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ABSTRACT

This paper presents the first complete design to apply com-
pressive sampling theory to sensor data gathering for large-
scale wireless sensor networks. The successful scheme de-
veloped in this research is expected to offer fresh frame
of mind for research in both compressive sampling appli-
cations and large-scale wireless sensor networks. We con-
sider the scenario in which a large number of sensor nodes
are densely deployed and sensor readings are spatially cor-
related. The proposed compressive data gathering is able to
reduce global scale communication cost without introducing
intensive computation or complicated transmission control.
The load balancing characteristic is capable of extending the
lifetime of the entire sensor network as well as individual
sensors. Furthermore, the proposed scheme can cope with
abnormal sensor readings gracefully. We also carry out the
analysis of the network capacity of the proposed compres-
sive data gathering and validate the analysis through ns-2
simulations. More importantly, this novel compressive data
gathering has been tested on real sensor data and the results
show the efficiency and robustness of the proposed scheme.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network communications, Wire-
less communication

General Terms

Design, Performance
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1. INTRODUCTION
This paper considers the data gathering problem in a

large-scale wireless sensor network. Data gathering sensor
network finds a variety of applications in infrastructure and
habitat monitoring [8][23]. It is expected that the number of
sensor nodes deployed could be on the order of hundreds or
thousands. In general, data transmissions are accomplished
through multi-hop routing from individual sensor nodes to
the data sink. Successful deployment of such large scale sen-
sor networks faces two major challenges in effective global
communication cost reduction and in energy consumption
load balancing.

The need for global communication cost reduction is ob-
vious because such sensor networks typically are composed
of hundreds to thousands of sensors, generating tremendous
amount of sensor data to be delivered to data sink. It is
very much desired to take full advantage of the correlations
among the sensor data to reduce the cost of communica-
tion. Existing approaches adopt in-network data compres-
sion, such as entropy coding or transform coding, to reduce
global traffic. However, these approaches introduce signifi-
cant computation and control overheads that often not suit-
able for sensor networks applications.

Figure 1: Data gathering sensor network
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(a) Baseline data collection

(b) Compressive data gathering

Figure 2: Comparing baseline data collection and

compressive data gathering in a multi-hop route

The need for energy consumption load balancing is also
clear because of the required multi-hop data transmission
for such large scale sensor networks. Fig. 1 shows such a
network where sensors are densely deployed in the region of
interest and monitor the environment on a regular basis. A
simple but typical example is the highlighted route in Fig. 1.
Suppose N sensors, denoted as s1, s2, ..., and sN form a
multi-hop route to the sink. Let dj denote the readings
obtained by node sj . The intuitive way to transmit dj , j =
1, 2, ...N to the sink is through multi-hop relay as depicted
in Fig. 2(a). Node s1 transmits its reading d1 to s2, and s2

transmits both its reading d2 and the relayed reading d1 to
s3. At the end of the route, sN transmits all N readings to
the sink. It can be observed that the closer a sensor is to
the sink, the more energy is consumed. Clearly, the sensor
nodes closer to the data sink will soon run out of energy and
lifetime of sensor network will be significantly shortened.

This paper presents the first complete design to apply
compressive sampling theory [13][4][7] to sensor data gather-
ing for large-scale wireless sensor networks (WSNs), success-
fully addressing the two major challenges as outlined above.
First, the proposed data gathering is able to achieve substan-
tial sensor data compression without introducing excessive
computation and control overheads. With elegant design,
the proposed scheme is also able to disperse the communi-
cation costs to all sensor nodes along a given sensor data
gathering route. This will result in a natural load balancing
and extend the lifetime of the sensor network.

The basic idea of the proposed compressive data gathering
(CDG) is depicted in Fig. 2(b). Instead of receiving individ-
ual sensor readings, the sink will be sent a few weighted sums
of all the readings, from which to restore the original data.
To transmit the ith sum to the sink, s1 multiplies its reading
d1 with a random coefficient φi1 and sends the product to
s2. Upon receiving this message, s2 multiplies its reading
d2 with a random coefficient φi2 and then sends the sum
φi1d1 + φi2d2 to s3. Similarly, each node sj contributes to
the relayed message by adding its own product. Finally, the
sink receives

∑N
j=1 φijdj , a weighted sum of all the readings.

This process is repeated using M sets of different weights so
that the sink will receive M weighted sums.

With such design, all nodes transmit M messages and
consume same amount of energy. Each node only performs
one addition and one multiplication in order to compute one
weighted sum. Comparing Fig. 2(a) and Fig. 2(b), careful

readers will observe that, the first M nodes send more mes-
sages in CDG than in baseline transmission, while the rest
of nodes send less messages in CDG. When N is large and
M is much smaller than N , CDG can significantly reduce
the total number of transmissions and save energy. The key
problem now becomes whether the sink is able to restore
N individual readings from M measurements when M is
far smaller than N . Fortunately, the compressive sampling
theory has a positive answer to this question.

This paper makes three main contributions. First, we ex-
tend the application of compressive sampling theory from
one or a few sensors to large-scale multi-hop sensor net-
works. Beyond the basic idea, we propose a scheme which
allows CDG to be practically applied to large sensor net-
works. Second, we carry out a theoretical analysis of the
network capacity for CDG and validate the capacity gain
of CDG through ns-2 simulations. Third and more impor-
tantly, we test CDG on two sets of real sensor data. The
results show that CDG is practically applicable to various
data gathering sensor networks. Even when sensor data ex-
hibit little spatial correlations in which case conventional
in-network compression approaches would fail, CDG is still
able to reduce the traffic of bottleneck node by two to three
times and significantly prolong the network lifetime.

The rest of this paper is organized as follows: Section
II reviews related work on energy-efficient data gathering.
Section III describes the proposed CDG scheme. Section
IV presents the analysis of the network capacity for CDG
and the results of ns-2 simulations. Section V demonstrates
the test results on two sets of real sensor data. Section VI
concludes this paper with some discussions.

2. RELATED WORK
The fundamental assumption of in-network data compres-

sion is that sensor nodes have spatial correlations in their
readings. According to where the spatial correlation is uti-
lized, we can classify existing in-network data compression
techniques into two categories.

2.1 Conventional Compression
Conventional compression techniques utilize the correla-

tion during the encoding process and require explicit data
communication among sensors. Cristescu et al. [12] propose
a joint entropy coding approach, where nodes use relayed
data as side information to encode their readings. Again
take the multi-hop route in Fig. 2 as an example. First, node
s1 encodes its reading d1 into message p1 using H(d1) bits,
where H(d1) is the entropy of d1. Then, when s2 receives p1,
it encodes its reading d2 into message p2 using H(d2|d1) bits,
where H(d2|d1) is the conditional entropy. Since d1 and d2

are correlated, H(d2|d1) is smaller than H(d2). Therefore,
jointly encoded messages cost less bits than independently
encoded messages.

The above approach utilizes data correlation only unidi-
rectionally. If data are allowed to be communicated back
and forth during encoding, nodes may cooperatively per-
form transform to better utilize the correlation. Ciancio et
al. [10] and Aćimović et al. [2] propose to compress piece-
wise smooth data through distributed wavelet transform. In
doing so, even nodes first broadcast their readings. Upon re-
ceiving the readings from both sides, odd nodes compute the
high pass coefficients h(·). Then, odd nodes transmit h(·)
back and even nodes compute the low pass coefficients l(·).
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Figure 3: Cooperative wavelet compression

This process is illustrated in Fig. 3. Although wavelet de-
correlation can be performed for multiple levels, it is not
suggested to do so in distributed processing because of the
communication overhead. After the transform, nodes trans-
mit significant coefficients to the sink, usually in their raw
form to avoid the complexity of entropy coding.

Quantization of a group of readings to one representative
value is another form of conventional compression. The clus-
tered aggregation (CAG) technique [26] forms clusters based
on sensing values. By grouping sensors with similar read-
ings, CAG only transmits one reading per group to achieve
a predefined error threshold. Gupta et al. [15] exploit a sim-
ilar idea. In each round of data gathering, it only involves
a subset of nodes, which is sufficient to reconstruct data for
the entire network.

There are two main problems with conventional compres-
sion techniques. First, the compression performance relies
heavily on how the routes are organized. In order to achieve
the highest compression ratio, compression and routing al-
gorithms need to be jointly optimized. This has been proved
to be an NP-hard problem [12]. Second, the efficiency of an
in-network data compression scheme is not solely determined
by the compression ratio, but also depends on the compu-
tational and communication overheads. However, joint en-
tropy coding techniques perform complex computation in
sensors, while transform based techniques require a large
amount of data exchanges.

2.2 Distributed Source Coding
Distributed source coding techniques [9][11][18] intend to

reduce complexity at sensor nodes and utilize correlation at
the sink. They are based on the Slepian-Wolf coding the-
ory [22], which claims that compression of correlated read-
ings, when separately encoded, can achieve same efficiency
as if they are jointly encoded, provided that messages are
jointly decoded. This important conclusion not only elimi-
nates data exchanges, but decouples routing from compres-
sion. After encoding sensor readings independently, each
node simply sends the compressed message along the short-
est path to the sink.

However, a prerequisite of Slepian-Wolf coding is that the
global correlation structure needs to be known in order to
allocate appropriate number of bits to be used by each node.
This is hard to fulfill in a large-scale wireless sensor network.
In view of this, Yuen et al. [27] adopts a localized Slepian-
Wolf coding scheme. Based on the assumption that sensors
outside immediate neighborhood have weak correlation in
their readings, a node may only consider its data correla-
tion with one-hop neighbors when determining the size of
encoded message. We will show that, for a set of real sen-
sor data which do not satisfy this assumption, the localized
coding scheme will fail to compress such data.

Distributed source coding techniques perform well for static
correlation patterns. However, when correlation pattern
changes or abnormal events show up, the decoding accuracy
will be greatly affected. Since detecting abnormal events
is an important task of sensor network, when an abnormal
event is captured by a side node, the originally assigned
number of bits will be inadequate to encode the reading,
and cause decoding error at the sink. More seriously, when
the abnormal reading appears at a main node, it will cause
errors within a large range of reconstructed sensor readings.

2.3 Compressive Sampling
With the emergence of compressive sampling theory [13]

[4] [7], we have seen a new avenue of research in the field of
in-network data compression. Compressive wireless sensing
(CWS) [3] appears to be able to reduce the latency of data
gathering in a single-hop network by delivering linear pro-
jections of sensor readings through synchronized amplitude-
modulated analog transmissions. Due to the difficulties in
analog synchronization, CWS is less practical for large-scale
sensor networks. Rabbat et al. [21] leverages compressive
sampling for data persistence, instead of data gathering, in a
WSN. In an overview paper, Haupt et al. [17] also speculate
the potential of using compressive sampling theory for data
aggregation in a multi-hop WSN. However, no real scheme
has been reported based on this initial idea.

When compressive sampling is applied to in-network data
compression, it will bring a wealth of similar benefits as dis-
tributed source coding including simple encoding process,
saving of inter-node data exchange, and decoupling of com-
pression from routing. Furthermore, compressive sampling
has two additional advantages. First, it can deal with abnor-
mal sensor readings gracefully. This advantage will be de-
tailed in the next section. Second, data reconstruction is not
sensitive to packet losses. In compressive sampling, all mes-
sages received by the sink are equally important. However,
in distributed source coding, received data are predefined
as main or side information. Losing main information will
cause fatal errors to the decoder. All these desired merits
make compressive sampling a promising solution to the data
gathering problem in large-scale wireless sensor networks.

3. COMPRESSIVE DATA GATHERING
The objective of compressive data gathering is two-fold:

compress sensor readings to reduce global data traffic and
distribute energy consumption evenly to prolong network
lifetime. Similar to distributed source coding, the data cor-
relation pattern shall be utilized on the decoder end. Be-
sides, compression and routing are decoupled and therefore
can be separately optimized.

3.1 Data gathering
The intuition behind CDG is that higher efficiency can be

achieved if correlated sensor readings are transmitted jointly
rather than separately. We have given a simple example in
Section I, showing how sensor readings are combined while
being relayed along a chain-type topology to the sink. In
practice, sensors usually spreads in a two-dimensional area,
and the ensemble of routing paths presents a tree structure.
Fig. 4(a) shows a typical routing tree in which the sink has
four children. Each of them leads a subtree delimited by the
dotted lines. Data gathering and reconstruction of CDG are
performed on the subtree basis.
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Figure 4: Data gathering in a typical routing tree

In order to combine sensor readings while relaying them,
every node needs to know its local routing structure. That
is, whether or not a given node is a leaf node in the rout-
ing tree or how many children the node has if it is an in-
ner node. To facilitate efficient aggregation, we have made
a small modification to standard ad-hoc routing protocol:
when a node chooses a parent node, it sends a ”subscribe
notification” to that node; when a node changes parent, it
sends an ”unsubscribe notification” to the old parent.

The data gathering process of CDG is illustrated through
an example shown in Fig. 4(b). It is the detailed view of
a small fraction of the routing tree marked in Fig. 4(a).
After all nodes acquire their readings, leaf nodes initiate
the transmission. In this example, s2 generates a random
number φi2, computes φi2d2, and transmits the value to s1.
The index i denotes the ith weighted sum ranging from 1
to M . Similarly, s4, s5 and s6 transmits φi4d4, φi5d5, and
φi6d6 to s3. Once s3 receives the three values, it computes
φi3d3, adds it to the sum of relayed values and transmits
∑6

j=3 φijdj to s1. Then s1 computes φi1d1 and transmits
∑8

j=1 φ1jdj . Finally, the message containing the weighted
sum of all readings in a subtree is forwarded to the sink.

Assume that there are N nodes in a particular tree, and
the sink intends to collect M measurements. Then all nodes
send the same number of O(M) messages regardless of their
hop distance to the sink. The overall message complexity
is O(NM). When M ≪ N , CDG transmits less messages
than the baseline data collection (as shown in Fig. 2(a))
whose worst case message complexity is O(N2). More im-
portantly, the transmission load is spread out uniformly so
that the lifetime of bottleneck sensors and the entire network
is greatly extended.

The ith weighted sum can be represented by:

yi =
N

∑

j=1

φijdj (1)

The sink obtains M weighted sums {yi}, i = 1, 2, ...M .
Mathematically, we have:
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⎞

⎟

⎟

⎟

⎟
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(2)

In this equation, each column of {φij} contains the series
of random numbers generated at a corresponding node. In
order to avoid transmitting this random matrix from sen-

sors to the sink, we can adopt a simple strategy: before
data transmission, the sink broadcasts a random seed to the
entire network. Then each sensor generates its own seed us-
ing this global seed and its unique identification. With a
pre-installed pseudo random number generator, each sensor
is able to generate the corresponding series of coefficients.
These coefficients can be reproduced at the sink given that
the sink knows the identifications of all sensors.

In (2), di (i = 1, 2, ...N) is a scalar value. In a practical
sensor network, each node is possibly attached with a few
sensors of different type, e.g. a temperature sensor and a hu-
midity sensor. Then sensor readings from each node become
a multi-dimensional vector. In this case, we may separate
readings of each dimension and process them respectively.
Alternatively, since the random coefficients φij are irrele-
vant to sensor readings, we may treat di as a vector. The
weighted sums yi become vectors of the same dimension too.

When M < N , solving a set of M linear equations with N
unknown variables is an ill-posed problem. However, sensor
readings are not independent variables. In most cases, the
sensor field follows a certain structure because of the spatial
or temporal correlations. Hence, there exists a transform
domain in which the signal is sparse. Under this assumption,
we will explain in the following subsection whether the set of
linear equations are solvable, what requirements M should
meet to solve them, and how these equations can be solved.

3.2 Data recovery

3.2.1 Recover spatially correlated data

According to compressive sampling theory, a K-sparse sig-
nal can be reconstructed from a small number of measure-
ments with a probability close to one. The weighted sums
obtained in (2) are a typical type of measurements. Sig-
nal sparsity characterizes the correlations within a signal.
An N-dimensional signal is considered as a K-sparse signal
if there exists a domain in which this signal can be rep-
resented by K (K ≪ N) non-zero coefficients. Fig. 5(a)
shows a 100-dimensional signal in its original time domain.
Obviously, it is not sparse at all in this domain. Because of
the signal correlation, it can be described more compactly
in transform domains such as wavelet and DCT. Fig. 5(b)
gives the representation of the same signal in DCT domain.
We can see that there are only 5 non-zero DCT coefficients.
Therefore, this signal is a 5-sparse signal in DCT domain.

In a densely deployed sensor networks, sensors have spatial
correlations in their readings. Let N sensor readings form
a vector d = [d1 d2 ... dN ]T , then d is a K-sparse signal
in a particular domain Ψ. Denote Ψ = [ψ1 ψ2 ...ψN ] as
the representation basis with vectors {ψi} as columns, and
x = [x1, x2, ...xN ]T are the corresponding coefficients. Then,
d can be represented in the Ψ domain as:

d =

N
∑

i=1

xiψi, or d = Ψx (3)

Compressive sampling theory tells that a K-sparse signal
can be reconstructed from M measurements if M satisfies
the following conditions [6]:

M ≥ c · µ2(Φ, Ψ) · K · log N (4)

where c is a positive constant, Φ is the sampling matrix as
defined in (2), and µ(Φ, Ψ) is the coherence between sam-
pling basis Φ and representation basis Ψ. The coherence
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Figure 5: A 5-sparse signal in DCT domain

metric measures the largest correlation between any two el-
ements of Φ and Ψ, and is defined as:

µ(Φ, Ψ) =
√

N · max
1≤i,j≤N

|〈φi, ψj〉| (5)

From (5), we can see that the smaller the coherence be-
tween Φ and Ψ is, the less measurements are needed to re-
construct the signal. In practice, using random measure-
ment matrix is a convenient choice, since a random basis
has been shown to be largely incoherent with any fixed ba-
sis, and M = 3K ∼ 4K is usually sufficient to satisfy (4).

With sufficient number of measurements, the sink is able
to reconstruct sensor readings through solving an l1-minimization
problem:

min
x∈RN

‖x‖l1
s.t. y = Φd, d = Ψx (6)

In addition, for sparse signals whose random projections
are contaminated with noise, reconstruction can be achieved
through solving a relaxed l1-minimization problem, where ǫ
is a predefined error threshold:

min
x∈RN

‖x‖l1
s.t. ‖y − Φd‖l2

< ǫ, d = Ψx (7)

Suppose x̃ is the solution to this convex optimization prob-
lem, then the proposed reconstruction of the original signal
is d̃ = Ψx̃. It has been shown that the above l1-minimization
problem can be solved with linear programming (LP) tech-
niques [13]. Although the reconstruction complexity of LP
based decoder is polynomial, it goes pretty high when N
is too large. While there is a large body of on-going work
looking for low-complexity reconstruction techniques [25][5],
this topic is beyond the scope of our paper. With the cur-
rent LP based decoder, we would suggest that the size of N
does not exceed one thousand.

In (6) and (7), the Ψ matrix describes the correlation pat-
tern among sensor readings. It is utilized only in data recov-
ery process, and is not required to be known to sensors. In
this way, most of the computations are shifted from sensors
to the sink. Such asymmetry of computation complexity
makes CDG an appealing choice for WSNs.

3.2.2 Recover data with abnormal readings

One of the main purposes of sensor network is to moni-
tor abnormal events. However when abnormal events take

Figure 6: A signal with two abnormal readings

place, the sparsity of sensor readings is compromised. As an
example, Fig. 6(a) differs with Fig. 5(a) only by two abnor-
mal readings, as outlined by the ovals. The corresponding
DCT coefficients shown in Fig. 6(b) are not sparse any more.
Therefore, the signal in Fig. 6 is not sparse in either time
domain or transform domain. In this situation, conventional
compression techniques need to transmit significantly more
data in order to reconstruct the original signal. Distributed
source coding techniques will have a big degradation.

We have a better solution in compressive data gathering.
Sensor data with abnormal readings can be decomposed into
two vectors:

d = d0 + ds (8)

Where d0 contains the normal readings which are sparse in
a certain transform domain, and ds contains the deviated
values of abnormal readings. Since abnormal readings are
sporadic, ds is a sparse signal in the time domain. Suppose
the normal readings are sparse in Ψ domain, then (8) can
be rewritten into:

d = Ψx0 + Ixs (9)

Where I is the identical matrix, and both x0 and xs are
sparse. We can see that signal d is decomposed into two
signals which are sparse in different domains. We can con-
struct an overcomplete basis Ψ′ = [Ψ I ], then d should be
sparse in Ψ′ domain:

d = Ψ′
x, x = [x0

T
xs

T ]T (10)

Incorporating (10) into (6) or (7), the signal recovery with
abnormal readings can be solved similarly by the l1-norm op-
timization. Donoho et al. [14] showed the possibility of sta-
ble recovery under a combination of sufficient sparsity and
favorable structure of the overcomplete system. Moreover,
they also proved that stable recovery of sparse signal in an
overcomplete dictionary also works for noisy data, and the
optimally-sparse approximation to the noisy data, to within
the noise level, differs from the optimally-sparse decompo-
sition of the ideal noiseless signal by at most a constant
multiple of the noise level.

Suppose x̃ is a vector of length 2N , and is the solution
to the l1-minimization problem defined in (7) when an over-
complete dictionary is used. Similarly, the original sensor
readings can be reconstructed by d̃ = Ψ′x̃. Denote x̃s as
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an N-dimensional vector composed of the last N elements
of x̃, then the non-zero values in x̃s indicate the positions of
abnormal readings.

4. NETWORK CAPACITY OF COMPRES-

SIVE DATA GATHERING
The previous section illustrated how to gather and recover

sensor readings acquired in one time instance. This section
will investigate the benefit of CDG from the viewpoint of
network capacity, i.e. how frequent CDG allows sensors to
acquire data while ensuring all readings can be transmitted
to the sink. The capacity of a data gathering network is
defined as follows.

Definition 1 (Network Capacity). We shall define
that a rate λ is achievable in a data gathering sensor net-
work, if there exists a time instance t0 and duration T such
that during [t0, t0+T ) the sink receives λT bits of data gener-
ated by each of the sensors si, i = 1, 2, ...N . Then, network
capacity C is defined as the supremum of the achievable rate,
or C = sup{λ}.

Different from the pioneering work on network capacity
analysis [16], the traffic pattern in our study is many-to-one.
We let all sensors generate data at the same rate, and assume
that sensor readings acquired at the same time instance are
K-sparse.

4.1 Network Capacity Analysis
We assume a discal sensing area in which N sensor nodes

are uniformly distributed, and the sink is located in the mid-
dle of the disk. All sensor nodes and the sink communicate
over single frequency shared radio channel, accessed through
time-division multiple access control (TDMA). We denote
W as the amount of data a node transmits in one time slot,
and restrict that a node cannot transmit and receive at the
same time.

Let {Xk, k ∈ V } be the subset of nodes simultaneously
transmitting over the shared channel in a specific time slot.
Then a successful transmission from Xi, i ∈ V to Xj can be
defined under two interference models.

Definition 2 (Protocol Model). Transmission from
node Xi to Xj is successful under protocol model if and only
if the following two conditions are satisfied:

• ‖Xi − Xj‖ ≤ r

• ‖Xk − Xj‖ > (1 + δ)r, δ > 0 for k ∈ V − {i}

The first condition requires that the two communicating
nodes are within a distance r. The second condition re-
quires that the receiving node is at least (1 + δ)r away from
any other transmitting nodes.

Definition 3 (Physical Model). Transmission from
node Xi to Xj is successful under physical model if and only
if:

Pi

‖Xi−Xj‖α

NG +
∑

k∈V,k �=i
Pk

‖Xk−Xj‖α

≥ β

where Pi is the transmission power for Xi, α is the fading
parameter and NG is noise power level. The expression on

the left is the signal to interference and noise ratio (SINR)
at the receiving node. A successful transmission under phys-
ical model requires the SINR to be greater than a predefined
threshold β.

4.1.1 Capacity under Protocol Model

The capacity under protocol model can be analyzed in
a similar way as Marco et al. [19]. Let us first recall the
following lemma.

Lemma 1. N nodes are uniformly distributed in a region
of area A. When N is large, the number of nodes n within a
sub-region R of area AR can be bounded with high probability.

Pr

(

NAR

A
−

√
αNN ≤ n ≤ NAR

A
+

√
αNN

)

→ 1

as N → ∞.

Sequence αN is chosen such that αN → ∞ as N → ∞, and
limN→∞

αN

N
= ε, where ε is positive but arbitrarily small.

Proof. Each of the N nodes has the same probability
AR/A to fall in region R. Therefore, n follows binomial

distribution with the mean being µn = NAR

A
and the vari-

ance being δ2
n = NAR

A
(1 − AR

A
). According to Chebychev’s

inequality:

Pr(|n − µn| ≥
√

αNN) ≤ δ2
n

αNN
=

AR

A
· (1 − AR

A
)

αN
(11)

The probability goes to 0 as N → ∞ and αN → ∞.

Theorem 1. In a wireless sensor network with N uni-
formly distributed nodes, compressive data gathering can achieve

network capacity of λ ≥ W
M

πr2−√
ε

π(2+δ)2r2+
√

ε
with a probability

close to 1 as N → ∞, where ε is arbitrarily close to 0, and M
is the number of random measurements. Usually M = c1K,
and c1 is a constant in the range of [1, 4].

Proof. Consider a node in transmission. According to
definition 2, the distance from any interfering source to this
node is at most (2 + δ)r. In other words, all the interfering
sources are contained in a disk of area AR1

= π(2 + δ)2r2.
Based on Lemma 1, the number of nodes in this region,
denoted by nitf , is less than n1 with high probability:

nitf ≤ n1 =
NAR1

A
+

√
αNN (12)

Next we build the contention graph of the network by con-
necting interfering nodes. With high probability, the maxi-
mal node degree in the contention graph is n1−1. According
to graph coloring theory, all nodes can be colored with at
most n1 different colors. If we associate each color with a
transmission slot, every node gets one chance to transmit in
n1 slots. Therefore, the average transmission rate of each
node is:

γ =
W

n1
(13)

Then consider the one-hop neighbors of the sink. They are
contained in a disk centered at the sink and with a radius of
r. The area of the disk is AR2

= πr2. According to Lemma
1, the number of nodes in this region, denoted by n2, can be
bounded with high probability:

NAR2

A
−

√
αNN ≤ n2 ≤ NAR2

A
+

√
αNN (14)
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Recall that compressive data gathering is performed on
subtree basis. We shall adopt an appropriate routing pro-
tocol such that all subtrees are roughly of equal size. For
simplicity, we consider the size of each subtree is Np = N

n2
.

Since the sensor data from the entire network is K-sparse,
when N → ∞, we can consider that each subset of the nodes
are proportionally sparse, i.e. K/n2-sparse. The number of
random measurements needed to reconstruct data is M/n2

per subtree. To achieve the rate λ, the transmission rate of
the subtree root should be Mλ/n2. Take (13) into account,
we have:

W

n1
=

Mλ

n2
(15)

Substituting (12) and (14) into (15), we have:

λ =
W

M

n2

n1
≥ W

M

NAR2

A
−

√
αNN

NAR1

A
+

√
αNN

=
W

M

AR2

A
−√

ε
AR1

A
+

√
ε

=
W

M

πr2 −√
ε

π(2 + δ)2r2 +
√

ε
(16)

As N → ∞,
√

ε → 0, the lower bound of achievable ca-
pacity is arbitrarily close to W

M(2+δ)2
.

4.1.2 Capacity under Physical Model

Without loss of generality, we assume the following con-
straints for the physical model:

• All nodes transmit with equal and finite power P0.

• All noises are of the same variance. Therefore, for a
given small positive number η, there exist a noise level
N0 such that prob(N0 > NG) < η.

• Given α and β, P0 is chosen such that the network is
a connected graph when the noise level is N0.

Theorem 2. In a wireless sensor network with N uni-
formly distributed nodes, compressive data gathering can

achieve network capacity of λ ≥ W
M

πr2

0
−√

ε

π(2+δ0)2r2

0
+
√

ε
with a

probability close to 1 as N → ∞, given r0 < α

√

P0

βN0
and

δ0 > α−1

√

2πβc2
1−βrαN0/P0

− 1.

Proof. Theorem 1 gives the network capacity under pro-
tocol model. We will prove that when r = r0 and δ = δ0, a
feasible transmission schedule under protocol model is also
feasible under physical model.

First, we restrict the communication to nodes within a
distance of r0. When node Xi transmits data to node Xj ,
the SINR at Xj is:

SINRj =

P0

|Xi−Xj |α

N0 +
∑

k∈V,k �=i
P0

|Xk−Xj |α
(17)

Denote Ps as the received signal strength and Pf as the
interference strength at node Xj . Since |Xi − Xj | < r0, we
have:

Ps =
P0

|Xi − Xj |α
>

P0

rα
0

. (18)

Figure 7: Connecting adjacent transmitting nodes

in an annulus

A necessary condition is that when Pf = 0, the selection
of r0 should ensure SINRj > β. This can be satisfied if

r0 < α

√

P0

βN0
.

Next, let us look at the interference part Pf . A feasible
schedule under protocol model ensures that there is no other
simultaneous transmitter in the circular area centered at
Xj and with a radius of (1 + δ)r. The interference comes
from the transmitters outside this region. Divide the sensing
region by concentric circles Ci, i = 1, 2, ... centered at Xj .
The radius of circle Ci is ri = (1 + δ)ri,. Denote Ai as
the annulus formed by Ci and Ci+1. Next, we quantify
the interference to Xj caused by the transmitters in each
annulus.

Denote ai as the number of simultaneous transmitters
within a particular annulus Ai. Since the distance from
Xj to any node in this annulus is larger than (1 + δ)ri, the
interference from this annulus is:

Pf (Ai) =
∑

k,Xk∈Ai

P0

|Xk − Xj |α
<

aiP0

((1 + δ)ri)α
(19)

Pf (Ai) can be bounded once ai is bounded. In doing so, we
connect adjacent transmitters clockwise with line segments,
as Fig. 7(a) shows. Fig. 7(b) gives an enlarged view of two
adjacent transmitting nodes Xs and Xt. Connect the center
of circle with the two nodes and extend the lines so that
they intersect Ci+1 at points T1 and T2. From T2 draw a
line parallel to XsXt and intersect XsT1 at point T3. Then
we have:

|XsXt| ≤ |T2T3| < |
⌢

T1T2| + (1 + δ)r (20)

A feasible schedule under protocol model ensures that the
distance of each line segment is at least (2 + δ)r. Summing
up all the segments in annulus Ai and using the inequality
in (20), we have:

(2 + δ)rai ≤
∑

s,t

|XsXt|

< 2π(1 + δ)r(i + 1) + (1 + δ)rai

⇒ ai < 2π(1 + δ)(i + 1) (21)
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Substitute (21) into (19), and sum up the interferences
from all annuluses, we have:

Pf =
∞

∑

i=1

Pf (Ai) <
∞

∑

i=1

2πP0(1 + δ)(i + 1)

((1 + δ)ri)α

=
2πP0

rα(1 + δ)α−1

∞
∑

i=1

(

1

iα−1
+

1

iα

)

=
2πP0 (ζ(α − 1) + ζ(α))

rα(1 + δ)α−1
(22)

where ζ(·) is the Riemann Zeta function. When α > 2,

ζ(α) < π2

6
and ζ(α − 1) converges to a constant. Denote

c2 = ζ(α) + ζ(α − 1). Then, when r = r0 and δ = δ0 >
α−1

√

2πβc2
1−βrαN0/P0

− 1, (22) can be written into:

Pf <
P0

rα
0 β

− N0 (23)

Substitute (18) and (23) into (17), we obtain SINRj > β.
This proves that a feasible scheduling under protocol model
with r = r0 and δ = δ0 is also feasible under physical
model. Therefore, the network capacity achieved under pro-
tocol model when r = r0 and δ = δ0 can also be achieved
under physical model.

4.1.3 Capacity Gain over Naive Transmission

Corollary 3. In a wireless sensor network with N uni-
formly distributed nodes, CDG can achieve a capacity gain
of N/M over baseline transmission under both interference
models, given that sensor readings are K-sparse, and M =
c1K.

Denote λ1 as the network capacity of baseline transmis-
sion. It is achieved when every node is allowed to transmit
once every n1 slots, and traffic is evenly distributed among
n2 one-hop neighbors of the sink. Then we have W

n1
= Nλ1

n2
.

Denote λ2 as the network capacity of CDG. If the same
transmission schedule and routing structure are adopted, we
have W

n1

= Mλ2

n2

. From these two equations, we can conclude

that CDG can achieve a capacity gain of N/M over baseline
transmission.

4.2 NS-2 Simulation
The network capacity analysis is based on scheduled medium

access control (MAC). In practice, the computational and
communication overhead of MAC scheduling is too high.
Contention-based MAC is more often adopted in wireless
sensor networks. In order to understand how CDG performs
in practical settings, we evaluate its performance through ns-
2 [20] simulations and compare it with baseline transmission
on two typical topologies: chain [8] and grid topologies [24].
Table 1 lists the main parameters used in the simulation. We
adopt 802.11 instead of ZigBee because the implementation
of 802.11 in ns-2 is well-established.

For simplicity, we will look into the packet rate instead
of bit rate. Each packet contains only one message which
is assumed to be 20 bytes for both baseline transmission
and CDG. Although both approaches can combine multiple
messages in one packet and improve transmission efficiency,
we do not use large packets because we are only interested
in the comparison between them. Data sparsity is assumed
to be 5%. For example, when N = 1000, K = 50, and

Table 1: Simulation parameters

MAC protocol 802.11
Physical data rate 2Mbps
Transmission range 15 meters
Interference range 25 meters
Payload size 20 Bytes
RTS/CTS status OFF
Retry limit 7
IFQ length 200

K/N (data sparsity) 0.05
c1 = M/K 4

we assume that the sink can recover the original data from
M = 200 random measurements. In the best case, CDG
should achieve capacity gain of N/M = 5.

4.2.1 Chain Topology

The chain topology is composed of 1000 sensors and one
sink locating at one extreme of the chain. The distance
between any two adjacent nodes are 10 meters. Under the
given transmission and interference range, nodes can only
communicate with adjacent nodes, and may cause interfere
to two-hop neighbors.

In the simulation, we vary the input interval and evaluate
how output interval and packet loss ratio change accordingly.
In general, as the input interval decreases, the output inter-
val decreases and the packet loss ratio increases. However,
if an input interval is not achievable, the output interval
will cease to decrease and may slightly increase as a result
of congestion collapse. We may infer the network capacity
from the minimum achieved output interval.

Fig. 8(a) shows that the minimum output interval of base-
line transmission is 10.6 seconds per message, and it is achieved
when the input interval is 10.2 seconds per message. There
is a small gap between these two values because of network
jitters and packet losses. Fig. 8(b) shows the performance
of CDG. The minimum output interval is 2.11 second per
message achieved when the input interval is 1.92 second per
message. We can see that CDG can achieve a capacity gain
of 5 over baseline transmission.

Figure 8: Output-input interval in chain topology
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Figure 9: A typical routing tree in grid topology

In addition, the packet loss ratio of CDG is zero when
the input interval is 1.92 second per message and above. In
contrast, even when the network is not overloaded, baseline
transmission incurs a constant packet loss ratio between 3%
to 4% as a result of traffic burst.

In this chain topology, CDG introduces an initial delay
of 1.80 seconds. This is because transmission starts from
the leaf node which is 1000-hop away from the sink. This
initial delay does not affect the network capacity because
transmitting readings acquired at different time instance can
be pipelined.

4.2.2 Grid Topology

The grid topology contains 1089 nodes in 33 rows by 33
columns. The distance between adjacent nodes in the same
row or column is 14 meters. Therefore, any node not at the
border of the network can communicate with four neighbors.
Fig. 9 shows a typical tree on the grid topology. The sink
is in the middle of the network and four subtrees are repre-

Figure 10: Output-input interval in grid topology

sented by four different colors. The subtrees contain similar
number of sensor nodes, though not exactly the same. In
the simulation, we assume that data from each subtree can
be reconstructed from 55 random measurements.

Different from the chain topology where the routing path
is deterministic, the grid topology produces changing rout-
ing trees in each test run. Therefore, we run three inde-
pendent tests for each parameter setting and present the
average results. In each test run, ten messages per node are
collected at given intervals.

Fig. 10(a) shows that baseline transmission achieves the
minimum output interval of 5.93 seconds per message when
the input interval is 4.7 seconds per message. Fig. 10(b)
shows that CDG achieves the minimum output interval of
2.54 seconds per message when the input interval is 2.2 sec-
onds per message. The capacity gain is 2.3 instead of 5.
The reason is that in contention based MAC, the transmis-
sion slots allocated to each node are not even. Nodes with
heavier loads get more time slots to transmit. Therefore,
baseline transmission transmits faster than what is assumed
in scheduled MAC.

Fig. 11 compares packet loss ratio of the two approaches.
Similar to the results in chain topology, CDG achieves near-
zero loss ratio when the network is not overloaded. In con-
trast, the packet loss ratio in baseline transmission is much
higher. Even when the input interval is 8 seconds per mes-
sage, the packet loss ratio is still as high as 20%. This is
because in baseline transmission all nodes try to transmit as
soon as sensor readings are acquired. In CDG, however, only
leaf nodes transmit at the beginning and inner nodes will not
transmit until they receive and combine their descendants’
readings.

In the grid topology, the initial delay of CDG is neglectable
because the tree depth is 32 hops. In our simulations, the
average initial delay is less than 0.1 seconds.

5. EXPERIMENTS ON REAL DATA SETS
The previous section has demonstrated the efficiency of

CDG under the assumption that data are sparse and can be
reconstructed from ideal random measurements. This sec-
tion will show that sensor data are indeed sparse in reality.

Figure 11: Packet loss ratio in grid topology
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Figure 12: Results on temperature data from the Pacific Sea

Further, data reconstruction is highly robust and efficient
although real data are contaminated with noise.

5.1 CTD Data from Ocean
The CTD (Conductivity, Temperature, and Depth) data

come from National Oceanic and Atmospheric Administra-
tion’s (NOAA) National Data Buoy Center (NDBC). CTD
is a shipboard device consisting of many small probes. When
collecting data, it is lowered down to the seafloor, and then
measures data as it ascends. Although the CTD data are
collected by one moving instrument, they demonstrate the
same properties as if they were collected by a collection of
sensors.

We look into the temperature data collected in the Pacific
Sea at (7.0N, 180W) on March 29, 2008 [1]. The data set
contains 1000 readings obtained at different depth of sea.
We plot the original data by red solid curve in Fig. 12(a).
Since the readings are piece-wise smooth, they should be
sparse in wavelet domain. Fig. 12(b) shows the 1000 coef-
ficients after 6-level 5/3 wavelet de-correlation. There are
only 40 coefficients whose absolute value is larger than 0.2,
accounting for only 4.0% of the total coefficients. Although
the rest of the coefficients are not strictly zero, we may set
K = 40.

Compressive sampling theory suggests that data can be re-
constructed with high probability from M = 3K ∼ 4K ran-
dom measurements. Fig. 12(c) shows the reconstruction per-
formance with different numbers of random measurements.
Each indicated data point is averaged over 10 test runs to
avoid fluctuations. Apparently the reconstruction precision
increases as M increases. A steep rise is observed in both fig-
ures when M becomes greater than K. When M = K ∼ 40,
a reasonable reconstruction SNR of 35dB can be achieved.
This translates to a precision over 98%. When M = 100 and
M = 200, the reconstruction precision is 99.2% (41.9dB) and
99.5% (46.5dB). The black dotted curve in Fig. 12(a) shows
the reconstructed data when M = 100.

5.2 Temperature in Data Center
A contemporary practical application of WSNs is to mon-

itor server temperatures in data centers. The temperature is
an indication of server load and abnormal readings in tem-
perature usually sound a note of warning. The sensor data
used in this research are collected from a fraction of a data
center as shown in Fig. 13. Each rectangular shape repre-
sents a rack and the oval shape indicates a sensor placed at
the top, middle, and bottom of the rack. As the figure shows,
most of the racks are equipped with three sensors while some
racks are not monitored and a few others have one or two

malfunctioned sensors. There are 498 sensors in total. The
data are measured every 30 seconds and transmitted to a
sink through baseline scheme. We analyze these data offline
to see how much traffic would be reduced if CDG was used.
In this network, each node only communicates with adja-
cent nodes. For simplicity, we assume that all 498 sensors
form one subtree to the sink. The energy gain over baseline
scheme is similar if sensors form two or more subtrees.

An important observation on this set of data is that sensor
readings exhibit little spatial correlations. Although racks
are physically close to each other, temperature readings are
dominated by server loads instead of ambient temperature.
Fig. 14 plots a snapshot of the sensor readings. For clarity,
we only show the sensor readings from the bottom of each
rack (167 sensors in total) and put the data of each column
side by side. Obviously these data are not sparse in any intu-
itively known domain. We have also checked the entire data
set containing sensor readings from all 498 sensors and they
are not apparently sparse either. Therefore, conventional
compression mechanisms will fail in this situation.

In fact, since the 498 sensors all take values between 10
to 30 degrees centigrade, we have elegantly re-organized di

into an apparently sparse signal. In particular, we sort di

in ascending order according to their sensing values at a
particular moment t0. The resulting d vector is piece-wise
smooth and sparse in wavelet domain. Furthermore, since
server temperatures do not change violently, sensor readings
collected within a relatively short time period can also be
regard as piece-wise smooth if organized in the same order.
Fig. 15(a) and Fig. 16(a) show the ordered sensor readings
10 minutes and 30 minutes after t0, respectively. They are

Figure 13: Rack and temperature sensor locations
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Figure 14: Temperature data of the lowest slot

generally in ascending order with only some small fluctu-
ations. There are also a few significant spikes indicating
abnormal temperature readings.

Based on proposed compressive data gathering scheme, we
are able to reconstruct such noisy sparse signals with spikes
from M(M < N) random measurements. Fig. 15(b)(c) and
Fig. 16(b)(c) show the reconstruction results from M =
0.5N and M = 0.3N measurements at two time instances.
The average reconstruction precision is over 98%. More im-
portantly, the abnormal readings are accurately captured.

To cope with the situation that temporal correlation be-
comes weak when the time interval increases, we can refresh
the ordering of di periodically. In particular, for every one
or two hours, the sink requests M(M = N) random mea-
surements in one data gathering process. When M = N ,
the set of equations in (2) is solvable and the sink is able
to obtain the exact values of di. Then, the sink can re-sort
di and use this new ordering for data reconstruction in the
subsequent hour or two.

We would like to point out that both conventional com-
pression and distributed source coding are unable to exploit
this type of sparsity which is observed only at certain reshuf-
fled ordering. In conventional compression, explicit data

Figure 15: Original and reconstructed sensor read-

ings at t = t0 + 10

communication is required between correlated nodes. If cor-
related nodes are not physically close to each other, the com-
munication between them may take multiple hops. This in-
troduces high overheads and makes compression procedure
costly. In distributed source coding, nodes are classified into
main nodes and side nodes. The sink allocates appropriate
number of bits to each node according to the correlation pat-
tern. However, if the correlation pattern is based on chang-
ing sensor ordering, the sink needs to carry out these two
tasks and communicate the results to every single node pe-
riodically. In contrast, the data gathering process in CDG is
unaffected when the ordering of di changes. The knowledge
of correlation is only used during data reconstruction.

Recall that CDG solves an l1-minimization problem de-
fined in (7) to reconstruct data. In previous sections, we
have discussed how to select the Ψ matrix such that sen-
sor readings d can be represented by a sparse vector x in
Ψ domain. This section shows how d can be re-organize to
be a sparse signal. This unprecedented flexibility of CDG
demonstrates how CDG can achieve a compression ratio of
two to three at bottleneck nodes when other conventional
mechanisms fail.

6. CONCLUSION AND FUTURE WORK
We have described in this paper a novel scheme for en-

ergy efficient data gathering in large scale wireless sensor
networks based on compressive sampling theory. We be-
lieve this is the first complete design to convert the tra-
ditional compress-then-transmit process into a compressive
gathering (compress-with-transmission) process to address
the two major technical challenges that today’s large scale
sensor networks are facing. In the development of the pro-
posed scheme, we have carried out the analysis of capacity
for wireless sensor network when compressive data gathering
is adopted. We have shown that CDG can achieve a capac-
ity gain of N/M over baseline transmission. We have also
designed ns-2 simulations to validate the proposed scheme

Figure 16: Original and reconstructed sensor read-

ings at t = t0 + 30
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when contention-based MAC is used. Furthermore, numer-
ical studies based on real sensor data not only verified data
sparsity in practical data acquisition, but also demonstrated
the efficiency and robustness of the sensor data reconstruc-
tion with and without abnormal readings.

It should be noted that successful application of CDG de-
pends on the properties of sensor field. If sensor readings are
not sparse in any known domain and in any proper order,
CDG cannot achieve capacity gain because an important
prerequisite of compressive sampling theory is missing. At
the other extreme, when sensing data are sparse in the origi-
nal domain, i.e. only a small fraction of sensors acquire non-
zero readings, it would be more efficient to directly transmit
these non-zero readings through multi-hop forwarding.

CDG is not suitable for small scale sensor networks when
signal sparsity may not be prominent enough and the po-
tential capacity gain may be too small. CDG is also more
effective for networks with stable routing structure. This is
because frequent node failure or dynamic route change will
lead to high control overhead that potentially cancel out the
gain from data compression. We are currently investigating
the extension of CDG to more challenging networking sce-
narios and the exploitation of fault tolerance of the compres-
sive sampling principles to achieve more robust performance
in sensor data gathering.
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