Section VIII, we take two scenarios and apply this

recipe to arrive at system level parameters for the protocol.

A. Number of compressive transmit beacons

Our goal is to estimate the spatial frequencies {ωt
l} from

measurements of the form

yk =

l=K
∑

l=1

hl,kAxt

(

ω
t
l

)

+ zk, k = 1, . . . , L.

The algorithm in Section V aims to estimate parameters

{hi,j ,ωi} by minimizing the ML cost function:

∑j=L
j=1

∥

∥

∥
yj −

∑i=K
i=1 ĥi,jAxt (ω̂i)

∥

∥

∥

2

=
∑j=L

j=1

∥

∥

∥
A×∑i=K

i=1

(

hi,jxt (ω
t
i)− ĥi,jxt (ω̂

t
i)
)

+ zj

∥

∥

∥

2

,

where p̂ denotes an estimate of parameter p. If the compressive

measurement matrix A ensures that
∥

∥

∥
A×∑i=K

i=1

(

hi,jxt (ω
t
i)− ĥi,jxt (ω̂

t
i)
)
∥

∥

∥

2

(14)

≈M
∥

∥

∥

∑i=K
i=1

(

hi,jxt (ω
t
i)− ĥi,jxt (ω̂

t
i)
)∥

∥

∥

2

, ∀hi,j , ĥi,j ,

for relevant ({ωi}, {ω̂i})-pairs, the cost structure of the es-

timation problem is roughly preserved. Therefore, estimation

using compressive measurements is similar to estimation with

all N2
t,1D measurements (except for an SNR gain, given by

M ) [26]. The main idea behind compressive sensing is that

a “small” number of random projections can ensure that the

geometry preservation condition in (14) is met with high

probability. Such results build on the celebrated Johnson-

Lindenstrauss Lemma (JL Lemma).

JL lemma[27]: Consider a finite collection of points S ⊂
Rn and an m × n matrix Φ with its entries cho-

sen in an i.i.d. manner from Uniform{±1} with m ≥
(4 + 2β) log |S|

/(

ǫ2/2− ǫ3/3
)

, then with probability at least

1− |S|−β:

m(1 − ǫ) ≤ ‖Φu− Φv‖2

‖u− v‖2
≤ m(1 + ǫ) ∀u,v ∈ S. (15)

It can be shown that this result extends to the setting

where S ⊂ Cn and the entries of Φ are chosen from

Uniform{±1,±j}.
Returning to the geometry preservation condition in (14),

we see that when spatial frequencies are restricted to an over-

sampled DFT grid G of size R = O(N2
t,1D), this condition

reduces to a 2K-isometry property of the measurement matrix

A relative to the basis X, where X is the N2
t,1D × R matrix

with its columns given by {xt (ω) : ω ∈ G}. For some fixed ǫ,
the matrix Φ ∈ Cm×p is said to enjoy the s-isometry property
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Fig. 3: Maximum and minimum values of

‖AXu‖2
/

(M ‖Xu‖2) for different values of M , the

number of transmitter beacons, across 5 × 106 random

realizations of 8-sparse u. The basis X corresponds to the

responses for a 32 × 32 array evaluated uniformly over a

R = 64× 322-sized grid

for the basis B (of size p×n) if there exists a constant C > 0
such that

C(1 − ǫ) ≤ ‖ΦBu‖2
/

‖Bu‖2 ≤ C(1 + ǫ),

for all s-sparse u in Cn. It can be shown using the JL

lemma (with arguments similar to those in [28]) that if

m = O(sǫ−2 logn), a randomly picked Φ satisfies this

isometry property with high probability (w.h.p). Therefore,

when the number of unique transmitter beacons scales as

M = O
(

Kǫ−2 logR
)

= O
(

Kǫ−2 logNt,1D

)

, then the 2K-

pairwise isometry criterion w.r.t the basis X is met by the

randomly picked sounding matrix A (it can be shown that

C = M for our choice of scale), thereby ensuring that

the geometry of the spatial frequency estimation problem is

preserved.

We consider the example of the 32 × 32 transmit-

ter array and plot the maximum and minimum values of

(1/M) ‖AXu‖2
/

‖Xu‖2 from 5×106 random realizations of

a 2K = 8-sparse u in Figure 3 using the 64-times oversampled

DFT grid as the choice of basis X. We see that this ratio is

within [−5, 3] dB when M ≥ 30. This illustrates that for

estimating K = 4 paths using a 32 × 32 array, measuring

the response corresponding to M = 30 random beacons

approximates the effect of measuring all 32 × 32 = 1024
antenna elements individually.

B. Number of compressive receive measurements

While we do not track {ωr
i , i = 1, . . . ,K}, the spatial

frequencies at the receiver, we need to ensure that the set of

measurements made at the receiver have sufficient informa-

tion to estimate transmitter spatial frequencies. Suppose that

‖Bxr (ω
r
i )‖ ≈ 0, it follows from hi,j = gi

√
Peb

T
j xr (ω

r
i )

that all L measurements {yj , 1 ≤ j ≤ L} will have very small

contributions from the i-th path. i.e., |hi,j | ≈ 0, 1 ≤ j ≤ L.

2 4 6 8 10 12 14 16
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−6

−5

−4

−3

−2

−1

L

d
B

 s
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Fig. 4: Maximum SNR degradation

minω ‖Bxr(ω)‖2
/

(L ‖xr(ω)‖2) for the most favorable

realization (from 104 runs) of an L × N2
r,1D matrix B with

Nr,1D = 4

To see this observe that

j=L
∑

j=1

|hi,j |2 = Pe |gi|2
j=L
∑

j=1

∣

∣bT
j xr (ω

r
i )
∣

∣

2
= Pe |gi|2 ‖Bxr (ω

r
i )‖2 .

(16)

When we restrict the receive spatial frequencies to an over-

sampled DFT grid G of size R = O(N2
r,1D), it can be shown

that for L = O (logR) = O (logNr,1D), ‖Bxr (ω)‖2 ≈
L ‖xr (ω)‖2 = LN2

r,1D w.h.p (a direct application of the JL

lemma (15) with the set S being {xr (ω) : ω ∈ G} ∪ {0},
where 0 denotes the zero-vector). This ensures that

j=L
∑

j=1

|hi,j |2 ≈ PeLN
2
r,1D |gi|2 w.h.p,

thereby capturing power along the i-th path. We perform

computations for the maximum power lost across spatial

frequencies when using a 4 × 4 array and plot the results in

Figure 4. This shows that around 5 carefully chosen projec-

tions (we pick the best measurement matrix from 104 random

instances) suffice to ensure that SNR degradation (relative to

the nominal value of L) is no greater than 3dB for a 4 × 4
receive array.

C. SNR for successful estimation

The preceding criteria delineate the regime in which the

geometry of the estimation problem is preserved approxi-

mately. We now turn to another factor which affects estimation

performance, namely the SNR. Consider measurements of the

form

ym,n = ej(ω1m+ω2n+φ)+zm,n, 0 ≤ m,n ≤ Nt,1D−1, (17)

where zm,n are i.i.d. CN (0, σ2) and spatial frequencies ω1, ω2

and phase φ are parameters to be estimated. The Cramér

Rao Bound[29] (CRB) for estimating ω1 from measurements

(17) is given by C(σ2) = 6
/(

SNR
(

N2
t,1D − 1

))

, where

SNR = ‖xt(ω)‖2
/

σ2 = N2
t,1D

/

σ2 (same expression holds

for ω2). Assuming an uniform prior over [0, 2π)3 for the
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Fig. 5: ZZB threshold SNR SNRth for estimating the frequency

of a Nt,1D ×Nt,1D sinusoid as a function of Nt,1D

parameters (ω1, ω2, φ), the Ziv Zakai Bound (ZZB) with

periodic distortion[30] for estimating ω1 evaluates to:

Z(SNR) =

∫ π

0

Q

(
√

SNR

(

1−
∣

∣

∣

∣

sin (Nt,1Dh/2)

Nt,1D sin (h/2)

∣

∣

∣

∣

)

)

hdh.

An indicator of the SNR needed for successful estimation

is the convergence of the ZZB to the CRB[26]. We use

the SNR beyond which the ZZB is within 0.1dB of the

CRB as a measure of this convergence. We plot this ZZB

threshold SNR for different values of Nt,1D in Figure 5. e.g,

SNRth = 16.04dB for an 8 × 8 array and SNRth = 16.13dB

for a 32× 32 array.

The total energy Etot corresponding to the i-th path collected

across the ML measurements {yj , 1 ≤ j ≤ L} is given by:

Etot =
∥

∥Axt

(

ω
t
i

)∥

∥

2 ×
j=L
∑

j=1

|hi,j |2 .

Using (16) in the above, we have that

Etot =
∥

∥Axt

(

ω
t
i

)∥

∥

2 ‖Bxr (ω
r
i )‖2 Pe |gi|2

≈MLN2
t,1DN

2
r,1DPe |gi|2

= MLPN2
r,1D |gi|2 ,

where P = N2
t,1DPe is the total transmit power supplied to the

Nt,1D×Nt,1D antenna array. The above approximation holds

when M and L satisfy the preceding geometry preservation

criteria in Sections VI-A and VI-B respectively. The effective

SNR of the i-th path is given by SNReff = Etot

/

σ2 . It is

important to note that the per-measurement noise variance σ2

is given by σ2 = N2
r,1Dσ

2
e , where σ2

e is the noise variance

per antenna element. Assuming no interference (which we

account for in Section VII-D), σ2
e = N0Ws with Ws denoting

the sounding bandwidth and N0 the thermal noise floor. The

reason for the scale factor N2
r,1D in the expression for σ2 is the

following: Our measurement process consists of multiplying

the received signal at each antenna (of which there are N2
r,1D)

by phasors b(m,n, k) ∈ {±1,±j} and adding the resultant

signal (as per (2)). Since thermal noise seen by the N2
r,1D

isolated receive antennas are independent random variables,

we have that σ2 = N2
r,1D × (N0Ws). Therefore, the effective

SNR of the i-th sinusoid is given by:

SNReff = MLP |gi|2
/

N0Ws .

This must exceed the ZZB threshold SNRth for successful

estimation. Noting that ML/Ws is the time taken for channel

sounding, the ZZB threshold SNRth gives us the means to

evaluate the minimum overhead in time to estimate the channel

for a given path gain |gi|2:

Time taken = ML/Ws ≥ SNRth N0

/

P |gi|2 (18)

The size of the picocell gives us a lower bound on |gi|2 and we

later use this to guide us in choosing the sounding bandwidth

Ws using (18).

D. Sounding rate

We round off the discussion on choice of protocol pa-

rameters by giving a rule of thumb for the rate/frequency

fB at which the spatial channel {ωi} needs to be reesti-

mated. We use the estimated spatial frequency ω̂ for beam-

forming purposes in the time period between two channel

sounding rounds (communication phase sandwiched between

consecutive sounding phases; see Figure 7). Following the

discussion in Section V-C, we have that if ‖ω(t)− ω̂‖∞ <
π/Nt,1D throughout the communication phase, where ω(t)
denotes the true spatial frequency and ω̂ the estimate from

the prior sounding round, then the loss in SNR, given by

‖xt(ω(t))‖2
/

〈xt (ω̂),xt (ω(t))〉 , is smaller than 3dB. If we

assume that the closest user to the basestation array is at a

distance R meters and that the maximum speed of a user

in the picocell is given by vmax meters per second, then

the maximum change (in terms of the ℓ∞-norm) in spatial

frequency ∆ω between consecutive sounding phases, spaced

1/fB apart, is given by 2πdvmax/fBRλ . The worst-case

geometry which achieves this bound is when the user is at

a distance R along the bore-sight of the array and heading in

a direction aligned with the one of the array axes. For this

worst-case geometry (plotted in Figure 6), we have that:

∆ω ≤ (2πd/λ ) sin∆θ ≈ 2πdvmax

fBλR
.

Assuming that the estimate ω̂ from the previous sounding

phase is accurate, if we ensure that 2πdvmax/fBRλ ≤
π/Nt,1D , we have that the beamforming losses in the inter-

vening period are smaller than 3dB. This tells us that channel

needs to be sounded often enough so that

fB ≥ 2dvmaxNt,1D/Rλ . (19)

In the following discussions, we use the preceding in con-

junction with (18) to determine the overhead incurred in

estimating the channel using the compressive architecture

proposed herein.

VII. SYSTEM DESIGN

We now discuss some key aspects of downlink system

design related to our compressive architecture. We start by

choosing basestation transmit power based on rules set by

regulatory authorities, and then filling in the other details

of the protocol according to the prescriptions laid out in

Section VI. Fixing the mobile array to be 4× 4 (Nr,1D = 4),
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Fig. 6: Geometry corresponding to maximum change in ωz:

The user moves along the z axis at a speed of vmax in the

time interval 1/fB between two consecutive channel sounding

rounds

we consider two different choices for the base station array

size: 8 × 8 (Nt,1D = 8) and 32 × 32 (Nt,1D = 32). All

arrays are d = λ/2-spaced. The total available bandwidth for

communication and sounding is 2GHz.

A. Transmit power

We fix the effective isotropically radiated power (EIRP)

to 40dBm, consistent with Federal Communications Com-

mission (FCC) regulations for 60 GHz unlicensed transmis-

sion. Accounting for transmit beamforming gain using an

Nt,1D ×Nt,1D array, the total transmit power

P = 40− 20 logNt,1D dBm (20)

which evaluates to 22dBm and 10dBm for Nt,1D = 8 and

Nt,1D = 32 respectively. Assuming that this power is evenly

split among the N2
t,1D transmit elements, the power per trans-

mit element is given by Pe = P − 20 logNt,1D dBm = 40−
20 logNt,1D dBm, which evaluates to 4dBm and −20dBm,

respectively. Assuming that we design each element to operate

at a fixed power, this is also the power per element used in

the beaconing phase, even though the latter does not get the

benefit of transmit beamforming.

B. Communication range

In order to ensure that the SNR for compressive estimation

is adequate over a picocell, we first determine the picocell size

using a nominal communication link budget, and then calculate

the overhead required for successful estimation at that range.

Standard link budget calculations, assuming oxygen absorption

of 16 dB/km, an EIRP of 40dBm and a 4 × 4 receive array

providing directivity gains of 12 dBi, can be used to show

that we can attain a per-symbol SNR of 6dB at a link margin

of 10dB for a symbol rate of 2GHz at a range of 200m. For

omnidirectional free space propagation, the power gain in dB

as a function of range r is given by

GdB(r) = −µr + 20 log10
λ

4πr
(dB)

where µ = 0.016dB/m to account for oxygen absorption.

Note that µ can be increased in order to account for rain.

However, since our purpose is to ensure that channel estima-

tion is successful whenever communication is successful, the

contribution due to GdB(r) cancels out, as we show shortly.

Thus, while the particular value of µ determines picocell size,

we shall see that it does not affect the overhead for channel

estimation.

The SNR per symbol is given by

SNRc(dB) = EIRP (dBm) +GdB(r) + 20 log10 Nr,1D

(21)

− 10 log10 (N0Wc)− Lmargin(comm)

where Lmargin(comm) is the link margin (dB) for communi-

cation. Note that 10 log10 N0 = −174 + NF dBm over a

bandwidth of 1 Hz, where NF denotes the receiver noise

figure in dB. Plugging in Wc = 2GHz, Nr,1D = 4, and

NF = 6dB, we obtain a per symbol SNR of 7 dB at a range

of r = 100 meters.

C. Channel sounding protocol

Our channel sounding protocol is specified by four param-

eters: (i) bandwidth used by each basestation when sounding

the channel, which we denote by Ws (ii) number of transmit

beacons (or virtual transmit antennas) M (iii) number of

receive measurements per transmit beacon (or virtual receive

antennas) L and (iv) sounding rate fB which determines

how often the channel is sounded. The parameters M,L
and Ws together determine the effective sounding SNR. This

must exceed the ZZB threshold SNR for successful channel

estimation. This gives rise to the condition in 18. Imposing

an estimation link margin Lmargin(est) (dB) and going to the

dB domain, we have

10 log10 (ML/Ws ) ≥ SNRth + Lmargin(est) (22)

+ 10 log10 N0 − P −GdB(r)

Adding (22) and (21) and simplifying, we obtain

10 log10 (ML/Ws ) ≥ SNRth − SNRc + Lmargin(est)

− Lmargin(comm) + 20 log10 Nt,1D

+ 20 log10 Nr,1D − 10 log10 Wc

The key take-away is that ML/Ws must be large enough

to compensate for the fact that we do not have the benefit

of beamforming during the sounding phase. Notice that the

range r (i.e., the dependence on picocell size) has cancelled

out. Setting Lmargin(est) = 16dB (we use a higher link

margin for channel sounding to account for power losses due

to randomness of A and B), we obtain

Time taken =
ML

Ws
≥
{

16.34 µs Nt,1D = 8

0.2669 ms Nt,1D = 32.
(23)

We choose the number of transmitter beacons for the 8×8 and

32× 32 transmitter arrays based on the geometry preservation

criterion for the transmitter’s spatial channel estimation prob-

lem discussed in Section VI-A. We use M = 24 for Nt,1D = 8
and M = 30 for Nt,1D = 32 by numerically evaluating the

worst-case distortion of pairwise distances relevant for the

channel estimation problem (in Figure 3 we plot the worst-

case distortion as a function of L for a random instance of

A and Nt,1D = 32). Using the receive energy preservation

criterion given in Section VI-B, we choose the number of

receive weights for the 4 × 4 receive array as L = 6. Using
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Fig. 7: Channel sounding and communication phases of the

proposed system

these values for M and L in (23), we obtain that the channel

sounding bandwidth must satisfy

Ws ≤
{

8.8124 MHz Nt,1D = 8

674.34 KHz Nt,1D = 32.

We choose Ws = 8.8124 MHz for Nt,1D = 8 and Ws =
674.34 KHz for Nt,1D = 32 so as to minimize the overhead

in time, given by ML/Ws . Our specification of the channel

sounding protocol will be complete when we give fB , the

rate at which we sound the channel (see Figure 7) which must

satisfy (19). Assuming that the closest user is at a distance of

R = 20m and that the maximum speed of a user in the picocell

vmax is 45 miles per hour (20 m/s), we have that: fB ≥ 8 Hz

for Nt,1D = 8 and fB ≥ 32 Hz for Nt,1D = 32. Choosing

the minimum value for fB , we have that the overhead for

our channel sounding protocol is MLfB/Ws = 0.0131% for

Nt,1D = 8 and 0.8542% for Nt,1D = 32.

D. Reuse analysis for channel sounding

We investigate how a sequence of basestations employed

in an urban canyon environment can share resources when

estimating the spatial channel to users in their respective

cells. The envisioned mm-wave system involves alternating

between channel estimation and communication phases as

shown in Figure 7. We assume that channel sounding rounds

across basestations are aligned in time. We now characterize

how the 2GHz spectrum is to be shared in space so as to

limit the effect of interference from neighboring picocells on

channel estimation performance. Such interference manage-

ment is essential in the sounding phase; unlike the highly

directive beams used in the communication phase, compres-

sive sounding beacons are essentially omnidirectional. To see

this, consider the average transmit power along any direction

ω. This is given by Pe ‖Axt(ω)‖2
/

L ≈ Pe ‖xt(ω)‖2 =

PeN
2
t,1D = P , the total transmit power. The approximation

‖Axt(ω)‖2
/

L ≈ ‖xt(ω)‖2 holds when the number of

beacons L is large enough. Therefore, the average energy

per-measurement received by an antenna at a distance r
from a transmitter sending compressive beacons is given by

PG(r), where G(r) = 10GdB(r)/10 = λ2
/(

16π2r2
)

e−νr

(ν = (µ/10) ln 10) is the omnidirectional power gain at

range r. We assume that basestations are deployed regularly

as shown in Figure 9 and that the inter-basestation separation

(along the street) is given by S. Suppose that the reuse factor

is R (i.e, every Rth basestation uses the same slice of the

frequency spectrum to estimate downlink spatial channels).

We assume that for narrow urban canyons, the distance be-

tween a user and all interfering basestations (those that are

allocated the same sounding BW) are well approximated by

{kRfS, k ∈ Z \ {0}}. Thus, the interference power seen by

a single antenna is given by

I = 2×
k=∞
∑

k=1

∑

paths

PG(kRfS) = 8P

k=∞
∑

k=1

G(kRfS),

where we have assumed that there are 4 viable paths between

the interfering basestation and user, each introducing the same

amount of interference as the LoS path. This is a pessimistic

assumption, since NLOS paths are attenuated by larger path

lengths and reflection losses. Plugging in the expression for

G(r), we have that

I =
(

Pλ2
/

2π2R2
fS

2
)

k=∞
∑

k=1

e−νRfSk
/

k2

=
(

Pλ2
/

2π2R2
fS

2
)

Li2
(

e−νRfS
)

,

where Li2(z) =
∑k=∞

k=1 zk
/

k2 is the dilogarithm function.

The interference seen per antenna adds to thermal noise to

give an effective per-element noise level of σ2
e = N0Ws + I .

Assuming a worst-case geometry for the user of interest

(distance of S from the basestation) and proceeding as in

Section VI-C, we see that effective Signal to Interference and

Noise Ratio SINReff is given by

SINReff = MLPG(S)
/

σ2
e .

This can be rewritten as

1/SINReff = 1/SNReff + 1/SIReff ,

where SNReff = MLPG(S)/N0Ws and the Signal

to Interference Ratio SIReff = MLPG(S)/I =

MLR2
fe

−µS
/

8Li2
(

e−µRfS
)

. We need to ensure that

SINReff exceeds the ZZB SNR threshold for successful es-

timation. We choose the reuse factor Rf so that we are in the

noise-limited regime by setting

1/SIReff < 0.1× (1/SNRth ) ≈ −10− 16 dB.

Assuming that protocol parameters are chosen so that SNReff

exceeds SNRth, we can ignore interference in SINReff calcu-

lations when

SIReff > SNRth + 10 ≈ 26dB for Nt,1D = 8, 32.

In Figure 9, we plot achievable effective SIRs as a function

of frequency reuse factor Rf for two example systems in

Section VII-C: i.e, 8 × 8 and 32 × 32 arrays with total

number of measurements given by ML = 24 × 6 and

ML = 30 × 6 respectively. As the picocell size S grows,

exponential attenuation due to oxygen absorption (the e−νS

term in the expression for SIReff) helps in attenuating in-

terference and improving SIR for same reuse factor Rf . To

illustrate this we plot SIR as a function of Rf for three cell

sizes S = 50, 100, 200m in Figure 9. We observe that, in order

to ensure SIReff > 26dB, a reuse factor of Rf = 4 is needed

for S = 50m, while Rf = 3 suffices for S = 200m. Plugging

in the per-basestation sounding bandwidth Ws calculations in

Section VII-C, we see that the overall system-level channel
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Fig. 9: Effective Signal to Interference Ratio SIReff for ML =
24× 6 (8× 8 scenario) and ML = 30× 6 (32× 32 scenario;

dashed) as a function of reuse factor Rf

sounding bandwidth Ws × Rf for a S = 50m picocell is as

small as 8.8124MHz× 4 = 35.2MHz and 674.34KHz× 4 =
2.7MHz for Nt,1D = 8, 32, respectively, which is dwarfed by

the total available bandwidth (2GHz).

VIII. SIMULATION RESULTS

We perform simulations for the two example systems con-

sidered in Section VII (8 × 8 and 32 × 32 transmit arrays).

We report results for the algorithm proposed in Section V and

two feedback strategies: (i) ‘full’: users feedback the measured

virtual channel matrix Y (M × L matrix; L = 6 for both

systems) and (ii) ‘svd’: users feedback the 2 dominant left

singular vectors of Y, scaled by their corresponding singular

values (M × 2 matrix; one-third feedback overhead).

We consider 6 mobile users moving in the urban canyon

at speeds of 20, 3, 15, 1.5, 2.1 and 10 meters per second

(covering both vehicular and pedestrian settings). The height

at which each mobile device is held is in the 1.3−1.4m range.

The basestation is mounted on a lamppost on the pavement

(7 meters from a canyon wall), at a height of 6 meters. The

basestation antenna array is tilted by about 7.5◦ in both the

azimuth and elevation directions so that the boresight of the

array points towards middle of the corresponding cell. This

helps in more accurate spatial frequency estimation: since a

change in direction near the boresight of the array results

in larger changes in spatial frequencies than far away from

0
10

20−40

−20

0

20

40

60

80

0
2
4
6

Fig. 10: Six users in the urban canyon moving over the

duration of the 7 second simulation interval. Their positions

at time t = 0 is marked using a �-symbol

the boresight, resolving paths is easier when the array points

towards a direction in which we are likely to see more paths.

We do not model blockage in these simulations, assuming

that the LoS path and the three first order reflections are all

available. Our goal is to estimate and track the K = 4 paths

to all 6 users.

Estimation error: Let T = {ωm : m = 1, . . . ,K} denote

the true spatial frequencies and P = {ω̂n : n = 1, . . . , K̂}
denote the set of estimated spatial frequencies. When the

base station uses one of the estimates in P , say ω̂, to

form a beam, we do not realize the full 20 logNt,1D dB

beamforming gain. A measure of the sub-optimality is the

estimation error ‖ω − ω̂‖2, which we normalize by the DFT

spacing of 2π/Nt,1D to define the following error metric:

∆ω(m) = min
n
‖ωm − ω̂n‖2

/

(2π/Nt,1D ) . (24)

When no true spatial frequency exists near an estimate ω̂, i.e,

when ω̂ is a “phantom estimate”, we will quickly be able to

discard it when we beamform in the direction of ω̂ and find

that the mobile does not receive power commensurate to what

it expects with the 20 logNt,1D beamforming gain.

We plot the Complementary Cumulative Distribution Func-

tion (CCDF) of estimation errors (24) for the two systems

(Nt,1D = 8, 32) in Figure 11a and the Probability Distribution

Function (PDF) of the number of paths estimated K̂ (correct

value is K = 4) in Figure 11b. From Figure 11, we see that

feedback of dominant singular vectors is an efficient feedback

strategy which performs just as well as feeding back the entire

matrix Y, while using only a third of uplink resources.

Next, in order to evaluate the effect of errors in spatial fre-

quency estimation on beamforming performance, we simulate

a simple scenario in which the transmitter beamforms toward

the strongest estimated path. Figure 12 shows the CDF of the

achievable beamforming gain for an 8× 8 array. While ideal

beamforming requires adjustment of both gains and phases,

suboptimal approaches for RF beamsteering with severely

quantized phase-only control (four phases) have been studied

in our earlier conference paper [24]. We see from Figure 12

that if ideal beamforming were performed with our estimates,

then the SNR loss is less than 0.3 dB. If four-phase control

is used based on our estimates, then the SNR loss is less than

1 dB. The results for 32× 32 arrays are entirely similar, and
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Fig. 11: Two feedback strategies considered: (i) M × 6 matrix Y (‘full’) and (ii) top two dominant singular vectors (one-third
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Fig. 12: Beamforming gain achieved by an 8×8 antenna array

for ideal and quantized beamforming techniques

are therefore not plotted here..

Thus far, we have not said anything about channel frequency

selectivity. Our proposed algorithm uses a small segment of

the band to estimate the spatial channel, and the problem of

channel dispersion is not addressed. However, we note that

beamforming using a large array should reduce the effect

of undesired paths, which simplifies the task of equalization.

Figure 13 shows the channel impulse responses for the 32×32
and 8 × 8 antenna arrays for a typical snapshot, when the

transmitter beamforms towards the strongest estimated path.

In our simulated setting, the LoS and ground reflection are

close to each other in terms of both delays and angles of

departure. We see that 8× 8 array fails to resolve them, with

both paths falling into the antenna’s main lobe, while the

32× 32 antenna array, which has smaller beamwidth (4◦ half

power beamwidth), attenuates the undesired tap down to one-

ninth of the desired path. Of course, it is possible to utilize

the channel estimates far more intelligently, potentially with

nulls directed both at strong undesired paths for the mobile of

interest, and at the dominant paths for other nearby mobiles.

The latter can be particularly useful for combating intra-cell

interference when a base station face has multiple antenna

arrays, each communicating with a different mobile.
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Fig. 13: Channel impulse response with quantized beamform-

ing towards estimated strongest path for the 8 × 8 (left) and

32× 32 (right) scenarios

IX. CONCLUSIONS

We have shown that it is possible to super-resolve mm wave

spatial channels with a relatively small number of compressive

measurements, in a manner that is compatible with coarse

phase-only control and RF beamforming. This allows scaling

to a very large number of antenna elements without relying

on channel reciprocity. While our discussion of system design

issues such as link budget and inter-cell beacon interference

is tailored to outdoor 60 GHz picocellular networks, the basic

approach is broadly applicable (e.g., to other bands, and to

indoor environments). An important topic for future work

is comprehensive experimental validation of our compressive

approach, which is based on a simple channel model including

only the dominant rays. At the network level, there are a host

of design issues (e.g., see discussion in [3]). The compressive

approach allows each base station to build up an inventory

of viable paths to nearby mobiles, but there is a huge design

space to be explored on how base stations coordinate using

this information to alleviate the effects of blockage (mobiles

in urban environments can be routinely blocked by pedestrians,

automobiles, trees and other obstacles), and to manage inter-

and intra-cell interference. Optimization of arrays of subarrays

in base station “faces” for communicating with multiple users,

as well as for handling channel dispersion, presents interesting

design challenges.
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