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Abstract—We consider the application of compressed sensing
(CS) to the estimation of doubly selective channels within
pulse-shaping multicarrier systems (which include orthogonal fre-
quency-division multiplexing (OFDM) systems as a special case).
By exploiting sparsity in the delay-Doppler domain, CS-based
channel estimation allows for an increase in spectral efficiency
through a reduction of the number of pilot symbols. For com-
bating leakage effects that limit the delay-Doppler sparsity, we
propose a sparsity-enhancing basis expansion and a method for
optimizing the basis with or without prior statistical information
about the channel. We also present an alternative CS-based
channel estimator for (potentially) strongly time–frequency dis-
persive channels, which is capable of estimating the “off-diagonal”
channel coefficients characterizing intersymbol and intercarrier
interference (ISI/ICI). For this estimator, we propose a basis
construction combining Fourier (exponential) and prolate sphe-
roidal sequences. Simulation results assess the performance gains
achieved by the proposed sparsity-enhancing processing tech-
niques and by explicit estimation of ISI/ICI channel coefficients.

Index Terms—channel estimation, compressed sensing,
CoSaMP, dictionary learning, doubly selective channel, inter-
carrier interference, intersymbol interference, Lasso, multicarrier
modulation, orthogonal frequency-division multiplexing (OFDM),
orthogonal matching pursuit (OMP), sparse reconstruction.

I. INTRODUCTION

T
HE recently introduced principle and methodology of
compressed sensing (CS) allows the efficient recon-

struction of sparse signals from a very limited number of
measurements (samples) [1], [2]. CS has gained a fast-growing
interest in applied mathematics and signal processing [3]. In
this paper, we apply CS to the estimation of doubly selective
(doubly dispersive, doubly spread) channels. We consider
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pulse-shaping multicarrier (MC) systems, which include or-
thogonal frequency-division multiplexing (OFDM) as a special
case [4], [5]. OFDM is part of, or proposed for, numerous wire-
less standards like WLANs (IEEE 802.11a,g,n, Hiperlan/2),
fixed broadband wireless access (IEEE 802.16), wireless per-
sonal area networks (IEEE 802.15), digital audio and video
broadcasting (DAB, DRM, DVB), and future cellular commu-
nication systems (3GPP LTE) [6]–[11].

Coherent detection in such systems requires channel state
information (CSI) at the receiver. Usually, CSI is obtained
by embedding pilot symbols in the transmit signal and using
a least-squares (LS) [12] or minimum mean-square error
(MMSE) [13] channel estimator. More advanced channel
estimators for MC transmissions include estimators employing
1-D, double 1-D, or 2-D MMSE filtering algorithms [14]–[16];
2-D irregular sampling techniques [17]; or basis expansion
models [18]–[20]. The CS-based (“compressive”) channel
estimation methodology proposed in this paper exploits the fact
that doubly selective multipath channels tend to be dominated
by a relatively small number of clusters of significant paths,
especially for large signaling bandwidths and durations [21].
Conventional methods for channel estimation do not take
advantage of this inherent sparsity of the channel. In [22] and
[23], we proposed CS-based techniques for estimating doubly
selective channels within MC systems. We demonstrated that
CS provides a way to exploit channel sparsity in the sense that
the number of pilot symbols that have to be transmitted for
accurate channel estimation can be reduced. Transmitting fewer
pilots leaves more symbols for transmitting data, which yields
an increase in spectral efficiency.

For sparse channel estimation, several other authors have
independently proposed the application of CS methods or
methods inspired by the literature on sparse signal repre-
sentations [21], [24]–[31]. Both [24] and [26] considered
single-carrier signaling and proposed variants of the matching
pursuit algorithm [32] for channel estimation. The results were
primarily based on simulation and experimental implemen-
tations, without a CS theoretical background. The channel
estimation techniques presented in [24], [27], and [28] lim-
ited themselves to sparsity in the delay domain, i.e., they did
not exploit Doppler sparsity. The recent work in [29] and its
extension to multiple-input/multiple-output (MIMO) channels
[30], on the other hand, considered both MC signaling (besides
single-carrier signaling) and sparsity in the delay-Doppler
domain, somewhat similar to [22]; however, a different CS re-
covery technique was used. In [33], it is shown experimentally
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for MC communications over underwater acoustic channels
that compressive channel estimation outperforms traditional
subspace algorithms (root-MUSIC and ESPRIT).

In this paper, extending our work in [22] and [23], we present
CS-based techniques for estimating doubly selective channels
that are potentially strongly time- and/or frequency-dispersive.
In MC systems, strong channel dispersion may cause inter-
symbol interference (ISI) and/or intercarrier interference (ICI)
[4]. One of the proposed techniques enables the estimation
of ISI/ICI channel coefficients. We first present a basic com-
pressive estimator for mildly dispersive channels that yields
estimates of the “diagonal” channel coefficients. Our focus is
on leakage effects that limit the delay-Doppler sparsity, and
which have not been considered in [21], [24]–[31]. For com-
bating leakage effects and, hence, enhancing sparsity, we then
replace the discrete Fourier transform (DFT) used in conven-
tional compressive channel estimation by a more suitable basis
expansion. We also develop an iterative basis-optimization
procedure that is similar in spirit—but not algorithmically—to
dictionary learning techniques recently proposed in [34]–[36].
This procedure is able to take into account prior statistical
information about the channel. Next, we present an alternative
compressive method for estimating also the “off-diagonal”
ISI/ICI channel coefficients of potentially strongly dispersive
channels (e.g., highly mobile wireless channels or underwater
acoustic channels [26], [33]). Here, motivated by [20], [37], we
propose a sparsity-enhancing basis expansion that combines
Fourier (exponential) and prolate spheroidal sequences.

This paper is organized as follows. In Section II, we describe
the MC system model. In Section III, we present the basic
compressive estimator for mildly dispersive channels. An anal-
ysis of delay-Doppler leakage and its effect on delay-Doppler
sparsity is performed in Section IV. A sparsity-enhancing basis
expansion and a framework and iterative algorithm for opti-
mizing the basis (with or without prior statistical information
about the channel) are developed in Sections V and VI, respec-
tively. In Section VII, we propose a compressive estimator and
a basis expansion for (potentially) strongly dispersive channels.
Finally, simulation results presented in Section VIII assess
the performance gains achieved by the proposed sparsity-en-
hancing basis expansions and by the estimation of ISI/ICI
channel coefficients.

II. MULTICARRIER SYSTEM MODEL

We assume a pulse-shaping MC system for the sake of
generality and because of its advantages over conventional
cyclic-prefix (CP) OFDM [4], [38]–[41]. This framework
includes CP-OFDM as a special case. The complex baseband
domain is considered throughout.

A. Modulator, Channel, Demodulator

The MC modulator generates the discrete-time transmit
signal [4]

(1)

where and denote the numbers of transmitted MC symbols
and subcarriers, respectively;

) denotes the complex data symbols, drawn from a fi-
nite symbol alphabet ; and
is a time–frequency shift of a transmit pulse ( is the
symbol duration). Using an interpolation filter with impulse re-
sponse is converted into the continuous-time transmit
signal

(2)

where is the sampling period. This signal is transmitted over
a noisy, doubly selective channel, at whose output the receive
signal

(3)

is obtained. Here, is the channel’s time-varying impulse
response and is complex noise. At the receiver, is con-
verted into the discrete-time receive signal

(4)

where is the impulse response of an anti-aliasing filter.
Subsequently, the MC demodulator calculates the “demodulated
symbols”

(5)

Here, with a receive pulse
. Finally, the demodulated symbols are equalized and

quantized according to the data symbol alphabet .
Combining (2)–(4), we obtain an equivalent discrete-time

channel that is described by the following relation between the
discrete-time signals and :

(6)

with the discrete-time time-varying impulse response
and the

discrete-time noise .
CP-OFDM is a simple special case of the pulse-shaping MC

framework; it is obtained for a rectangular transmit pulse
that is 1 for and 0 otherwise, and a rectangular
receive pulse that is 1 for and 0
otherwise ( is the CP length).

B. System Channel

Next, we consider the equivalent system channel that sub-
sumes the MC modulator, interpolation filter, physical channel,
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anti-aliasing filter, and MC demodulator. Combining (5), (6),
and (1), we obtain

(7)

with . The system
channel coefficients describe ICI for and

and ISI for ; they can be expressed in terms of
, and [4].

Let be zero outside . To compute in (5)
for , we need to know for ,
where . In this interval, we can rewrite
(6) as

(8)

with the discrete-delay-Doppler spreading function [42]

(9)

which represents the channel in terms of discrete delay (time
shift) and discrete Doppler frequency shift . Combining (5),
(8), and (1), and assuming that is causal with maximum
delay at most , i.e., for ,
we reobtain the system channel relation (7), however with the
system channel coefficients now expressed in terms of
the delay-Dopler representation . Specializing this ex-
pression to and using the approximation

(which is exact for CP-OFDM) yields the following expres-
sion for the diagonal channel coefficients ( is
assumed even for mathematical convenience)

(10)

with

(11)

Here, is the
cross-ambiguity function [43] of and .

III. COMPRESSIVE CHANNEL ESTIMATION

We now present the basic compressive channel estimation
method [22], [29]. This method enables estimation of the di-
agonal channel coefficients , which is sufficient
for mildly dispersive channels.

A. Pilot-Assisted Channel Estimation

Our goal is to estimate the system channel coefficients
from the system channel output , aided by some

known pilot symbols. For practical (underspread [42]) wireless
channels and practical transmit and receive pulses, in
(11) is effectively supported in a subregion of the delay-Doppler
plane. Thus, hereafter we assume that the support of
(within the fundamental period ; note
that is -periodic in ) is contained in

, where and . Here,
is chosen even, and and are such that and

are integers. Note that we also allow the limiting
case of full support in either or both dimensions, that is,
(i.e., ) and/or (i.e., ). Because of (10),
the are then uniquely specified by their values on the sub-

sampled time–frequency grid

These subsampled values are given by

(12)

The time–frequency subsampling is desirable because it reduces
the dimensionality of the estimation problem, and thus tends to
result in better estimation performance.

Suppose now that pilot symbols are transmitted at
time–frequency positions , where , i.e., the pilot

position set is a subset of the subsampled time–frequency grid
. For mildly dispersive channels, the ISI and ICI are small.

Then, at the pilot positions , it is convenient to rewrite
the system channel relation (7) as , where
all ISI and ICI are now subsumed by the noise/interference term

. Based on this relation and the known , the receiver cal-
culates channel coefficient estimates at the pilot positions
according to

(13)

The last expression shows that the for are known
up to additive noise/interference terms . A conventional
channel estimator then uses some interpolation technique to cal-
culate channel estimates for all from the for

(e.g., [12]–[17]). In contrast, the proposed compres-
sive channel estimator uses a CS recovery technique to obtain
an estimate of and, in turn, of the .

B. Some CS Fundamentals

Before presenting the CS-based channel estimator, we need to
review some CS fundamentals [1], [2]. CS considers the sparse

reconstruction problem of estimating an (approximately) sparse
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vector from an observed vector of measurements
based on the linear model (“measurement equation”)

(14)

Here, is a known measurement matrix and
is an unknown vector that accounts for measurement noise and
modeling errors. The reconstruction is subject to the constraint
that is (approximately) -sparse, i.e., at most of its en-
tries are not (approximately) zero. The positions (indices) of
the significantly nonzero entries of are unknown. Typically,
the number of variables to be estimated is much larger than the
number of measurements, i.e., . Thus, is a fat matrix.

We briefly review some CS recovery methods. Basis pur-

suit (BP) [44], [45], and orthogonal matching pursuit (OMP)
[46] are probably the most popular ones. Whereas for BP the-
oretical performance guarantees are available, OMP lacks sim-
ilar results. However, OMP allows a faster implementation, and
simulation results even demonstrate a better performance. Low
computational complexity is important since the channel has to
be estimated in real time. CoSaMP [47] allows an even faster
implementation than OMP. (Note that subspace pursuit [48]
is a very similar method.) Using an efficient implementation
of the pseudoinverse by means of the LSQR algorithm [49],
we observed a run time that was only less than half that of
OMP, and a performance that was only slightly poorer. An ad-
vantage of CoSaMP is the availability of performance bounds.
Hence, CoSaMP offers a good compromise between low com-
plexity, good practical performance, and provable performance
guarantees.

The performance guarantees of BP and CoSaMP are phrased
as an upper bound on the approximation error , where

denotes the estimate of . This bound is valid if the measure-
ment matrix satisfies
for all -sparse vectors , with some positive constant .
This is known as the restricted isometry property (RIP), and the
smallest is termed the restricted isometry constant . For a
small bound on should be small. It has been shown
[1], [50], [51] that if is constructed by selecting uni-
formly at random rows1 from a unitary matrix and
normalizing the columns (so that they have unit norms), a
sufficient condition for to satisfy the RIP with a restricted
isometry constant that is bounded as with probability

is provided by the following lower bound on the number
of observations:

(15)

Here, (known as the coherence of )
and is a constant.

Further CS recovery methods include thresholding [52], the
stagewise OMP [53], the LARS method [54], [55], the Lasso

[56], [57] (equivalent to BP denoising [57]), and Bayesian
methods [58], [59]. In [29] and [30], the Dantzig selector (DS)
[60] was applied to sparse channel estimation. DS satisfies
optimal asymptotic performance bounds when the noise vector

1That is, all possible choices of rows are equally likely.

is modeled as random. However, for the practically relevant
case of finite (moderate) and , the performance of DS
is not necessarily superior. In our experiments, we did not
observe any performance or complexity advantages of DS over
BP, OMP, and CoSaMP.

C. Basic Compressive Channel Estimator

We now combine pilot-assisted channel estimation with CS
recovery. The central assumption of compressive channel esti-
mation is that is “compressible” [45] or approximately

-sparse, i.e., at most values of (in the fundamental
period ) are not approximately zero. This
approximate “delay-Doppler sparsity” assumption will be fur-
ther considered in Section IV. Note that it implies that also

is ap-
proximately -sparse.

Our starting-point is the 2-D DFT relation (12), which can be
written as the 2-D expansion

(16)

with and
. The functions and

are defined for and
and may thus be considered as matrices. Define the
vectors and
of length by stacking all columns of these matrices (e.g.,

with ). We can then
rewrite (16) as

(17)

where and is the matrix whose
th column is given by the vector .

Because the are orthonormal, is a unitary matrix.
According to Section III-A, there are pilot symbols at

time–frequency positions . Thus, of the JD entries
of are given by the channel coefficients at the pilot po-
sitions . Let denote the corresponding length-
subvector of , and let denote the submatrix of

constituted by the corresponding rows of . Reducing
(17) to the pilot positions, we obtain

(18)

with and . Note that
is normalized such that its columns have unit -norm, and

that the length-JD vector is, up to a constant factor, the vector
form of .

Our task is to estimate based on relation (18). The vector
is unknown, but we can approximate it by the corre-

sponding vector of pilot-based channel coefficient estimates
[see (13)]. For consistency with the notation used

in Section III-B, this latter vector will be denoted as (rather
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than ). According to (13), , where is the
vector of noise/interference terms . Inserting
(18), we finally obtain the measurement equation

(19)

The vector is approximately -sparse because was
assumed approximately -sparse. Thus, (19) is seen to be a
sparse reconstruction problem of the form (14), with dimensions

and and sparsity .
We can hence use one of the CS recovery techniques reviewed
in Section III-B to obtain an estimate of or, equivalently, of

or of . From the es-
timate of , estimates of all channel coefficients

are finally obtained via (10).
According to its definition , the mea-

surement matrix is constructed by selecting rows of
the unitary matrix and normalizing the resulting
columns. This agrees with the construction of described in
Section III-B in the context of BP and CoSaMP. To be fully
consistent with that construction, we have to select the rows
of uniformly at random. The indices of these rows equal the

indices within the index range of the channel
vector that correspond to the set of pilot positions . We
conclude that the pilot positions have to be selected
uniformly at random within the subsampled time–frequency
grid , in the sense that the “pilot indices” within the index
range of are selected uniformly at random.

For BP and CoSaMP, in order to achieve a small upper
bound on the reconstruction error as discussed in
Section III-B, the number of pilots should satisfy condition
(15). In our case, this (sufficient) condition becomes

with an appropriately chosen (note that ). This bound
suggests that the required number of pilots scales at most lin-
early with the delay-Doppler sparsity parameter and poly-log-
arithmically with the system design parameters and . Note
that the pilot positions are randomly chosen (and communicated
to the receiver) before the beginning of data transmission; they
are fixed during data transmission.

IV. DELAY-DOPPLER SPARSITY AND LEAKAGE EFFECT

In this section, we analyze the sparsity of the channel’s
delay-Doppler representation for a simple time-varying mul-
tipath channel model comprising specular (point) scatterers
with fixed delays and Doppler frequency shifts for

. This simple model is often a good approxi-
mation to real mobile radio channels [61], [62]. The channel
impulse response thus has the form

(20)

where characterizes the attenuation and initial phase of the
th propagation path and is the Dirac delta. The discrete-

delay-Doppler spreading function (9) then becomes

(21)

with

where

(22)

(23)

It is seen from (21) that, although we assumed specular scat-
tering, does not consist of Dirac-like functions at
the delay-Doppler points of the scatterers, .
Rather, there occurs a leakage effect which is characterized by
the function , and which is stronger
for a broader . The leakage effect is due to the
finite transmit bandwidth and the finite blocklength

. It is important for compressive channel esti-
mation because it implies a poorer sparsity of . Note
that whereas a large blocklength reduces the leakage effect, it
also implies that the specular model with constant parameters
(20) is a less accurate approximation and, thus, that the contin-
uous-delay-Doppler spreading function [42] is less sparse. This
motivates an extension of the compressive channel estimation
method that is able to reduce the leakage effect (see Section V).

In view of (21), studying the sparsity of essentially
amounts to studying the sparsity of

. To this end, we
first consider the energy of those samples of
whose distance from is greater than ,
i.e., . We assume that exhibits at
least a polynomial decay, i.e.,
with , for some positive constants and . This
includes the following important special cases: 1) the ideal
low-pass filter, i.e., with

, here ; and 2) the family of
root-raised-cosine filters: if both and are equal to
the root-raised-cosine filter with roll-off factor , then, for not
too large, and .
Based on the polynomial-decay assumption, one can show the
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following bound [23] on the energy of all
with :

Hence, the energy of outside the interval
decays polynomially of order

with respect to .
In a similar manner, we consider the energy of those

samples of whose distance (up to the
modulo- operation, see below) from is greater than

. Let denote the set
with the exception of all , where is any
integer with . From (23), one can obtain
the bound [22]

which shows that the energy of outside the in-
terval (modulo decays
linearly (polynomially of order 1) with respect to .

From these decay results, it follows that
can be consid-

ered as an approximately sparse (or compressible, in CS termi-
nology [45]) function. Thus, as an approximation, we can model

as -sparse, with an appropri-
ately chosen sparsity parameter . It then follows from (21)
that is -sparse, and the same is true for
in (11). Unfortunately, cannot be chosen extremely small
because of the strong leakage that is due to the slowly (only lin-
early) decaying factor . This limitation motivates
the introduction of a sparsity-enhancing basis expansion in the
next section.

V. SPARSITY-ENHANCING BASIS EXPANSION

The 2-D DFT relation (12) underlying the basic compressive
channel estimator is an expansion of the subsampled channel
coefficients into the 2-D DFT basis

[see (16)]. The sparsity of the ex-
pansion coefficients was shown above
to be limited by the slowly (only linearly) decaying function

. In order to enhance the sparsity, we now in-
troduce a generalized 2-D expansion of into or-
thonormal basis functions

(24)

Clearly, our previous 2-D DFT expansion (12), (16) is a special
case of (24).

A. 1-D and 2-D Basis Expansions

We will choose a basis that is adapted to the
channel model (20) (but not to the specific channel parameters

, and in (20)). Equation (20) suggests that the coeffi-
cients should be sparse for the elementary single-scatterer
channel , for all
and . Specializing (21) to and

, and using (11), the 2-D DFT expansion (12) yields after
a straightforward calculation

(25)

Here, we have set

(26)

where

(27)

with .
According to (27), the poor decay of entails a poor

decay of with respect to . To improve the decay, we re-
place the 1-D DFT (26) by a general 1-D basis expansion

(28)

with a family of bases

that are orthonormal (i.e.,
for all and do not depend on the value

of in . The idea is to choose the 1-D
bases such that the coefficient

vector is sparse for all and all
. Substituting (28) back into (25), we

obtain

This can now be identified with the 2-D basis expansion (24),
with the orthonormal 2-D basis

(29)

and the 2-D coefficients .
The basis functions are seen to agree with
our previous 2-D DFT basis functions
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with respect to , but they
are different with respect to because is
replaced by . Furthermore, the sparsity of in

the direction is governed by the new 1-D coefficients ,
which are potentially sparser than the previous 1-D coeffi-
cients in (26) that were based on the 1-D DFT basis

.
These considerations can be immediately extended to the

multiple-scatterer case. When the channel comprises scat-
terers as in (20), the coefficients are .

If each coefficient sequence is -sparse, is
-sparse. Note that, by construction, our basis

does not depend on the channel parameters , and ,
and its formulation is not explicitly based on the channel model
(20). The use of the generalized 2-D basis in (29)
comes at the cost of an increased computational complexity,
because efficient FFT algorithms can only be applied with
respect to but not with respect to . However, if is not too
large, the additional complexity is small. Optimal designs of
the 1-D bases will be presented in
Section VI.

B. Generalized Compressive Channel Estimator

A CS-based channel estimation scheme that uses the gener-
alized basis expansion (24) can be developed similarly as in
Section III-C. We can write (24) as [cf. (17)] , with
a unitary matrix . Here, and are defined in an analogous
manner as, respectively, and were defined in Section III-C.
Reducing this relation to the pilot positions yields [cf. (18)]

, with and ,
where the diagonal matrix is chosen such that all columns of

have unit -norm. Finally, we replace the unknown vector
by its pilot-based estimate, again denoted as . Using (13),

we then obtain the measurement equation [cf. (19)] ,
where is again the vector with entries . As in
Section III-C, our task is to recover the length- vector from
the known length- vector , based on the measurement equa-
tion. From the resulting estimate of , estimates of the channel
coefficients on the subsampled grid are obtained via (24)
by means of the equivalence of and . Inverting2

(12) and applying (10) then yields estimates of all channel coef-
ficients . As discussed further above, we can expect and,
in turn, to be approximately sparse provided the 1-D bases

are chosen appropriately. Hence, our channel estima-
tion problem is again recognized to be a sparse reconstruction
problem of the form (14), with dimensions

and . We can thus use a CS recovery
technique to obtain an estimate of .

For consistency with the CS framework of Section III-C,
we select the pilot positions uniformly at random within the
subsampled time–frequency grid . For BP and CoSaMP, to

2Note that the 1-D part of (24) corresponding to index equals the respective
1-D part of (12) (1-D DFT), since .
Hence, the transformation (24) and the inverted transformation (12) have to be
applied only with respect to the index .

achieve a small upper bound on the reconstruction error, the
number of pilots should satisfy condition (15), i.e.,

where is the sparsity of and is the coherence of . Note
that depends on the chosen basis ; furthermore,

(for the DFT basis, we had . Thus, the perfor-
mance gain due to the better sparsity may be reduced to a certain
extent because of the larger coherence.

VI. BASIS OPTIMIZATION

We now discuss the optimal design of the 1-D bases
.

A. Basis Optimization Framework

The orthonormal 1-D bases
should be such that the coefficient vectors

are sparse for all and all
(the maximum Doppler frequency shift is

assumed known). For our optimization, we slightly relax this
requirement in that we only require a sparse coefficient vector
for a finite number of uniformly spaced Doppler frequencies

, where
with some Doppler frequency spacing .

Regarding the choice of , it is interesting to note that for the
“canonical spacing” given by , the coefficients

in the 1-D DFT expansion (26) are 1-sparse with respect
to . Indeed,
here simplifies to

, where is the -periodic unit sample (i.e.,
is 1 if is a multiple of and 0 otherwise). Expression

(27) then reduces to

where depends on but not on . Thus, for ,
the coefficients obtained using the 1-D DFT basis

are 1-sparse (no leakage effect). This means
that the 1-D DFT basis would be optimal; no other basis could
do better. We therefore choose a Doppler spacing that is twice
as dense, i.e., . That is, we define such
that it includes also the Doppler frequencies located midway
between any two adjacent canonical sampling points. For these
frequencies—given by for odd —the leakage (obtained
with the DFT basis) is maximal.

Because the basis is orthonormal, the expan-

sion coefficients defined by (28) can be calculated as

the inner products
. This can be rewritten as
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with the length- vectors and

and the unitary
matrix with entries . We can
now state the basis optimization problem as follows. For given

vectors , , with defined as described

above, find unitary matrices not dependent on such

that the vectors are maximally sparse for all

.
For the sake of algorithmic simplicity, we will measure

the sparsity of by the -norm or, more precisely,
by the -norm averaged over all , i.e.,

. Thus,
our basis optimization problem is formulated as the
constrained minimization problems3

(30)

where denotes the set of all unitary matrices. Note that
the vectors are known because they follow from the func-
tion , which is given by [see (26), (27)]

.
It is seen that the optimal bases characterized by the matrices

depend on , and (via the definition of
, but not on any other channel properties.

For classical CP-OFDM with CP length ,
we have for all ,

so [see (26), (27)] and thus
. Because no longer depends on , only one basis

(instead of different bases , ) has to be
optimized.

B. Statistical Basis Optimization

The basis optimization framework presented above can be
extended to take into account prior statistical information
about the channel. Let us again consider the single-scat-
terer channel , now
including a path gain . We assume that , and are
random, with distributed according to a known prob-
ability density function (pdf) , and given
being zero-mean, circularly symmetric complex Gaussian
with known variance . As before, we consider
a 2-D expansion of the subsampled channel coefficients

into (deterministic) orthonormal basis functions

, i.e., ,
. Clearly, the vector of

expansion coefficients (which is defined as in Section V-B)
now is a random vector. Our goal is to find basis functions

(or, equivalently, a unitary matrix , defined as
in Section V-B) such that is maximally sparse

3 We note that the optimization problem (30) is similar to dictionary learning

problems that have recently been considered in [34]–[36]. In [36], conditions
for the local identifiability of orthonormal bases by means of minimization
have been derived. An -norm based sparsity-enhancing basis design has been
proposed in the MIMO context in [63]. Furthermore, basis adaptation and se-
lection at the receiver has been considered in the ultrawideband context in [64].

on average. Measuring the sparsity of by the -norm for
convenience, we obtain the optimization problem

(31)

where denotes expectation and denotes the set of all
unitary matrices.

Again, we set with
a family of orthonormal 1-D bases . Then, (31) reduces
to the minimization of with respect to . For
the single-scatterer channel, the -norm of can
be shown to be

with as in (26), (27). We note that given
is Rayleigh distributed with mean .

Hence, is given by (hereafter, we write
instead of

(32)

with

It follows that minimizing (32) with respect to
amounts to minimizing

(33)

for all . Note that can be computed
from the known statistics. In vector-matrix notation, with

and the unitary matrix
with entries , minimization of

(33) can be equivalently written as minimization of

(34)

over the set of all unitary matrices , for
. Approximating this integral by its

Riemannian sum4 over the set

4Alternatively, the integral can be interpreted as an expectation with respect
to and computed by means of Monte Carlo techniques. This is especially ad-
vantageous if the maximum Doppler frequency is unknown.
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with , for a given maximum
Doppler frequency , the minimization problem can be
finally stated as

with

(35)

for . This is recognized to be of the same form
as (30).

In practice, the channel statistics will de-
viate from the true statistics to some extent, so that the basis
matrices obtained as described above will be different from
the truly optimal ones. An interesting question is as to how this
difference affects the average sparsity of the expansion coef-
ficient vector . For simplicity, we measure the average
sparsity by , and we assume that the optimization
criterion is minimization of (34) [which, after all, is almost
equivalent to (35)] and, further, that or equivalently

(i.e., no subsampling with respect to ). Let and
denote the expansion coefficient vectors obtained for the

true and incorrect bases, respectively. Then, one can show the
following bound on the normalized difference of the average
sparsities of and :

where is defined analogously to but with the
incorrect statistics.

C. Basis Optimization Algorithm

Because the minimization problems (30) and (35) are non-
convex (since is not a convex set), standard convex optimiza-
tion techniques cannot be used. We therefore propose an approx-
imate iterative algorithm that relies on the following facts [65].
1) Every unitary matrix can be represented in terms of
a Hermitian matrix as . 2) The matrix expo-
nential can be approximated by its first-order Taylor
expansion, i.e., , where is the identity
matrix. Even though is unitary and is not, this approx-
imation will be good if is small, where denotes
the largest modulus of all entries of . Because of this condi-
tion, we construct iteratively: starting with the DFT basis,
we perform a small update at each iteration, using the approxi-
mation in the optimization criterion but not for

actually updating (thus, the iterated is always unitary).
More specifically, at the th iteration, we consider the following
update of the unitary matrix :

where is a small Hermitian matrix that remains to be opti-
mized. Note that is again unitary because both and

are unitary.
Ideally, we would like to optimize according to

(30) [or (35)], i.e., by minimizing

. Since this problem is still non-
convex, we use the approximation , and thus
the final minimization problem at the th iteration is

(36)

Here, is the set of all Hermitian matrices that are
small in the sense that , where is a positive
constraint level (a small ensures a good accuracy of our ap-
proximation and also that is close to .
The problem (36) is convex and thus can be solved by standard
convex optimization techniques [66].

The next step at the th iteration is to test whether the cost
function is smaller for the new unitary matrix , i.e.,
whether . In

the positive case, we actually perform the update of and
we retain the constraint level for the next iteration, i.e.,

Otherwise, we reject the update of and reduce the con-
straint level , i.e.,

By this construction, the cost function sequence
is guaranteed to be mono-

tonically decreasing.
The above iteration process is terminated if falls below a

prescribed threshold or if the number of iterations exceeds a cer-
tain value. The iteration process is initialized by the DFT
matrix , i.e., , because the DFT basis was seen in
Section IV to yield a relatively sparse coefficient vector. We note
that efficient algorithms for computing the matrix exponentials

exist [65]. Since the bases (or, equivalently, the
basis matrices do not depend on the received signal, they
have to be optimized only once before the actual channel esti-
mation starts.

In Fig. 1, we compare the expansion coefficients
obtained with the DFT basis [see (16)] and obtained
with the deterministically optimized basis [see (24), (29)]
for one channel realization. The system parameters are as in
Sections VIII-A and VIII-B (first scenario). For the minimiza-
tion (36) (not -dependent, since we consider a CP-OFDM
system), we used the convex optimization package CVX [67]. It
is seen that the basis optimization yields a significant enhance-
ment of sparsity.

VII. CHANNEL ESTIMATION FOR STRONGLY

DISPERSIVE CHANNELS

For strongly dispersive channels, the off-diagonal
system channel coefficients (ISI/ICI coefficients)
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Fig. 1. Sparsity enhancement obtained with the proposed iterative basis optimization algorithm: Modulus of the expansion coefficients for (a) the DFT basis and
(b) the optimized basis.

in (7) are no longer negligible.
Therefore, we now present a compressive channel estimator
that is able to produce reliable estimates of all channel
coefficients .

A. Basis Expansion Model

The proposed channel estimator uses a basis expansion model
[18]–[20] that is different from the basis expansion considered
in Sections V and VI. The discrete-time channel impulse re-
sponse is expanded with respect to into orthonormal
basis functions , i.e.,

(37)

with -dependent expansion coefficients

(38)

The function generalizes the discrete-delay-Doppler
spreading function in (9), which is reobtained for

(up to a constant factor). Similarly
to (8), the discrete-time channel can now be rewritten as

(39)

We assume that the support of is contained in
is assumed causal

with maximum delay at most . Combining (5), (39), and

(1), we then reobtain the system channel relation (7), with the
channel coefficients expressed as

(40)

Note that the limiting cases and are also
allowed.

B. Compressive Channel Estimator

The proposed compressive channel estimator operates in an
iterative, decision-directed fashion. At the first iteration, it uti-
lizes the knowledge of some pilots with .
The pilot position set is selected uniformly at random within

. At later iterations, the estimator
additionally uses virtual pilots, which are based on the symbol
decisions produced by a suitable ISI/ICI equalizer (e.g., [40]
and [68]–[71]) followed by the quantizer. Typically, the equal-
izer will use the (estimated) channel coefficients only
within a certain “off-diagonal bandwidth,” i.e., for
and (modulo ).

At the th iteration, let denote “extended pilots” (pilots
augmented by virtual pilots) on an extended pilot position set

. This set is defined as
, where

and will be specified later. Note that by this construction,
for an extended pilot in , all neighboring symbols (which
yield the largest interference) are also included in . Then,
for , relation (7) can be written as

(41)
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where the noise/interference term includes noise, ISI/ICI
from outside the set , and—possibly—some addi-
tional errors if . If is chosen sufficiently large,

the ISI/ICI part in is negligible. Inserting (40) into (41)
yields the noisy 2-D expansion

(42)

with and

. Differently from (16)
and (24), this is an expansion of the demodulated symbols

and not of the channel coefficients . Note also that

the basis functions depend on the extended pilots

.
Using a stacking as in Section III-C, the expansion (42) can

be expressed as , where the -di-
mensional vectors and , the -dimensional vector ,
and the matrix are defined in an analogous
manner as, respectively, , , and in Section III-C.
With , and ,
where the diagonal matrix is chosen such that all columns
of have unit -norm, we obtain5 the measurement equa-

tion [cf. (19)] . As in Section III-C, we
would like to recover the length- vector from the known
length- vector . If the basis functions in (37) and
(38) are chosen such that (or, equivalently, is sparse,
then also is sparse. Hence, our problem is
again a sparse reconstruction problem of the form (14), with di-
mensions and

. We can thus use a CS recovery technique6 to obtain an

estimate of and, in turn, an estimate
or, equivalently, .

From , estimates of the channel coefficients
for all and

are obtained via (40). Then, an ISI/ICI equalizer yields symbol
estimates and, subsequently, a quantizer produces detected

symbols . On , these

are replaced by the known pilots, i.e., we set for
.

Next, we determine as the largest subset of
such that the new ex-

tended pilot set contains only “reliable”
detected symbols , and we define the new extended pilots

as for . Here, following [71], a

detected symbol will be considered as “reliable” either if

5The computation of the measurement matrix essentially requires
FFTs of length . Note that is typically very small, cf.

Section VII-C.
6Whether satisfies the RIP with a small restricted isometry constant

depends on the basis functions as well as on the extended pilot position
set ; hence, performance guarantees cannot be made in general.

or, for , if the corresponding symbol esti-
mate (result of equalization, before quantization) is signifi-

cantly closer to than to any other symbol in . For example,

for the QPSK alphabet ,
will be considered as reliable either if or if both

and for a certain threshold .
Proceeding iteratively in this fashion, we successively con-

struct extended pilots , which are used to estimate
and, via (40), the channel coefficients . The reliability
criterion ensures that most of the extended pilots equal the true
transmitted symbols. Since the are improved with the iter-

ations, we expect in general. The iterative
algorithm is initialized with and
(for , whereas later

. Accordingly, we
use the conventional one-tap equalizer (without ISI/ICI equal-
ization) at the first iteration. The algorithm is terminated either
if the difference between and (measured by
a suitable norm) falls below a certain threshold or after a fixed
number of iterations. While a proof of convergence for this itera-
tive algorithm is not available, we always observed convergence
for reasonably chosen (see Section VII-C), , and .

The proposed algorithm is not limited to strongly dispersive
channels. For weakly dispersive channels, we simply set

at all iterations and replace the ISI/ICI equalizer by the con-
ventional one-tap equalizer. This effectively amounts to a de-
cision-directed, iterative extension of the compressive channel
estimator discussed in Sections III–VI. This extension can im-
prove the estimation accuracy. Moreover, it can increase the
spectral efficiency of the system even further, since the pilot set

can be chosen quite small due to the successive improvements
achieved by the iterations. However, these gains come at the cost
of some additional complexity.

C. Sparsity-Inducing Basis Functions

The basis functions have to be
chosen such that the generalized spreading function in
(38) is sparse. In particular, (20) suggests that should
be sparse for the single-scatterer channel

, for all and . For
this channel

with (43)

The factor [see (22)] is already sparse due
to its fast decay as discussed in Section IV. Thus, we have to
design the such that the factor is sparse for all

.
For this purpose, we can adapt the basis optimiza-

tion of Section VI. Let
with and rewrite the

second equation in (43) as , with the length-
vectors and
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and the unitary matrix
with entries . Optimal basis functions

are now defined as ,
so that the iterative optimization algorithm of Section VI-C can
be used. However, for large , the computational cost
of this approach is quite high.

As a practical alternative, we propose a construction of
the that involves discrete prolate spheroidal sequences
(DPSSs) [37]. Basis expansion models using DPSSs have
been considered previously [20]. If their design parame-
ters are chosen according to maximum Doppler frequency

, sampling period , and blocklength , the corre-
sponding functions in (43) will have an effective support

for all , where is small
compared with . Unfortunately, within this support interval,
the are not sparse in general.

We will therefore use a specific combination of DPSSs
and DFT basis functions, which yields functions
that are still effectively zero outside but,
within that interval, preserve the sparsity obtained with the
DFT basis. Let , denote
the DPSSs that are bandlimited to and
have maximum energy concentration in
[37]. In what follows, the DPSSs will be truncated
to . Then, for large , the support of

is effectively contained in
for all , where

with and a small integer. In
addition, we consider the orthonormal DFT basis
functions ,
for . For these is in

. We thus have for all and

(44)

because but . That is,
and are effectively orthogonal for the specified ranges

of and . Let us now define the following ordered set of (in
total DFT functions and (truncated) DPSSs:

Due to (44) and the orthonormality of the [37], all
functions in are (effectively) mutually orthonormal with
the exception of the DPSSs within the index range

, which are not orthonormal to the DFT
functions. Therefore, we derive the final set of basis functions

by Gram–Schmidt orthonormaliza-
tion [65] of . This amounts to setting for

and
for , with suitable coefficients . It follows that

Fig. 2. Sparsity enhancement in obtained with the proposed combined
DFT-DPSS basis, relative to a pure DFT basis and a pure DPSS basis.

for all and .
Hence, the Gram–Schmidt orthonormalization algorithm yields

for all , i.e., the last
basis functions of are effectively known a priori, and the
algorithm can therefore be terminated after steps. In fact, only

steps are required, because the first
(DFT) basis functions are also known.

With this construction of the , the support of
is approximately contained

in for all . Furthermore,
for , the are DFT basis functions, so
that the sparsity of corresponds to the sparsity given by
the DFT basis for these indices . For the remaining
indices within the support interval,
we cannot expect any sparsity of . However, is quite
small, so that the overall sparsity of is not deteriorated
significantly.

For and
(corresponding to a maximum Doppler

frequency of 20% of the subcarrier spacing), Fig. 2 depicts
, for .

For comparison, (obtained with a pure DFT basis) and

(obtained with a pure DPSS basis) are also shown. We
see that the proposed DFT-DPSS basis leads to the sparsest
result: for the pure DPSS basis, there is no sparsity within the
support interval, while for the pure DFT basis, the sparsity is
impaired by a strong leakage effect.

VIII. SIMULATION RESULTS

Next, we demonstrate the performance gains that can be
achieved with our sparsity-enhancing basis expansions and
estimation of ISI/ICI channel coefficients, relative to the basic
compressive estimator. We show results for three different re-
covery algorithms, namely, Lasso (equivalent to BP denoising),
OMP, and CoSaMP.

A. Simulation Setup

MC system parameters. We simulated CP-OFDM systems
with subcarriers and CP length ratio

. The systems employed 4-QAM symbols
with Gray labeling, a rate- convolutional code, and 32 16
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Fig. 3. Performance of compressive estimators versus the SNR. (a) MSE. (b) BER.

row-column interleaving. The interpolation/anti-aliasing filters
were chosen as root-raised-cosine filters with

roll-off factor .
Recovery method. For Lasso, we used the corresponding

MATLAB function from the toolbox SPGL1 [72]. The re-
quired regularization parameters were found by trial and
error. CoSaMP requires a prior estimate of the sparsity of

. In all simulations of Section VIII-B, we used the fixed
sparsity estimate , which was determined via the
formula suggested in [47], where we set

. (Note that in most scenarios where CoSaMP
was applied, we actually used 2048 pilots.) The number of
CoSaMP iterations was 15. For OMP, we also used the sparsity
estimate (and, hence, 262 iterations), except for the
strongly dispersive scenario of Section VIII-C. Therefore, in
Section VIII-B, the vectors produced by OMP and CoSaMP
were exactly -sparse with .

Channel. We simulated and estimated the channel during
blocks of transmitted OFDM symbols ( will be spec-
ified in the individual subsections). For a more realistic
simulation, the channel contained a diffuse part in ad-
dition to a sparse (specular) part, with 20 dB less total
power than for the sparse part. The scattering function of
the diffuse part was bricked-shaped within a rectangular
delay-Doppler region .
The discrete-delay-Doppler spreading function
of the sparse part was computed from (21). We al-
ways assumed propagation paths with scatterer
delay-Doppler positions chosen uniformly at
random within (or within a subset of, cf. Section VIII-B)

for each block of
OFDM symbols. The scatterer amplitudes were ran-

domly drawn from zero-mean, complex Gaussian distributions
with three different variances (three strong scatterers of
equal mean power, seven medium scatterers with 10 dB less
mean power, and ten weak scatterers with 20 dB less mean
power). Furthermore, we added complex white Gaussian
noise whose variance was adjusted to achieve a pre-
scribed receive signal-to-noise ratio (SNR) defined as (cf. (6))

.

Subsampling and pilots. All estimators employed a subsam-
pled time–frequency grid with and , on which
the pilots were selected uniformly at random.

Performance measures. For all simulations, the performance
is measured by the mean square error (MSE) normalized by the
mean energy of the channel coefficients, as well as by the bit
error rate (BER).

B. Performance Gains Through Basis Expansions

We first compare the performance of compressive channel es-
timation using the DFT basis (underlying the basic estimator of
Section III), the optimized basis of Section VI (without knowl-
edge of channel statistics), and the combined DFT-DPSS basis
of Section VII. The number of subcarriers is , the
blocklength is , and the maximum Doppler frequency is

(i.e., 3% of the subcarrier spacing). Here,
the maximum Doppler frequency is quite small; accordingly,
the estimator of Section VII-B only performs its initial itera-
tion (where . All estimators use the same constella-
tion of pilots, corresponding to 6.25% of all sym-
bols. Fig. 3 depicts the performance versus the SNR for the
three recovery algorithms employed. The performance of the
optimized basis and the combined DFT-DPSS basis is seen to
be similar and clearly superior to that of the pure DFT basis,
especially at high SNR. This performance gain is due to the
better sparsity achieved, and it is obtained even though the co-
herence of the optimized basis is greater than
that of the DFT basis and the measurement matrix
for the combined DFT-DPSS basis is not constructed from an
(ideally) unitary matrix. The larger gap to the known-channel
BER performance observed in Fig. 3(b) at high SNR occurs
because 1) the number of pilots is too small for the channel’s
sparsity, and 2) the OMP-based and CoSaMP-based estimators
produce -sparse signals with , which is too small for
the channel’s sparsity.

The number of pilots, , is an important design param-
eter because it equals the number of measurements available
for sparse reconstruction. Fig. 4 depicts the performance versus

(corresponding to 1.5625% 25% of
all symbols) at an SNR of 17 dB. As a reference, the known-
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Fig. 4. Performance of compressive estimators versus the number of pilots. (a) MSE. (b) BER.

Fig. 5. Performance of DFT-based, deterministically optimized, and statistically optimized compressive estimators versus the SNR. (a) MSE. (b) BER.

channel BER is also plotted as a horizontal line. It is seen that,
as expected, the performance of all estimators improves with
growing . The optimized basis and the combined DFT-DPSS
basis are again superior to the DFT basis.

Next, we demonstrate performance gains that can be
achieved by the statistically optimized basis expansion
of Section VI-B. The system and channel parameters are

(5% of the subcar-
rier spacing), and (6.25% of all symbols). For
the sparse channel part, the 20 scatterer delay-Doppler po-
sitions now are chosen uniformly at random
only within

. This serves as a rough approxi-
mation to the Jakes Doppler spectrum [73], according to
which the scatterers are stronger when they are closer
to the maximum Doppler frequency. In order to opti-
mize the basis expansion with this prior statistical knowl-
edge, the pdf (see Section VI-B) is set equal to
a constant within

and equal
to zero outside. The variance of given is assumed
constant, i.e., . Fig. 5 depicts the re-
sulting performance versus the SNR. For comparison, we also

show the performance of the deterministically optimized basis
expansion, which uses only knowledge of , as well as
the performance of the DFT basis and the known-channel
BER performance. The statistically optimized basis is seen to
outperform the other bases. This can be explained by the fact
that it reduces the leakage effects occurring within the Doppler
interval .

C. Performance Gains Through ISI/ICI Coefficient Estimation

Finally, we assess the performance of the compressive, iter-
ative, decision-directed estimator of Section VII, which is able
to estimate also off-diagonal (ISI/ICI) channel coefficients. We
consider a wide range of maximum Doppler frequencies, corre-
sponding also to strongly frequency-dispersive channels; more
specifically, or 3% 25% of the
subcarrier spacing. The system parameters are

SNR dB, and (i.e., only 3.125% of all
symbols). There occurs no ISI, only ICI. The estimator uses

for all iterations , so that the
ICI equalizer processes the main diagonal plus the first three
upper and lower off-diagonals. The reliability threshold is

. For ICI equalization, we use the LSQR equalizer proposed
in [70], with a fixed number of 15 iterations. Furthermore, we
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Fig. 6. Performance of the decision-directed compressive estimator versus the channel’s maximum normalized Doppler frequency for different numbers of itera-
tions . (a) MSE. (b) BER.

use OMP with 90 iterations for CS recovery, and the combined
DFT-DPSS basis of Section VII-C.

Fig. 6 depicts the performance of the estimator versus the
maximum Doppler frequency for iterations up to , with

. For comparison, the known-channel BER per-
formance of conventional one-tap equalization and of LSQR-
based ICI equalization is also shown. The MSE takes into ac-
count the estimated diagonal and first three upper and lower
off-diagonal channel coefficients; it is normalized accordingly.
For , where only the diagonal channel coefficients are es-
timated, the off-diagonal coefficients of the estimated channel
are set to zero when calculating the MSE. It is seen from Fig. 6
that for , the performance is very poor even for small
(weakly dispersive channels). This is due to the small number
of pilots used. However, the performance is improved with an
increasing number of iterations, thus demonstrating the ben-
efits of off-diagonal coefficient estimation and the use of virtual
pilots. The initial improvement is slower for larger , again
because of the small number of pilots. It is furthermore seen
that for iterations, for large , the proposed compres-
sive estimator is superior to the known-channel performance of
one-tap equalization. Our results also show that the proposed
decision-directed method is advantageous not only for coping
with strongly dispersive channels; it is equally useful for fur-
ther improving the spectral efficiency, even for mildly disper-
sive channels, because of the smaller number of pilots required.

IX. CONCLUSION

We considered the application of compressed sensing tech-
niques to the estimation of doubly selective multipath chan-
nels within pulse-shaping multicarrier systems (which include
OFDM systems as a special case). The channel coefficients on
a subsampled time–frequency grid are estimated in a way that
exploits the channel’s sparsity in a dual delay-Doppler domain.
We demonstrated that this delay-Doppler sparsity is limited by
leakage effects. For combating leakage effects and, thus, en-
hancing sparsity, we proposed the use of an explicit basis expan-
sion that replaces the Fourier transform used in the basic com-

pressive channel estimation method. We also developed an iter-
ative basis design algorithm, and we extended our basis design
to the case where prior statistical information about the channel
is available.

For strongly time–frequency dispersive channels, we then
presented an alternative compressive channel estimator that
is capable of estimating the “off-diagonal” channel coeffi-
cients characterizing intersymbol and intercarrier interference
(ISI/ICI). Sparsity of the channel representation was here
achieved by a basis expansion combining the advantages of
Fourier (exponential) and prolate spheroidal sequences.

Simulation results demonstrated considerable performance
gains achieved by the proposed sparsity-enhancing basis expan-
sions and by explicit estimation of ISI/ICI channel coefficients.
The additional computational complexity required by the basis
expansions is moderate; in particular, the bases can be precom-
puted before the start of data transmission.
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