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High-dimensional Partial Differential Equations (PDEs) are a popular mathematical modelling tool, with

applications ranging from finance to computational chemistry. However, standard numerical techniques

for solving these PDEs are typically affected by the curse of dimensionality. In this work, we tackle

this challenge while focusing on stationary diffusion equations defined over a high-dimensional domain

with periodic boundary conditions. Inspired by recent progress in sparse function approximation in high

dimensions, we propose a new method called compressive Fourier collocation. Combining ideas from

compressive sensing and spectral collocation, our method replaces the use of structured collocation

grids with Monte Carlo sampling and employs sparse recovery techniques, such as orthogonal matching

pursuit and ℓ1 minimization, to approximate the Fourier coefficients of the PDE solution. We conduct a

rigorous theoretical analysis showing that the approximation error of the proposed method is comparable

with the best s-term approximation (with respect to the Fourier basis) to the solution. Using the

recently introduced framework of random sampling in bounded Riesz systems, our analysis shows that

the compressive Fourier collocation method mitigates the curse of dimensionality with respect to the

number of collocation points under sufficient conditions on the regularity of the diffusion coefficient.

We also present numerical experiments that illustrate the accuracy and stability of the method for the

approximation of sparse and compressible solutions.

Keywords: High-dimensional PDEs; Compressive Sensing; Spectral collocation; Bounded Riesz system.

1. Introduction

The numerical solution of high-dimensional Partial Differential Equations (PDEs) is a crucial task

in scientific computing with a wide range of applications. Popular high-dimensional PDEs include

the Black-Scholes equation in computational finance, the many-electron Schrödinger equation in

computational chemistry, the Hamilton-Jacobi-Bellman equation in optimal control, and the Fokker-

Planck equation in statistical mechanics. Computing numerical solutions to high-dimensional PDEs is

made intrinsically challenging by the curse of dimensionality (term coined by Bellman (1957, 1961)),

i.e. the tendency of numerical techniques to require a computational cost that scales exponentially with

respect to the dimension of the PDE domain.

We tackle this challenge by proposing a new numerical method for high-dimensional PDEs called

compressive Fourier collocation, based on ideas from compressive sensing. Our work is inspired by

recent progress in sparse polynomial approximation of high-dimensional functions, where methods

based on compressive sensing can provably lessen the curse of dimensionality with respect to the sample

complexity (see Adcock et al. (2022) for an introduction to this research area).

In this paper, we explore to what extent this attractive feature of sparse polynomial approximation

methods can be leveraged in the setting of high-dimensional PDEs. As a model problem, we consider
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the high-dimensional diffusion equation. This serves as a simplified model for problems like the Black-

Scholes, Schrödinger and Fokker-Planck equation, whose higher-order term is a second-order diffusion

operator. Moreover, in order to keep the theoretical analysis accessible, we consider periodic boundary

conditions or, equivalently, we assume the PDE domain to be the d-dimensional torus.

1.1. Main contributions

We start by summarizing our main contributions.

Proposed method. We propose a new numerical method for the numerical solution of high-dimensional

PDEs called compressive Fourier collocation, based on Monte Carlo sampling and sparse recovery

via greedy algorithms or ℓ1 minimization. Our work builds upon the compressive spectral collocation

method proposed in Brugiapaglia (2020). We note, however, that the method in Brugiapaglia (2020) is

heavily affected by the curse of dimensionality due to the use of (subsampled) tensorized equispaced

grids and truncation sets of tensor product type, which lead to an exponential dependence of the number

of collocation points on the dimension. We overcome this limitation thanks to the use of Monte Carlo

sampling and truncation sets of hyperbolic cross type.

Theoretical analysis. We carry out a rigorous theoretical analysis of the proposed method for the

solution of the diffusion equation on the d-dimensional torus. Our analysis shows that, under suitable

regularity conditions on the diffusion coefficient, the compressive Fourier collocation method is

provably able to lessen the curse of dimensionality with respect to the number of collocation points.

Specifically, it requires a number of collocation points that scales only logarithmically with the

dimension d of the PDE domain. This is proved in Theorem 3.

Our analysis is based on the framework of random sampling in bounded Riesz system, recently

introduced in Brugiapaglia et al. (2021a). The main technical core of our analysis is aimed at finding

sufficient conditions on the diffusion coefficient that allow us to recast compressive Fourier collocation

in this framework. We note that in our method the spectral basis (i.e., a renormalized Fourier system) is

orthogonal. However, our analysis relies on showing that the family of functions obtained by applying

the PDE operator to the spectral basis is a bounded Riesz system under sufficient conditions on the PDE

coefficients. This is proved in Propositions 1 and 2.

Numerical experiments. We numerically validate the proposed method and show that it is able to

approximate both sparse and nonsparse solutions accurately. We show that the performance of the

method is robust to variations in the diffusion coefficient and with respect to different parameter settings.

Our numerical results involve simulations up to dimension d = 20.

1.2. Related literature

The literature on numerical methods for high-dimensional PDEs is vast and fast-growing. Although a

detailed review is outside the scope of this work, we provide a (noncomprehensive) set of references to

some key papers in the field.

A first class of methods for solving PDEs in moderately-high dimension is based on sparse grids;

see, e.g., Shen and Yu (2010, 2012). A more recent line of work focused on constructing high-

dimensional PDE solvers that are able to exploit low-rank structures in tensor-based approximations;

see, e.g., Bachmayr and Dahmen (2015); Bachmayr et al. (2016); Dahmen et al. (2016). In the past

few years, a research direction that has gained considerable attention in the scientific machine learning

community is the development of high-dimensional PDE solvers based on deep neural networks; see,
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e.g., Berner et al. (2020); Elbrächter et al. (2022); Grohs and Herrmann (2020); Gu et al. (2021); Han

et al. (2018). We refer to E et al. (2021) for an extensive literature review on the topic.

From a different perspective, our work can also be contextualized within the literature of numerical

methods for PDEs based on compressive sensing. Compressive (or compressed) sensing was introduced

in Donoho (2006); Candès et al. (2006) and had a transformative impact on an interdisciplinary array

of fields including, notably, scientific computing. For general introductions to compressive sensing and

its applications, we refer to Adcock and Hansen (2021); Foucart and Rauhut (2013); Lai and Wang

(2021). As mentioned in §1.1, our work builds upon the compressive spectral collocation method

proposed in Brugiapaglia (2020). Yet, we recall that the method proposed in our paper is provably

able to lessen the curse of dimensionality with respect to the number of collocation points, as opposed

to the method in Brugiapaglia (2020), thanks to the improved truncation and collocation strategies.

Other numerical methods for PDEs based on compressive sensing include techniques based on Petrov-

Galerkin discretizations (Jokar et al., 2010; Brugiapaglia et al., 2015, 2018, 2021b) and isogeometric

analysis (Brugiapaglia et al., 2020; Kang et al., 2019). Another related line of work is the development

of sparsity-promoting spectral methods for multiscale problems based on sparse Fourier transforms

(Daubechies et al., 2007) and soft thresholding (Mackey et al., 2014; Schaeffer et al., 2013). In this

direction, a very promising class of sublinear-time algorithms based on the sparse Fourier transform

and on Fourier-Galerkin discretizations for high-dimensional, multiscale elliptic PDEs with periodic

boundary conditions has been recently proposed in Gross and Iwen (2023). For further pointers to the

literature and historical remarks, we refer to (Brugiapaglia, 2020, Section 1.2).

Finally, we observe that using truncation sets of hyperbolic cross type in combination with Monte

Carlo sampling is a well-known strategy in the context of high-dimensional polynomial approximation

and its applications to parametric PDEs (see Adcock et al. (2022) and references therein). However, to

the best of our knowledge, this is the first work where this strategy is successfully employed to construct

a sparse high-dimensional PDE solver.

1.3. Outline of the paper

The paper is organized as follows. §2 defines notation used throughout the paper, the model problem,

and introduces the compressive Fourier collocation method. In §3, we illustrate theoretical recovery

guarantees for the compressive Fourier collocation method for the solution of the periodic diffusion

equation. In §4, we present numerical experiments in dimension two and eight with different diffusion

coefficients and for sparse and nonsparse exact solutions. In §5, we conclude by summarizing our main

findings and discussing avenues of future research. The proofs of the main results and further details on

the numerical experiments are presented in Appendix A.

2. Problem setting

In this section, we summarize standard mathematical notation used throughout the paper in §2.1,

define the high-dimensional periodic diffusion equation in §2.2, and illustrate the compressive Fourier

collocation method in §2.3.

2.1. Notation

We denote the set of positive integers as N, the set of nonnegative integers as N0 and the set of integers

as Z. For any n ∈ N, the set of first n nonnegative integers is denoted by [n] = {1, . . . ,n}. The notation
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x . y means that there exists a universal constant C > 0 such that x ≤Cy. Moreover, when X is a set,

|X | denotes its cardinality. The Kronecker delta is denoted by δi, j .

We equip C
n with the standard inner product zzz ·www=∑i∈[n] ziw̄i and its induced norm ‖zzz‖2 =(zzz ·zzz)1/2.

In general, we denote the ℓp-norm of a vector zzz ∈ Cn as ‖zzz‖p = (∑i∈[n] |zi|p)1/p, for any 1 ≤ p ≤
∞, and its ℓ0-“norm” as ‖zzz‖0 = |supp(zzz)|, where supp(zzz) = |{ j ∈ [N] : z j 6= 0}|. These definitions

naturally extend to the case where zzz is an infinite complex-valued sequence. Moreover, given a vector (or

sequence) zzz = (z j) j∈Λ indexed over a countable set Λ, we define the restriction of zzz to S as zzzS = (z j) j∈S

for any subset S ⊆ Λ. We denote the space of sequences zzz = (zi)i∈Λ such that ‖zzz‖p < ∞ as ℓp(Λ;C).
When |Λ|= N < ∞, we will identify ℓp(Λ;C) ∼= CN through the natural isomorphism.

We denote the one-dimensional torus by T=R/∼, where∼ is the equivalence relation on R defined

by x ∼ y if and only if x− y ∈ Z. We denote Lebesgue and Sobolev spaces over the d-dimensional

torus as Lp(Td) and Hk(Td), with 1 ≤ p ≤ ∞ and k ∈ N0, with the convention that H0 = L2, and

where we assume the functions to be complex-valued. The Lebsegue space L2 is equipped with the

inner product 〈u,v〉 = ∫

Td u(xxx)v(xxx)dxxx. We recall that the H1-norm is given by ‖u‖H1 = ‖u‖L2 + |u|H1 ,

where ‖u‖p
Lp =

∫

Td |u(xxx)|pdxxx defines the Lp-norm for any p ≥ 1 and |u|2
H1 =

∫

Td ‖∇u(xxx)‖2
2dxxx is the

H1-seminorm.

2.2. Model problem: The periodic diffusion equation

Our model problem is a diffusion equation over the torus T
d , with d ∈ N. Our interest in this paper

lies in the scenario where d ≫ 1. In addition to periodic boundary conditions, we add a zero-mean

linear constraint to the equation in order for the problem to be well posed. This leads to the following

equations:

−∇ · (a(xxx)∇u(xxx)) = f (xxx), ∀xxx ∈ T
d, (2.1)

∫

Td
u(xxx)dxxx = 0, (2.2)

where the diffusion coefficient a is such that

a ∈C1(Td) and min
xxx∈Td

Re(a(xxx)) ≥ amin > 0, (2.3)

in order to guarantee ellipticity, and the forcing term f ∈ L2(Td). Using the regularity theory of second-

order elliptic problems (see, e.g., (Evans, 2010, Section 6.3)), these assumptions on a and f guarantee

that weak solutions to (2.1)–(2.2) satisfy u ∈ H2(Td) and lead to considering the following solution

space:

U =

{

v ∈ H2(Td) :

∫

Td
v(xxx)dxxx = 0

}

. (2.4)

2.3. Compressive Fourier collocation

We now introduce the compressive Fourier collocation method.

Discretization of the PDE. Let us assume to have a basis {Ψννν}ννν∈Zd (called the spectral basis) for the

solution space U in (2.4). This choice ensures that the linear constraint (2.2) is enforced in a natural
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way. Then we can expand our solution as

u = ∑
ννν∈Zd

cννν Ψννν .

Since this expansion has infinitely many terms, it does not lead to an implementable approximation

method. Hence, we consider a finite multi-index set Λ ⊂ Zd with |Λ| < ∞. This leads to the finite

expansion

uΛ = ∑
ννν∈Λ

cννν Ψννν .

We want to collocate the diffusion equation (2.1) using the finite spectral basis {Ψννν}ννν∈Λ by means of

Monte Carlo sampling. Hence, we randomly generate m independent points

yyy1, . . . ,yyym ∈ T
d,

uniformly distributed over Td . Letting N = |Λ|, we assume to have an ordering for the multi-indices in

Λ = {ννν1, . . . ,νννN} (e.g., the lexicographic ordering). This leads to the linear system

Azzz = bbb, (2.5)

where A ∈ Cm×N (called compressive Fourier collocation matrix) and bbb ∈ Cm are defined by

Ai j =
1√
m
[−∇ · (a∇Ψννν j

)](yyyi) and bi =
1√
m

f (yyyi), ∀i ∈ [m], j ∈ [N]. (2.6)

The normalization factor 1/
√

m is needed for technical reasons explained in Appendix A.1.

The spectral basis. Due to the presence of periodic boundary conditions, a natural choice for the spectral

basis is the (complex) Fourier basis. The L2-orthonormal Fourier basis is defined as

Fννν(xxx) = exp(2π iννν · xxx), ∀ννν ∈ Z
d , ∀xxx ∈ T

d . (2.7)

The Fourier system {Fννν}ννν∈Zd is a bounded orthonormal system of L2(Td). In fact, 〈Fννν ,Fµµµ〉= δννν ,µµµ and

‖Fννν‖L∞ = 1, for all ννν,µµµ ∈ Zd . However, since our spectral collocation matrix involves evaluations of

the PDE operator applied to the basis functions, we need to consider a rescaling of this system. Let us

consider, for the sake of simplicity, the case of the Poisson equation, where a ≡ 1. Applying the PDE

operator to the L2-normalized Fourier basis functions yields −∆Fννν = 4π2‖ννν‖2
2Fννν , for all ννν ∈ Zd . This

leads us to define the spectral basis as the following rescaled version of the Fourier basis:

Ψννν =
1

4π2‖ννν‖2
2

Fννν , ∀ννν ∈ Z
d. (2.8)

This implies that {−∆Ψννν}ννν∈Zd = {Fννν}ννν∈Zd is a bounded orthonormal system of L2(Td). At least

in the case a ≡ 1, this puts us in the optimal position to perform compressive collocation, as the

spectral collocation matrix A is the sampling matrix associated with the random sampling in a bounded

orthonormal system and it is therefore an ideal scenario for compressive sensing (see, e.g., Foucart

and Rauhut (2013)). A substantial portion of our efforts in this paper will be devoted to showing that

this normalization choice is appropriate for performing compressive sensing also in the case a 6≡ 1.
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FIG. 1. The hyperbolic cross index set (minus the zero multi-index) Λ defined in (2.9) for different values of d and n.

In essence, this is due to the fact that, under suitable sufficient conditions on the diffusion coefficient

a, the system {−∇ · (a∇Ψννν )}ννν∈Zd is a bounded Riesz system in L2(Td), following the framework of

Brugiapaglia et al. (2021a). This will be discussed in detail in §3.

As for the truncation set Λ ⊂ Zd , we will choose a hyperbolic cross of Zd (minus the zero multi-

index), i.e.

Λ =

{

ννν ∈ Z
d :

d

∏
l=1

(|νl |+1)≤ n

}

\{000} (2.9)

Fig. 1 shows Λ in dimension d = 2 and d = 3. The main advantage of this choice is that the cardinality

of the hyperbolic cross has a controlled growth with respect to d, as opposed to other types of multi-

index set such as tensor product or total degree index sets (see, e.g., Adcock et al. (2022)). Specifically,

combining cardinality bounds proved in Chernov and Dũng (2016); Kühn et al. (2015), it is possible to

see that

N = |Λ| ≤min{4n516d,e2n2+log2(d)}. (2.10)

For more details, see Appendix A.2. This cardinality bound will be crucial to prove that compressive

Fourier collocation is able to lessen the curse of dimensionality with respect to the number of collocation

points. Moreover, hyperbolic crosses are also well suited for effective high-dimensional approximation.

In fact, Fourier approximations supported on hyperbolic crosses are known to be accurate when the

target function is periodic and has mixed smoothness. For further details, we refer to Dũng et al. (2018);

Temlyakov (2018).

Solving the linear system. In order to compute an approximation to the solution coefficients cccΛ =
(cννν)ννν∈Λ, we need to compute an (approximate) solution ĉcc = (ĉννν)ννν∈Λ ∈ CN to the linear system (2.5).

The approximation to u associated with the coefficients ĉcc is defined by

û = ∑
ννν∈Λ

ĉνννΨννν .

When m≥ N, the most natural way to find an approximate solution to (2.5) is via ordinary least squares

by letting

ĉcc ∈ arg min
zzz∈CN
‖Azzz−bbb‖2

2. (2.11)
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(Note that in cases where the minimizer is not unique we assume ĉcc to be any solution to the optimization

problem of interest). However, due to the fact that d≫ 1, we would like to use less than N collocation

points in order to avoid the curse of dimensionality.

When m < N, the system (2.5) admits infinitely many solutions and we need to introduce some

form of regularization or, equivalently, a structural a priori assumption on the solution u that allows

us to retrieve an accurate approximation of it from the underdetermined linear system. In this paper,

we will achieve this by assuming that the solution u be sparse or compressible with respect to the

spectral basis {Ψννν}ννν∈Zd . We say that a solution u = ∑ννν∈Zd cνννΨννν is s-sparse (with respect to the system

{Ψννν}ννν∈Zd ) if ‖ccc‖0 ≤ s. Moreover, informally, u is compressible if its best s-term approximation error

σs(ccc)p = inf
zzz∈ℓp(Zd)

‖ccc− zzz‖p,

has a fast decay rate with respect to s for some p ≥ 1. Rigorous decay rates for the best s-term

approximation error of functions with mixed smoothness can be found in, e.g., Temlyakov (2018,

Chapter 9). For example, (Temlyakov, 2018, Theorem 9.1.4) implies bounds of the form σs(ccc)2 .
m−r+α(logm)(d−1)(r−β ) when u is such that its partial derivatives u(r1,...,rd) satisfy ‖u(r1,...,rd)‖Lq ≤ 1 for

every r j ≤ r ∈ N, where α ,β ∈ [0,r) are suitable constants depending on q > 1. We also note that,

under assumption (2.3) on the diffusion coefficient a, such mixed regularity conditions for the solution

u are implied by the analogous conditions on the forcing term f (see, e.g., (Bungartz and Griebel, 1999,

Section 6) and Griebel and Knapek (2009)). In this paper, we do not focus on any function classes in

particular, but only assume that the solution u is sparse or compressible.

This leads us to employ sparse recovery techniques to compute approximate solutions to the

underdetermined linear system (2.5). We consider two approaches for this. The first one is recovery

via Orthogonal Matching Pursuit (OMP). One of the attractive features of OMP is its computational

efficiency for small values of the target sparsity.

Algorithm 1 Orthogonal Matching Pursuit (OMP)

Input: Measurement matrix A ∈ Cm×N , vector bbb ∈ Cm, number of iterations K ∈ N.

Output: A K-sparse vector ĉcc ∈ CN .

1: Normalize columns of A, i.e. Ai j ← Ai j/
√

∑m
i=1 |Ai j|2, ∀i ∈ [m],∀ j ∈ [N]

2: S0← /0, zzz0 = 000, n = 0

3: for n = 0, . . . ,K−1 do

4: jn+1← argmax j∈[N]

{
∣

∣(A∗(bbb−Azzzn)) j

∣

∣

}

5: Sn+1← Sn∪ jn+1

6: zzzn+1← argminzzz∈CN {‖bbb−Azzz‖2 , supp(zzz)⊆ Sn+1}
7: end for

8: ĉcc← zzzK

The second approach is based on ℓ1 minimization, via the Quadratically-Constrained Basis Pursuit

(QCBP) convex optimization program

ĉcc ∈ arg min
zzz∈CN
‖zzz‖1 such that ‖Azzz−bbb‖2 ≤ η, (2.12)

where η > 0 is a tuning parameter. We note in passing that other choices, such as the square-root

LASSO convex optimization program, might be considered to improve robustness with respect to the
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tuning parameter choice (see, e.g., Adcock et al. (2019)). For the sake of clarity, we summarize the

compressive Fourier collocation method in Algorithm 2.

Algorithm 2 Compressive Fourier collocation method for periodic diffusion equations

Input: Dimension d ∈ N, diffusion coefficient a, forcing term f , hyperbolic cross order n ∈ N,

number of collocation points m ∈ N.

Output: Approximate solution û.

1: Generate hyperbolic cross set Λ = {ννν1, . . . ,νννm} as in (2.9)

2: Randomly generate m independent collocation points yyy1, . . . ,yyym uniformly distributed in Td

3: Using the generated collocation points, build A ∈ C
m×N and bbb ∈ C

m as in (2.6)

4: Compute approximate coefficients ĉcc ∈ CN via OMP (Algorithm 1) or QCBP (see (2.12))

5: Define û← ∑ννν∈Λ ĉνννΨννν

Truncation error. Note that, in general, cccΛ does not solve (2.5) exactly, but only approximately. In fact,

the finite expansion uΛ of u satisfies the equation

−∇ · (a(xxx)∇uΛ(xxx)) = f̃Λ(xxx), ∀xxx ∈ T
d , (2.13)

∫

Td
uΛ(xxx)dxxx = 0, (2.14)

where f̃Λ(xxx) = f (xxx)+∇ · (a(xxx)∇(u(xxx)−uΛ(xxx)). Therefore,

AcccΛ = bbb+ eee, (2.15)

where the error vector eee ∈ C
m is defined by

ei =
1√
m
[∇ · (a∇(u−uΛ))](yyyi), ∀i ∈ [m]. (2.16)

Note that, in general,

‖eee‖2 ≤ ‖∇ · (a∇(u−uΛ))‖L∞ . (2.17)

This term measures the truncation error (due to the introduction of a finite set Λ⊂ Zd) in a metric that

depends on the operator defining the PDE and, in particular, on the diffusion coefficient a. Note also

that, thanks to the strong law of large numbers, we have

‖eee‖2
2 =

1

m

m

∑
i=1

|∇ · (a∇(u−uΛ))(yyyi)|2→‖∇ · (a∇(u−uΛ))‖2
L2 , as m→ ∞,

with convergence rate 1/
√

m. However, in the following, we will use the upper bound (2.17) in order to

avoid further technical difficulties due to the asymptotic nature of this estimate.

3. Theoretical analysis

We now present rigorous theoretical recovery guarantees for the compressive Fourier collocation

method. Our analysis relies on the framework of random sampling in bounded Riesz systems recently
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introduced in Brugiapaglia et al. (2021a). Our main technical effort is devoted to showing that the

compressive Fourier collocation matrix A defined in (2.6) is obtained by sampling a bounded Riesz

system. This is discussed in §3.1. After doing this, in §3.2 we apply sparse recovery results for random

sampling in bounded Riesz systems to our case and prove error bounds for the compressive Fourier

collocation solutions computed via OMP and QCBP. The proofs of the results stated in this section can

be found in Appendix A.

3.1. Compressive Fourier collocation and random sampling in bounded Riesz systems

We start by recalling the definition of the bounded Riesz system. We restrict our attention to Riesz

systems in L2(Td), although the definition can be extended to general complex Hilbert spaces.

Definition 1 (Bounded Riesz System) Let Λ⊂ Zd be a countable set and let 0 < bΦ ≤ BΦ < ∞. A set

of functions {Φννν}ννν∈Λ ⊂ L2(Td) is a Riesz system with constants bΦ and BΦ if

bΦ‖zzz‖2
2 ≤

∥

∥

∥

∥

∥

∑
ννν∈Λ

zννν Φννν

∥

∥

∥

∥

∥

2

L2

≤ BΦ‖zzz‖2
2, ∀zzz = (zννν )ννν∈Λ ∈ ℓ2(Λ;C).

The constants bΦ and BΦ are called lower and upper Riesz constants, respectively. Moreover, the system

{Φννν}ννν∈Λ is bounded if there exists a constant 0 < KΦ < ∞ such that

‖Φννν‖L∞ = esssup
xxx∈Td

|Φννν(xxx)| ≤ KΦ, ∀ννν ∈ Λ.

Note that any L2-orthonormal system is a Riesz system with bΦ = BΦ = 1. In particular, the Fourier

system {Fννν}ννν∈Zd is a bounded Riesz system with bΦ = BΦ = KΦ = 1

We define the second-order operator L : H2(Td)→ L2(Td) associated with (2.1) as

L [v] =−∇ · (a∇v), ∀v ∈ H2(Td).

Using this notation, we also define

Φννν = L [Ψννν ], ∀ννν ∈ Λ. (3.1)

Recall that we are assuming 000 /∈ Λ in order to naturally satisfy the condition (2.2). As a consequence

of these definitions, the compressive Fourier collocation matrix A defined in (2.6) admits the equivalent

definition Ai j = Φννν j
(xxxi), for all i ∈ [m] and j ∈ [N] and is hence a random sampling matrix associated

with the system {Φννν}ννν∈Λ. For this reason, showing that {Φννν}ννν∈Λ is a bounded Riesz system will frame

the compressive Fourier collocation problem in the setting of Brugiapaglia et al. (2021a) and allow us to

apply the corresponding sparse recovery theorems to quantify the accuracy of approximations computed

via OMP or QCBP.

Note that the operator L , and hence the system {Φννν}ννν∈Λ depend on the diffusion coefficient a.

Hence, as explained in detail in Appendix A.1, we need to track the dependence of the Gram matrix

G of {Φννν}ννν∈Λ on a in order to study the Riesz constants. Fortunately, it is possible to obtain an

explicit formula for the entries of the Gram matrix G in terms of the Fourier coefficients of the diffusion
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coefficient a (see Lemma 1 in Appendix A.1). For this reason, we let

a = ∑
ννν∈Zd

eνννFννν , with eννν = 〈a,Fννν〉, ∀ννν ∈ Z
d , (3.2)

and where {Fννν}ννν∈Zd is the L2-orthonormal Fourier system defined in (2.7). Using the explicit formula

for the Gram matrix G in terms of the coefficients eee of a (provided by Lemma 1 in Appendix A.1) and

the Gershgorin circle theorem (recalled in Appendix A.3), we can find explicit bounds for the minimum

and maximum eigenvalues of G, which imply estimates for the lower and upper Riesz constant bΦ and

BΦ of {Φννν}ννν∈Λ, under suitable sufficient conditions on the diffusion coefficient a. We illustrate this in

two examples of increasing generality (and technical complexity).

We first analyze a very simple model case where the diffusion term is composed by a 1-sparse

perturbation of a constant. The following result is proved in Appendix A.4.

Proposition 1 (Bounded Riesz property: 1-sparse perturbation of constant diffusion) Consider a

diffusion coefficient of the form a = e000 + eννν∗Fννν∗ , for some ννν∗ ∈ Zd and with e000,eννν∗ ∈ C such that

α := |eννν∗ |(2‖ννν∗‖2 +3)< |e000|. Then, for any Λ⊂ Zd , with 000 /∈ Λ, the system {Φννν}ννν∈Λ defined in (3.1)

is a bounded Riesz system in the sense of Definition 1 with constants

bΦ = |e000|2−|e000|α > 0, BΦ =
(

|e000|+
α

2

)2

, and KΦ = |e000|+
α

2
.

Despite its simplicity, Proposition 1 illustrates an important point: diffusion coefficients that are

highly oscillatory lead to worse Riesz constants. Next, we consider a more general and challenging

case. We study the case of a diffusion coefficient a that is approximately sparse with respect to the

Fourier basis. The following result highlights the impact of the approximate sparsity and the sparse

approximation error of a on the Riesz constants. This result is proved in Appendix A.5.

Proposition 2 (Bounded Riesz property: nonsparse diffusion coefficient) Let t ∈ N and consider a

diffusion coefficient a satisfying (2.3) and with Fourier expansion (3.2), with e000 ∈ R and e000 ≥ 0, of the

form

a = at +a∗,

where at is a (t +1)-sparse approximation of a of the form

at = e000 + ∑
ννν∈T

eνννFννν , with T ⊂ Z
d \{000} and |T | ≤ t,

and a∗ = a−at is the reminder term. Moreover, let Λ⊂ Zd \{000} with N = |Λ| and assume that

β :=

√

t

(

‖at‖2
H1 −|e000|2

)

< (
√

2−1)|e000|, (3.3)

γ :=

√
N

2π
|a∗|H1 +‖a∗‖L2 ≤

√

|e000|2−2|e000|β −β 2, (3.4)

Then, the system {Φννν}ννν∈Λ defined in (3.1) is a bounded Riesz system in the sense of Definition 1 with

constants

bΦ =

(

√

|e000|2−2|e000|β −β 2− γ

)2

> 0, BΦ =

(

√

‖at‖2
H1 +2|e000|β +β 2+ γ

)2

, (3.5)
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and

KΦ = |e000|+β +‖a∗‖L∞ +
d

∑
l=1

∥

∥

∥

∥

∂a∗

∂xl

∥

∥

∥

∥

L∞

. (3.6)

We observe that the two sufficient conditions (3.3)–(3.4) of Proposition 2 play substantially different

roles. On the one hand, condition (3.4) is a condition on the compressibility of the diffusion coefficient

a since it only involves the tail a∗ (and the constant term e000). On the other hand, condition (3.3) only

involves the (t + 1)-sparse approximation at of a. We observe that the constant γ in (3.4) depends on

the truncation set Λ through the term
√

N =
√

|Λ|. We suspect this might be an artifact of our proof

strategy and understanding whether and how this term can be removed is an open problem. To provide

further insights on conditions (3.3)–(3.4), we illustrate a simple class of diffusion coefficients satisfying

these assumptions in the following remark.

Remark 1 (Example of diffusion coefficients satisfying the assumptions of Proposition 2). Consider a

non-negative multi-index kkk ∈ Nd
0 \ {000}, let c000,ckkk ∈ R, and define a real-valued diffusion coefficient of

the form

a(xxx) = c000 + ckkk

d

∏
l=1

cos(2πklxl), ∀xxx ∈ T
d, (3.7)

where c000 and ckkk are such that c000 > |ckkk| (in order for condition (2.3) to be satisfied). This diffusion

coefficient is 2-sparse with respect to the tensorized cosine basis {∏d
l=1 cos(2πklxl)}kkk∈Nd

0
. However, it

is 2‖kkk‖0-sparse with respect to the complex Fourier basis {Fννν}ννν∈Zd . In fact, for any xxx ∈ Td , we have

a(xxx) = c000 + ckkk ∏
l∈supp(kkk)

cos(2klπxl)

= c000 + ckkk ∏
l∈supp(kkk)

1

2
(exp(2klπ ixl)+ exp(−2klπ ixl))

= c000 +
ckkk

2‖kkk‖0 ∑
jjj∈{0,1}d

supp( jjj)⊆supp(kkk)

Fkkk⊙(−1) jjj(xxx),

where ⊙ is the Hadamard (or componentwise) product operation and where we have denoted (−1) jjj =
((−1) j1 ,(−1) j2 , . . . ,(−1) jd ), for any jjj ∈ {0,1}d .

Now, consider Proposition 2 with t = 2‖kkk‖0 and T = {kkk⊙ (−1) jjj : jjj ∈ {0,1}d and supp( jjj) ⊆
supp(kkk)}. First, condition (3.4) is trivially satisfied since a∗ = 0. Moreover, we see that

β =

√

t

(

‖at‖2
H1 −|e000|2

)

=
√

2‖kkk‖0 ∑
τττ∈T

(

1+(2π)2‖τττ‖2
2

)

|eτττ |2

=

√

22‖kkk‖0
(

1+(2π)2‖kkk‖2
2

)

( |ckkk|
2‖kkk‖0

)2

= |ckkk|
√

1+(2π)2‖kkk‖2
2.
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Therefore, if |c000|>
√

1+(2π)2‖kkk‖2
2√

2−1
|ckkk|, then the diffusion coefficient a in (3.7) satisfies condition (3.3) in

Proposition 2.

Now that we have sufficient conditions on the diffusion coefficient a in order for {Φννν}ννν∈Λ to be a

bounded Riesz system, we are in a position to illustrate recovery guarantees for compressive Fourier

collocation via QCBP and OMP.

3.2. Recovery guarantees compressive Fourier collocation

Accurate and stable recovery guarantees for the compressive Fourier collocation method via OMP and

QCBP are based on the framework of random sampling in bounded Riesz systems of Brugiapaglia et al.

(2021a). The main elements of this framework are presented in Appendix A.6. Combining these with

Proposition 2 leads to the following recovery guarantees under sufficient regularity conditions on the

diffusion coefficient a. The proof of this result can be found in Appendix A.7.

Theorem 3 (Accurate and stable recovery for compressive Fourier collocation) There exist universal

constants c,C1,C2 > 0 such that approximations to the high-dimensional periodic diffusion equation

(2.1)–(2.2) obtained via compressive Fourier collocation and computed via OMP (Algorithm 1) or

QCBP (program (2.12)) satisfy the following recovery guarantees. Consider the same setting as in

Proposition 2 and assume that the Riesz constants bΦ and BΦ in (3.5) satisfy the sufficient condition

bΦ

BΦ
>

{

1− 0.98
13
≈ 0.9246, (OMP)

1− 0.98√
2
≈ 0.3070. (QCBP)

(3.8)

Let s ∈ N and assume that the number of collocation points satisfies

m≥ cmax{B−2
Φ ,1}K2

Φ sL, (3.9)

where

L = log2(sK2
Φ max{B−2

Φ ,1})min{log(n)+d, log(2n) log(2d)}+ log(2ε−1), (3.10)

and KΦ is defined as in (3.6). Let ĉcc ∈ CN be either the OMP solution computed via K = 24s iterations

or any QCBP solution with tuning parameter γ ≥ ‖eee‖2/
√

BΦ where eee ∈ Cm is as in (2.16). Then,

the corresponding compressive Fourier collocation approximation û to u satisfies the following error

bounds for all f ∈ L2(Td) with probability at least 1− ε:

‖∆(u− û)‖L2 ≤ ‖∆(u−uΛ)‖L2 +C1
σs(cccΛ)1√

s
+C2‖∇ · (a∇(u−uΛ))‖L∞ , (3.11)

‖u− û‖L2 ≤ ‖u−uΛ‖L2 +
1

4π2

(

C1
σs(cccΛ)1√

s
+C2‖∇ · (a∇(u−uΛ))‖L∞

)

. (3.12)

The error bounds (3.11)–(3.12) show that the compressive Fourier collocation method is able to

approximate compressible solutions in an accurate and stable way. Accuracy is due to the presence

of the best s-term approximation error term σ2(cccΛ)/
√

s (optimal up to constants, due to the instance

optimality theory; see, e.g., Foucart and Rauhut (2013, Chapter 11)) and of the truncation errors

involving the term u−uΛ. Stability is intended to be with respect to the diffusion coefficient a (defining

the error term eee in (2.16)) and is implied by the presence of ‖∇ · (a∇(u−uΛ))‖L∞ .
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Disregarding the dependence on the probability of failure ε and the constants bΦ, BΦ and KΦ, the

sufficient condition (3.9) reads

m & s log2(2s)min{log(n)+d, log(2n) log(2d)}.

Hence, the dependence of the number of collocation points m on the dimension d is logarithmic.

This justifies our claim that the compressive Fourier collocation method is able to lessen the curse

of dimensionality with respect to the number of collocation points under suitable regularity conditions

on the diffusion coefficient a.

Remark 2 (Removing condition (3.8) for QCBP). Condition (3.8) can be removed in the QCBP case at

the cost of multiplying C2 by BΦ/bΦ in the error bounds using the robust null space property approach

in (Brugiapaglia et al., 2021a, Theorem 2.6). Applying this result, the condition on the number of

collocation points becomes

m≥ c

(

max{1,BΦ}
bΦ

)2

K2
Φ sL,

where

L = log2

(

sK2
Φ

max{1,B2
Φ}

bΦ

)

min{log(n)+d, log(2n) log(2d)}+ log(2ε−1),

and the constant C2 gets multiplied by (BΦ/bΦ). Therefore, condition (3.8) does not seem to be a

fundamental limit on the applicability of the compressive Fourier collocation methods and its ability to

lessen the curse of dimensionality in the number of collocation points.

Finally, we note that the sufficient condition on the number of collocation points in Theorem 3 is

significantly weaker with respect to the corresponding condition in Brugiapaglia (2020, Theorems 3

and 4), where there is an explicit dependence of m on 2d .

4. Numerical experiments

In this section, we present numerical experiments on the the model problem (2.1)–(2.2) using the

compressive Fourier collocation method presented in Section 2.3. In §4.1, we start by defining the

exact solutions (sparse and nonsparse) and the diffusion coefficients (constant, sparse, and nonsparse)

considered in the experiments. Then, we numerically demonstrate the accuracy and stability of the

method (already established theoretically by Theorem 3) in dimension d = 2 (§4.2) and d = 8 and

d = 20 (§4.3). We also study the probability of success as a function of the number of collocation

points for sparse solutions in Appendix 4.3. The main aspects of our experimental setting are described

in this section. However, further technical details are provided in Appendix A.8.

Measurement of errors. In all numerical experiments, we use a relative L2-error to measure the

approximation error. It is defined as

relative L2-error =
‖u− û‖L2

‖u‖L2

,
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(a) u1 (b) u2

FIG. 2. The sparse and nonsparse exact solutions u1 and u2, defined in (4.1) and (4.2), respectively.

where û is the computed approximation to an exact solution u. Considering that the L2-norms are

unapproachable in the high-dimensional case, ‖ · ‖L2 are evaluated using Monte Carlo method, i.e.

‖u‖L2 ≈
√

1

M

M

∑
i=1

|u(xxxi)|2,

where xxxi are M ≫ 1 points randomly distributed in Td. We choose M = 2|Λ| in practice, with the

exception of the last experiment in §4.3 (Probability of successful recovery) where M = 200.

4.1. Exact solutions and diffusion coefficients

We consider the following exact solutions and diffusion coefficients. For now, we assume d = 2.

Exact solutions. We consider both sparse and nonsparse exact solutions. The sparse solutions (with

respect to the Fourier basis) are randomly generated as

u1(xxx) =
10

∑
k=1

dk sin(2πmkx1)sin (2πnkx2), ∀xxx ∈ T
d , (4.1)

where di are random independent real coefficients uniformly distributed in [0,1], and mk, nk are random

integers such that sin (2πmkx1)sin (2πnkx2) ∈ span{Fννν}ννν∈Λ (recall that Λ is the truncation set used in

the compressive Fourier collocation scheme; see also Algorithm 2 ). The function u1 is 40-sparse with

respect to the Fourier basis. We also consider a nonsparse solution defined as

u2(xxx) = exp(sin(2πx1)+ sin(2πx2))− c, ∀xxx ∈ T
d . (4.2)

Here, the constant c is chosen in such a way to guarantee that
∫

Td u2(xxx)dxxx = 0, i.e. to satisfy condition

(2.2) (note that this is always the case for u1). These exact solutions are shown in Fig. 2.
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(a) constant diffusion a1 (b) sparse diffusion a2 (c) nonsparse diffusion a3

FIG. 3. (d = 2, sparse solution) Relative L2-error versus number of collocation points m for different diffusion coefficients. The

exact solution is u1, defined in (4.1).

Diffusion coefficients. In all experiments, we consider three types of diffusion coefficients: namely,

constant, sparse, and non-sparse diffusion coefficients. They are defined as follows, for any xxx ∈ Td :

a1(xxx) = 1, (4.3)

a2(xxx) = 1+0.25sin(2πx1)sin(2πx2)+0.25sin(4πx1), (4.4)

a3(xxx) = 1+0.2exp(sin (2πx1)sin(2πx2)). (4.5)

We are interested in assessing the stability of the method over different types of diffusion.

4.2. Low-dimensional experiments (d = 2)

For the two-dimensional experiments, we consider the hyperbolic cross index set Λ (minus the zero

index) defined as in (2.9), with d = 2 and of order n = 39. This leads to N = |Λ|= 445.

Sparse solution (d = 2). We test compressive Fourier collocation with the sparse exact solution

u1 defined in (4.1) and where recovery is performed via the (MATLAB®) backslash operator

(corresponding to ordinary least squares (2.11)), OMP (Algorithm 1), and QCBP (defined in (2.12)).

The frequencies mi and ni are chosen as independent random integers uniformly distributed in

{1, . . . ,5}. This choice ensures, on the one hand, that sin (2πmix1)sin (2πnix2) ∈ span{Fννν}ννν∈Λ and, on

the other hand, that the error arising from the computation of the right-hand side bbb via finite differences

is negligible (see Appendix A.8 for further details). Recall that u1 is 40-sparse with respect to the

complex Fourier basis. Fig. 3 shows the relative L2-error associated with OMP, QCBP, and backslash

as a function of the number of collocation points m. OMP and QCBP recover the exact solution with

error less than 10−6 for m = 128≪ |Λ|, which is only a small multiple of the target sparsity s = 40. The

dashed vertical line indicates m = |Λ|, where the number of collocation points is the same as the number

of unknowns. In order to produce accurate results, the backslash (least squares method) needs at least

m≥ |Λ| collocation points. Results in Fig. 3 illustrate that the Compressive Fourier collocation methods

considered are able to accurately recover sparse exact solutions to the periodic diffusion equation and

are stable with respect to variations of the diffusion coefficient.

Nonsparse solution (d = 2). In this test, the exact solution is the nonsparse solution u2 defined in (4.2).

The parameter settings are the same as in the sparse solution test. The results are shown in Fig. 4. The

purple lines represent the term σs(cccΛ)1/
√

s (that appears in error bound of Theorem 3) with s = m/2
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(a) constant diffusion a1 (b) sparse diffusion a2 (c) nonsparse diffusion a3

FIG. 4. (d = 2, nonsparse solution) Relative L2-error versus number of collocation points m. The exact solution is u2, defined in

(4.2).

and where cccΛ is approximated using compressive Fourier collocation with m = 4|Λ| via the backslash.

The fast decay of σs(cccΛ)1/
√

s shows that u2 is nonsparse. Moreover, the results of the OMP method

with K = s iterations are at most s-sparse. Thus, the purple curve is a lower bound for the error of the

OMP method (thanks to Theorem 6). The results of Fig. 4 demonstrate that the compressive Fourier

collocation solutions recovered via OMP and QCBP approach the exact solution as the number of

collocation points m increases, irrespective of the sparsity of the diffusion coefficient.

4.3. High-dimensional experiments (d = 8 and d = 20)

In the next experiments, we consider a high-dimensional setting with d = 8 and d = 20. The index set

Λ naturally differs from that of the case d = 2. The exact solution is also slightly different from the one

considered in the case d = 2. The other parameters are as in §4.2.

Sparse exact solution (d = 8). We choose the index set Λ as the 8-dimensional hyperbolic cross in (2.9)

of order n = 7. This leads to N = |Λ|= 432. We consider a sparse exact solution given by

u3(xxx) =
10

∑
k=1

dk

8

∏
l=1

sin(2πmk,lxl), ∀xxx ∈ T
8, (4.6)

where the frequencies mmmk are randomly and uniformly selected from the index set Λ and di are random

real coefficients uniformly distributed in [0,1]. Note that since n = 7 we have ‖mmmk‖0 ≤ 2. Hence, u3

is 40-sparse with respect to the complex Fourier system. Other parameters are the same as in the case

d = 2 for the sparse solution test. Fig. 5 shows that the accuracy of compressive Fourier collocation is

independent of the number of dimensions when the exact solution is sparse.

Nonsparse solution (d = 8). We now consider the exact solution u2 defined in (4.2) but in dimension

d = 8 (only the first two variables are active). We let Λ be the 8-dimensional hyperbolic cross in

(2.9) of order n = 11 (corresponding to N = |Λ| = 1505). As shown in Fig. 6, the errors for all three

numerical methods are significantly larger than the error in the two-dimensional case due to the high

dimensionality. However, QCBP and OMP are able to approximate the solution with a relative error

close to 10−2 using only a small amount of collocation points and regardless of the sparsity of the

diffusion coefficients.
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(a) constant diffusion a1 (b) sparse diffusion a2 (c) nonsparse diffusion a3

FIG. 5. (d = 8, sparse solution) Relative L2-error versus number of collocation points m. The exact solution is u3, defined in

(4.6).

(a) constant diffusion a1 (b) sparse diffusion a2 (c) nonsparse diffusion a3

FIG. 6. (d = 8, nonsparse solution) Relative L2-error versus number of collocation points m. The exact solution is u2, defined in

(4.2).

The impact of the index set Λ (d = 8). We consider the same settings as in the nonsparse solution case

with d = 8 and the nonsparse diffusion coefficient a3 and consider index sets Λ of increasing size. We

use this example to illustrate the impact of the size of the index set. Since the error of the OMP and

QCBP reach a plateau for m = 1024≪ |Λ| in Fig. 6, we only present the results with m ≤ 1024 to

reduce the computational cost of the experiment.

We compare the performance of the compressive Fourier collocation method for index sets Λ of

different sizes. Fig. 7 shows that as the size of the index set increase, the error of OMP and QCBP

is reduced from around 10−1 to around 10−3. This shows that size of the index set is a key factor in

reducing the approximation error in the high-dimensional setting.

The impact of dimensionality (d = 8 and d = 20). We now consider the same settings as in the nonsparse

solution case and the nonsparse diffusion coefficient a3, comparing the cases of dimension d = 8 and

d = 20. To choose Λ, we consider the largest order n such that the corresponding hyperbolic cross has

cardinality less than a given budget value of 2550. This corresponds to n = 11 (for d = 8) and n = 7

(when d = 20). The results are shown in Fig. 8. We show that in dimension d = 20, the approximation

error increases and reaches a plateau at 10−1 because the multi-index set Λ is only able to capture

fewer significant coefficients due to the lower value of n combined with the fact that the exact solution

is highly anisotropic (it only depends on two variables out of 20). Nonetheless, Fig. 8 shows that the
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(a) n = 7 (b) n = 11 (c) n = 15

FIG. 7. (d = 8, impact of Λ) Relative L2-error versus number of collocation points m. The exact solution, u2, and the diffusion

coefficient, a3, are nonsparse. The cardinality of the index set N = |Λ| is 432 in (a), 1505 in (b), and 3808 in (c).

(a) d = 8 (b) d = 20

FIG. 8. (The impact of dimensionality) Relative L2-error versus number of collocation points m. The exact solution, u2, and the

diffusion coefficient, a3, are nonsparse. The multi-index set Λ is the largest hyperbolic cross set such that |Λ|< 2550 in (a) d = 8

and (b) d = 20.

numerical solution approaches the exact solution in d = 20, up to the truncation error corresponding to

the choice of Λ.

Probability of successful recovery versus the number of collocation points m. In this numerical

experiment, we study the probability of successful sparse recovery with respect to the number of the

collocation points m for d = 2,8. Similarly to equation (4.1), the sparse solutions are defined as

u(xxx) =
q

∑
k=1

dk sin (2πmkx1)sin(2πnkx2), ∀xxx ∈ T
d, (4.7)

where dk are random independent real coefficients uniformly distributed in [0,1], q is the sparsity respect

to the real-valued Fourier basis, and (mk, nk) are q distinct random integer pairs in {1,2,3,4}2 such that

sin(2πmkx1)sin (2πnkx2) ∈ span{Fννν}ννν∈Λ.

We let Λ be the hyperbolic cross set of order n = 26 for both cases d = 2 and d = 8. The number of

the collocation points is m = 2s, where s is the target sparsity and recovery is performed via the OMP



COMPRESSIVE FOURIER COLLOCATION METHODS 19

(a) d = 2 (b) d = 8

FIG. 9. (Probability of successful recovery) Success rate of recovery versus number of collocation points m for sparse solutions.

The diffusion coefficient, a3, is nonsparse.

algorithm (Algorithm 1 in Section 2.3) with K = s iterations. For each data point in Fig. 9, we perform

25 runs and compute the successful recovery rate by counting the number of runs corresponding to a

relative L2-error below 10−6. We compare the recovery success rate for sparse solutions with sparsity

q = 4, 8, 12. These sparse solutions have sparsity 16, 32, and 48 (i.e., 4q) with respect to the complex

Fourier basis, respectively. In order to reduce the computational cost of the experiment, we use a coarser

grid in m for d = 8.

As shown in Fig. 9, the phase transition from unsuccessful to successful recovery happens at a

value of m slightly larger than 2s = 8q for the two-dimensional case. In dimension d = 2, the phase

transition is quite sharp. However, in d = 8 it is smoother and requires more samples than m = 8q. This

is consistent with Theorem 3, where the number of collocation points required to guarantee the sparse

recovery depends logarithmically on d. These results illustrate that our numerical method lessens the

curse of dimensionality in the case for the recovery of sparse solutions.

5. Conclusions and open problems

We have proposed a new method for the numerical solution of high-dimensional diffusion equations

with periodic boundary conditions called compressive Fourier collocation. In Theorem 3, we have

shown that the proposed method is able to approximate sparse or compressible solutions to the high-

dimensional periodic diffusion equation in an accurate and stable way by using a number of collocation

points that depends logarithmically on d and that is therefore only mildly affected by the curse of

dimensionality. Our numerical experiments in §4 confirm the accuracy and stability of the method up

to dimension d = 20.

We consider our results very promising and hope they will attract the attention of the scientific

machine learning community. However, there are many open problems and potential avenues for future

research that remain to be investigated. First, although the compressive Fourier collocation method

is able to lessen the curse of dimensionality with respect to the number of collocation points, the

number of flops needed in general to recover the solution via OMP or QCBP scales at least linearly in

N = |Λ|, and it is therefore still affected by the curse of dimensionality with respect to the computational

complexity. A promising way to address this issue is the combination of the compressive Fourier
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collocation approach with sublinear sparse recovery techniques, such as those recently proposed in Choi

et al. (2021a,b). A significant step forward in this direction has been very recently made by Gross and

Iwen (2023), where the authors propose a new class of a sublinear-time spectral methods for multiscale

elliptic PDEs with periodic boundary conditions based on a Fourier-Galerkin discretization and on the

sparse Fourier transform. Developing sublinear-time algorithms for compressive Fourier collocation is

a key avenue of future work.

Another important open issue currently under investigation is the extension of the method to

PDEs beyond the model problem (2.1)–(2.2). A first natural extension is the case of high-dimensional

advection-diffusion-reaction equations with periodic boundary conditions, where the PDE operator is

of the form L [v] =−∇ · (a∇v)+bbb ·∇v+ cv, with v ∈H2(Td) and where bbb : Td → T
d and c : Td →C.

The same type of analysis carried out in this paper should lead to the bounded Riesz property under

sufficient conditions on the Fourier coefficients of bbb and c, similarly to Proposition 2. The case of PDEs

with nonperiodic boundary conditions is expected to be more challenging. This could be addressed

by considering spectral bases based on, e.g., boundary-adapted orthogonal polynomials. However, it

is not clear if a rigorous theoretical analysis would be accessible in that case. The ability to deal with

nonperiodic boundary conditions would be a key step towards applying compressive spectral collocation

to more realistic high-dimensional PDE models.

Another key open issue is the numerical validation of the proposed technique on higher dimensional

domains with d > 20 and its comparison with other collocation-based techniques, such as those based

on deep learning mentioned in §1.2. In this direction, an interesting question would be a comparison in

view of the so-called “curse of high-frequency”, referring to the difficulty of deep neural networks

to learn high-frequency information (see Luo et al. (2021) and references therein). Regarding our

theoretical analysis, we observe that conditions (3.3)–(3.4) on the diffusion coefficient a sufficient to

guarantee the bounded Riesz property in Proposition 2 rely on an application of the Gershgorin circle

theorem (see proof in §A.5). How to improve this proof strategy, likely resulting in weaker conditions

on a, is an open problem. Moreover, we think that an extremely promising avenue of future work is

the combination of our recovery guarantees with recent approximation theory results for deep neural

networks (see, e.g., Elbrächter et al. (2021)) in order to derive practical existence theorems for the

numerical solution of high-dimensional PDEs via deep learning, in the same spirit of the results in

Adcock et al. (2021); Adcock and Dexter (2021) obtained in the context of high-dimensional function

approximation. These results provide sufficient conditions on the architecture, the number of data

points, and the (regularized) loss function that lead to training deep neural networks with desirable

approximation properties. They are based on combining deep learning approximation theory results

with recovery theorems for sparse high-dimensional approximation. Hence, our work can be seen as a

first important step towards bridging the gap between theory and practice in the emerging area of deep

learning-based solution of high-dimensional PDEs.
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A. Further details and proofs

A.1. The Gram matrix

To show that the system {Φννν}ννν∈Λ defined in (3.1) is a Riesz system, it is convenient to consider its

Gram matrix G ∈ CN×N , where N = |Λ|, defined by

Gνννµµµ =
〈

Φννν ,Φµµµ

〉

, ∀ννν,µµµ ∈ Λ. (A.1)

We note in passing that, thanks to the normalization factor 1/
√

m in (2.6), we have E[A∗A] = G

(this follows from a direct computation and the fact that the random collocation points yyy1, . . . ,yyym are

independently and uniformly distributed over Td). The significance of the Gram matrix G relies on the

fact that it yields the following norm equivalence:

∥

∥

∥

∥

∥

∑
ννν∈Λ

cνννΦννν

∥

∥

∥

∥

∥

2

L2

=

〈

∑
ννν∈Λ

cνννΦννν , ∑
ννν∈Λ

cνννΦννν

〉

= cccT Gccc, ∀ccc ∈ C
N . (A.2)

Note that G is a Hermitian positive semidefinite matrix. Hence, it has only real nonnegative eigenvalues.

The Courant–Fischer–Weyl min-max principle implies that, if 0 < bΦ ≤ BΦ < ∞ are such that

bΦ ≤ λmin(G) ≤ λmax(G) ≤ BΦ, (A.3)

then {Φννν}ννν∈Λ is a Riesz system with constants bΦ and BΦ. Hence, estimating the lower and upper

Riesz constants of {Φννν}ννν∈Λ corresponds to finding two-sided spectral bounds for the Gram matrix G.

Thanks to the Fourier expansion (3.2) of a, it is possible to compute an explicit formula for the

entries of the Gram matrix G.

Lemma 1 (Explicit formula for the Gram matrix). Let Λ ⊂ Zd with 000 /∈ Λ and consider a diffusion

coefficient a ∈C1(Td) with Fourier expansion as in (3.2). Then, the elements of Gram matrix G defined

in (A.1) admit the following explicit formula in terms of the Fourier coefficients eee = (eννν)ννν∈Zd of a:

Gνννµµµ = ∑
τττ∈Zd

∑
τττ ′′′∈Zd

(τττ ·ννν +‖ννν‖2
2)

‖ννν‖2
2

(τττ ′′′ ·µµµ +‖µµµ‖2
2)

‖µµµ‖2
2

eτττ ēτττ ′′′δτττ+ννν,τττ ′′′+µµµ , ∀ννν,µµµ ∈ Λ,

where δννν,µµµ denotes the Kronecker delta.

Proof Before proving the identity, we note that gradients and Laplacians of the Fourier basis functions

defined in (2.7) can be easily computed as

∇Fννν = (2π iννν)Fννν and ∆Fννν =−4π2‖ννν‖2
2Fννν , ∀ννν ∈ Z

d. (A.4)

Moreover,

FνννFµµµ = Fννν+µµµ ,∀ννν ,µµµ ∈ Z
d . (A.5)

Properties (A.4) and (A.5) are independent of the normalization employed. Hence, they also hold after

replacing Fννν with the spectral basis functions Ψννν defined in (2.8).
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To prove the desired formula for Gνννµµµ , we expand the inner product in (A.1). Using the above

properties, the L2-orthonormality of the Fourier basis {Fννν}ννν∈Zd , and recalling the expansion (3.2) of a,

we see that

Gνννµµµ = 〈∇a ·∇Ψννν +a∆Ψννν ,∇a ·∇Ψµµµ +a∆Ψµµµ〉
= ∑

τττ
∑
τττ ′′′
〈((2iπτττ) · (2iπννν)−4π2‖ννν‖2

2)eτττFτττΨννν ,((2iπτττ ′) · (2iπµµµ)−4π2‖µµµ‖2
2)ēτττ ′′′Fτττ′′′Ψµµµ〉

= ∑
τττ

∑
τττ ′′′

(4π2τττ ·ννν +4π2‖ννν‖2
2)

4π2‖ννν‖2
2

(4π2τττ ′′′ ·µµµ +4π2‖µµµ‖2
2)

4π2‖µµµ‖2
2

eτττ ēτττ ′′′〈FτττFννν ,Fτττ ′′′Fµµµ〉

= ∑
τττ

∑
τττ ′′′

(τττ ·ννν +‖ννν‖2
2)

‖ννν‖2
2

(τττ ′′′ ·µµµ +‖µµµ‖2
2)

‖µµµ‖2
2

eτττ ēτττ ′′′〈Fτττ+ννν ,Fτττ′′′+µµµ〉

= ∑
τττ

∑
τττ ′′′

(τττ ·ννν +‖ννν‖2
2)

‖ννν‖2
2

(τττ ′′′ ·µµµ +‖µµµ‖2
2)

‖µµµ‖2
2

eτττ ēτττ ′′′δτττ+ννν,τττ ′′′+µµµ ,

where all the summations are over τττ,τττ ′ ∈ Zd . �

A.2. Cardinality bound for the hyperbolic cross

We illustrate how to obtain the cardinality bound in (2.10). Applying Chernov and Dũng (2016,

Theorem 3.7) with s = d, a = 1, and T = n yields the bound

|ΛHC

d,n−1|< 2δ−1n1+2/δ (1−δ )−2d/δ ,

for any 0 < δ < 1. In particular, choosing δ = 1/2 leads to

|ΛHC
d,n−1|< 4n516d .

A second bound can be found in the proof of Kühn et al. (2015, Theorem 4.9). Therein, the cardinality

of the hyperbolic cross is denoted by C(r,d). Setting r = n leads to the bound

|ΛHC

d,n−1| ≤ e2n2+log2(d).

Combining the above bounds yields (2.10).

A.3. The Gershgorin circle theorem

We recall the Gershgorin circle theorem, whose proof can be found, e.g., in Horn and Johnson (2012,

Theorem 6.1.1).

Theorem 4 (Gershgorin circle theorem) Let M ∈ CN×N . Define the Gershgorin disc of the i-th row

D(Mii,Ri) as the closed disc centered at Mii with radius Ri = ∑ j 6=i |Mi j|. Then every eigenvalue of M

lies in at least one of the Gershgorin discs D(Mii,Ri).

In our proofs, we will repeatedly use the following immediate consequence of the Gershgorin circle

theorem.
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Corollary 1 (Gershgorin circle theorem for Hermitian matrices). Let M ∈ CN×N a Hermitian matrix.

Then, all eigenvalues of M lie in the real interval

[

min
i∈[N]

{

Mii−∑
j 6=i

|Mi j|
}

,max
i∈[N]

{

Mii +∑
j 6=i

|Mi j|
}]

.

A.4. Proof of Proposition 1

The proof has two main steps. First, we show the Riesz property. Then, we prove that the Riesz system

is bounded.

Step 1: Riesz property. As explained in Appendix A.1, it is sufficient to find a two-sided spectral bound

for the Gram matrix G of the form (A.3). By assumption, eee = (eννν )ννν∈Zd has only two non-zero terms:

e000 and eννν∗∗∗. Then, using Lemma 1, the only nonzero entries in the ννν-th row of G are

Gνννννν = |e000|2 +
(

ννν∗ ·ννν +‖ννν‖2
2

‖ννν‖2
2

)2

|eννν∗ |2 = |e000|2 +
(

1+
ννν∗ ·ννν
ννν ·ννν

)2

|eννν∗ |2.

Gννν ,ννν−ννν∗ =
ννν∗ · (ννν−ννν∗)+‖ννν−ννν∗‖2

2

‖ννν−ννν∗‖2
2

e000ēννν∗ =

(

ννν∗ · (ννν−ννν∗)

‖ννν−ννν∗‖2
2

+1

)

e000ēννν∗ .

Gννν ,ννν+ννν∗ =
ννν∗ ·ννν +‖ννν‖2

2

‖ννν‖2
2

ē000eννν∗ =

(

ννν∗ ·ννν
‖ννν‖2

2

+1

)

ē000eννν∗ .

Recalling that α = |eννν∗ |(2‖ννν∗‖2+3), and using the Cauchy-Schwarz inequality combined with the fact

that ‖ννν∗‖2 ≥ 1, we derive the following two-sided bound for the diagonal entries of G:

|e000|2 ≤ Gνννννν ≤ |e000|2 +
(

1+‖ννν∗‖2

2‖ννν∗‖2 +3

)2

α2 ≤ |e000|2 +
α2

4
.

Moreover, the sum of the absolute values of off-diagonal entries of G can be bounded as follows:

|Gννν,ννν−ννν∗ |+ |Gννν,ννν+ννν∗ | ≤
( ‖ννν∗‖2

‖ννν−ννν∗‖2

+
‖ννν∗+ννν‖2

‖ννν‖2

+2

)

· |e000|α
2‖ννν∗‖2 +3

≤
(

‖ννν∗‖2 +
‖ννν∗‖2

‖ννν‖2

+3

)

· |e000|α
2‖ννν∗‖2 +3

≤ (2‖ννν∗‖2 +3) · |e000|α
2‖ννν∗‖2 +3

= |e000|α ,

where we used the Cauchy-Schwarz inequality, the definition of α , the triangle inequality, combined

with the facts that ‖ννν∗‖2 ≥ 1 (by assumption) and that ‖ννν‖2 ≥ 1 and ‖ννν−ννν∗‖2 ≥ 1 since 000 /∈ Λ.

Finally, applying Corollary 1 we have

λmin(G)≥ Gνννννν −|Gννν,ννν−ννν∗ |− |Gννν,ννν+ννν∗ | ≥ |e000|2−|e000|α =: bΦ,

λmin(G)≤ Gνννννν + |Gννν,ννν−ννν∗ |+ |Gννν,ννν+ννν∗ | ≤ |e000|2 + |e000|α +
α2

4
=
(

|e000|+
α

2

)2

=: BΦ,

which is the desired two-sided bound.
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Step 2: Boundedness. To determine the uniform bound for the system, recalling (A.4) we compute

Φννν =
1

4π2‖ννν‖2
2

(−∇ · ((e000 + eννν∗Fννν∗)(2π iννν)Fννν))

=
1

4π2‖ννν‖2
2

(

4π2‖ννν‖2
2e000Fννν − e∗ννν(2π iννν) ·∇Fννν+ννν∗

)

= e000Fννν + eννν∗Fννν+ννν∗
ννν · (ννν +ννν∗)

‖ννν‖2
2

.

As a consequence, we obtain the the bound

‖Φννν‖L∞ ≤ |e000|+ |eννν∗ |
(

1+
|ννν ·ννν∗|
‖ννν‖2

2

)

.

Finally, using Cauchy-Schwarz, the definition of α , and the fact that ‖ννν‖2 ≥ 1, we see that

‖Φννν‖L∞ ≤ |e000|+ |eννν∗ |
(

1+
‖ννν∗‖2

‖ννν‖2

)

≤ |e000|+
(

α

2‖ννν∗‖2 +3

)

(1+‖ννν∗‖2)≤ |e000|+
α

2
.

This concludes the proof.

A.5. Proof of Proposition 2

The proof is structured in two main parts. First, in §A.5.1 we consider the simpler case where a∗ = 0

(and, hence, a = at ). Then, in §A.5.2 we extend the proof to the general case a∗ 6= 0.

A.5.1. The case a∗ = 0

Case a∗ = 0, Step 1: Riesz property. Similarly to the case of Proposition 1, we find lower and upper

Riesz constants bΦ and BΦ by establishing a two-sided spectral bound for the Gram matrix G. Using

Lemma 1, the diagonal entries of G are given by

Gνννννν = ∑
τττ∈T∪{000}

(τττ ·ννν +‖ννν‖2
2)

2

‖ννν‖4
2

|eτττ |2, ∀ννν ∈ Λ.

Using the Cauchy-Schwarz inequality and the fact that ‖ννν‖2 ≥ 1, we see that

|e000|2 ≤ Gνννννν ≤ ∑
τττ∈T∪{000}

( ‖τττ‖2

‖ννν‖2

+1

)2

|eτττ |2 ≤ |e000|2 + ∑
τττ∈T

(‖τττ‖2 +1)2 |eτττ |2 ≤ ‖at‖2
H1 . (A.6)
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The above inequality can be proved as follows. Using the definition of H1-norm, the differentiation

properties (A.4), and the fact that the Fourier system {Fννν}ννν∈Zd is L2-orthonormal, we obtain

‖at‖2
H1 = ‖at‖2

L2 +
d

∑
l=1

∥

∥

∥

∥

∂at

∂xl

∥

∥

∥

∥

2

L2

= ∑
τττ∈T∪{000}

|eτττ |2 +
d

∑
l=1

∑
τττ∈T∪{000}

|2πeττττττ l |2

= |e000|2 + ∑
τττ∈T

(

1+(2π)2‖τττ‖2
2

)

|eτττ |2

≥ |e000|2 + ∑
τττ∈T

(‖τττ‖2 +1)2 |eτττ |2,

which proves (A.6).

To apply Gershgorin circle theorem, we now bound the sum of all off-diagonal entries in the ννν-th

row of G. Using Lemma 1 again, the definition of the Kronecker delta, the Cauchy-Schwarz inequality,

and the fact that 000 /∈ Λ yields

∑
µµµ∈Λ\{ννν}

|Gνννµµµ | ≤ ∑
τττ∈T∪{000}

(‖τττ‖2 +1) |eτττ | ∑
µµµ∈Λ\{ννν}

(‖τττ +ννν−µµµ‖2 +1) |eτττ+++ννν−−−µµµ |.

Substituting τττ ′ = τττ +ννν −µµµ (which implies τττ ′ 6= τττ), recalling that eee is supported on T , and separating

the e000 term, we obtain

∑
µµµ∈Λ\{ννν}

|Gνννµµµ | ≤ ∑
τττ∈T∪{000}

(‖τττ‖2 +1) |eτττ | ∑
τττ ′′′∈T∪{000}\{τττ}

(

‖τττ ′′′‖2 +1
)

|eτττ ′′′ |

= |e000| ∑
τττ ′′′∈T

(

‖τττ ′′′‖2 +1
)

|eτττ ′′′ |+ ∑
τττ∈T

(‖τττ‖2 +1) |eτττ | ∑
τττ ′′′∈T\{τττ}

(

‖τττ ′′′‖2 +1
)

|eτττ ′′′ |

≤ |e000| ∑
τττ ′′′∈T

(

‖τττ ′′′‖2 +1
)

|eτττ ′′′ |+ ∑
τττ∈T

(‖τττ‖2 +1) |eτττ | ∑
τττ ′′′∈T

(

‖τττ ′′′‖2 +1
)

|eτττ ′′′ |

= 2|e000| ∑
τττ ′′′∈T

(

‖τττ ′′′‖2 +1
)

|eτττ ′′′ |+
(

∑
τττ∈T

(‖τττ‖2 +1) |eτττ |
)2

.

Applying the Cauchy–Schwarz inequality and using that |T | ≤ t, we obtain the bound

∑
τττ∈T

(‖τττ‖2 +1) |eτττ | ≤
√

t

(

∑
τττ∈T

(‖τττ‖2 +1)2 |eτττ |2
)1/2

≤
√

t

(

‖a‖2
H1 −|e000|2

)1/2

= β . (A.7)

Combining the above inequalities yields

∑
µµµ∈Λ\{ννν}

|Gνννµµµ | ≤ 2|e000|β +β 2. (A.8)

Finally, applying the Gershgorin circle theorem on G combining (A.6) and (A.8), we obtain the

Riesz constants

bΦ = |e000|2−2|e000|β −β 2 and BΦ = ‖at‖2
H1 +2|e000|β +β 2. (A.9)



26 WEIQI WANG AND SIMONE BRUGIAPAGLIA

Case a∗ = 0, Step 2: Boundedness. To determine the uniform bound for the system, we use again

properties (A.4) and (A.5) and compute

Φννν =−at∆Ψννν −∇at ·∇Ψννν

= atFννν −
(

∑
τττ∈T∪{000}

2π iτττeτττFτττ

)

·
(

1

4π2‖ννν‖2
2

2π iνννFννν

)

= ∑
τττ∈T∪{000}

eτττFτττ+ννν + ∑
τττ∈T∪{000}

τττ ·ννν
‖ννν‖2

2

eτττFτττ+ννν

= ∑
τττ∈T∪{000}

(

1+
τττ ·ννν
‖ννν‖2

2

)

eτττ Fτττ+ννν .

Using that |τττ ·ννν| ≤ ‖τττ‖2‖ννν‖2, ‖ννν‖2 ≥ 1, ‖Fννν‖L∞ = 1, and (A.7), we obtain

‖Φννν‖L∞ ≤ ∑
τττ∈T∪{000}

(

1+
|τττ ·ννν |
‖ννν‖2

2

)

|eτττ | ≤ |e000|+ ∑
τττ∈T

(

1+‖τττ‖2
2

)

|eτττ | ≤ |e000|+β . (A.10)

This concludes the proof for a∗ = 0

A.5.2. The case a∗ 6= 0

We now consider the general case a∗ 6= 0, where a = at +a∗.

Case a∗ 6= 0, Step 1: Riesz property. Let zzz∈ ℓ2(Λ,C)∼=CN . Keeping the Definition 1 of Bounded Riesz

System in mind and using the triangle inequality of the L2-norm, we estimate
∥

∥

∥

∥

∥

∑
ννν∈Λ

zννν Φννν

∥

∥

∥

∥

∥

L2

=

∥

∥

∥

∥

∥

∑
ννν∈Λ

zννν ∇ · (a∇Ψννν)

∥

∥

∥

∥

∥

L2

≥
∥

∥

∥

∥

∥

∑
ννν∈Λ

zννν ∇ · (at∇Ψννν )

∥

∥

∥

∥

∥

L2

−
∥

∥

∥

∥

∥

∑
ννν∈Λ

zννν ∇ · (a∗∇Ψννν )

∥

∥

∥

∥

∥

L2

(A.11)

and, similarly,
∥

∥

∥

∥

∥

∑
ννν∈Λ

zνννΦννν

∥

∥

∥

∥

∥

L2

≤
∥

∥

∥

∥

∥

∑
ννν∈Λ

zννν ∇ · (at∇Ψννν )

∥

∥

∥

∥

∥

L2

+

∥

∥

∥

∥

∥

∑
ννν∈Λ

zννν ∇ · (a∗∇Ψννν)

∥

∥

∥

∥

∥

L2

. (A.12)

We computed lower and upper Riesz constants in the case of a (t + 1)-sparse diffusion coefficient

a = at in §A.5.1. This leads to two-sided bounds for the first terms in the right-hand sides of the above

inequalities. Therefore, we discuss the term involving the term a∗. Applying the triangle inequality

again, we see that
∥

∥

∥

∥

∥

∑
ννν∈Λ

zννν ∇ · (a∗∇Ψν )

∥

∥

∥

∥

∥

L2

=

∥

∥

∥

∥

∥

∑
ννν∈Λ

zννν (∇a∗ ·∇Ψννν +a∗∆Ψννν )

∥

∥

∥

∥

∥

L2

≤
∥

∥

∥

∥

∥

∑
ννν∈Λ

zννν ∇a∗ ·∇Ψννν

∥

∥

∥

∥

∥

L2

+

∥

∥

∥

∥

∥

∑
ννν∈Λ

zννν a∗∆Ψννν

∥

∥

∥

∥

∥

L2

. (A.13)
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For the first term of (A.13), we use properties (A.4) to obtain

|∇a∗ ·∇Ψννν |=
∣

∣

∣

∣

∣

d

∑
l=1

(

∂a∗

∂xl

)(

∂Ψννν

∂xl

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

d

∑
l=1

(

∂a∗

∂xl

2π iννν i

4π2‖ννν‖2
2

)

Fννν

∣

∣

∣

∣

∣

.

Then, taking the absolute value of the Fourier coefficients and applying Cauchy–Schwarz yields

|∇a∗ ·∇Ψννν | ≤
d

∑
l=1

∣

∣

∣

∣

∂a∗

∂xl

∣

∣

∣

∣

∣

∣

∣

∣

2π iννν l

4π2‖ννν‖2
2

∣

∣

∣

∣

≤ ‖∇a∗‖2

√

√

√

√

d

∑
l=1

∣

∣

∣

∣

2π iννν l

4π2‖ννν‖2
2

∣

∣

∣

∣

2

=
1

2π‖ννν‖2

‖∇a∗‖2,

where ‖∇a∗‖2 denotes the function defined by xxx 7→ ‖∇a∗(xxx)‖2, for every xxx ∈ Td. Using the above

inequality, we estimate the L2-norm of the first term in (A.13) as

∥

∥

∥

∥

∥

∑
ννν∈Λ

zννν ∇a∗ ·∇Ψννν

∥

∥

∥

∥

∥

L2

≤
∥

∥

∥

∥

∥

∑
ννν∈Λ

|zννν | |∇a∗ ·∇Ψννν |
∥

∥

∥

∥

∥

L2

≤
∥

∥

∥

∥

∥

‖∇a∗‖2 ∑
ννν∈Λ

1

2π‖ννν‖2

|zννν |
∥

∥

∥

∥

∥

L2

. (A.14)

Using the definition of H1-norm and the inequality ‖zzz‖1 ≤
√

N‖zzz‖2, we see that

∥

∥

∥

∥

∥

‖∇a∗‖2 ∑
ννν∈Λ

1

2π‖ννν‖2

|zννν |
∥

∥

∥

∥

∥

L2

=

(

∑
ννν∈Λ

1

2π‖ννν‖2

|zννν |
)

|a∗|H1

≤ 1

2π

(

∑
ννν∈Λ

|zννν |
)

|a∗|H1

=
1

2π
‖zzz‖1 |a∗|H1

≤
√

N

2π
‖zzz‖2 |a∗|H1 . (A.15)

Now, using the Cauchy–Schwarz inequality, properties (A.4) and the L2-orthonormality of the Fourier

system, the second term in (A.13) can be bounded as

∥

∥

∥

∥

∥

∑
ννν∈Λ

zνννa∗∆Ψννν

∥

∥

∥

∥

∥

L2

=

∥

∥

∥

∥

∥

∑
ννν∈Λ

zννν a∗Fννν

∥

∥

∥

∥

∥

L2

≤ ‖a∗‖L2

∥

∥

∥

∥

∥

∑
ννν∈Λ

zννν Fννν

∥

∥

∥

∥

∥

L2

≤ ‖a∗‖L2 ‖zzz‖2 . (A.16)

Combining (A.13), (A.14), (A.15), and (A.16) yields

∥

∥

∥

∥

∥

∑
ννν∈Λ

zννν∇ · (a∗∇Ψννν )

∥

∥

∥

∥

∥

L2

≤
(
√

N

2π
|a∗|H1 +‖a∗‖L2

)

‖zzz‖2 = γ ‖zzz‖2 (A.17)

Now, note that the conclusion (A.9) of §A.5.1 (Step 1) implies

(

|e000|2−2|e000|β −β 2
)

‖zzz‖2
2 ≤

∥

∥

∥

∥

∥

∑
ννν∈Λ

zννν ∇(at∇Ψννν )

∥

∥

∥

∥

∥

2

L2

≤
(

‖at‖2
H1 +2|e000|β +β 2

)

‖zzz‖2
2.
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Combining the above two-sided bound with (A.11), (A.12), and (A.17) we finally obtain the desired

estimates

bΦ =

(

√

|e000|2−2|e000|β −β 2− γ

)2

and BΦ =

(

√

‖at‖2
H1 +2|e000|β +β 2 + γ

)2

.

Case a∗ 6= 0, Step 2: Boundedness. To determine the L∞-norm bound for the system, using properties

(A.4) and the fact that 000 /∈ Λ, we estimate, for any ννν ∈ Λ

|Φννν |= |−a∗∆Ψννν −∇a∗ ·∇Ψννν |
≤ |a∗Fννν |+ |∇a∗ ·∇Ψννν |

≤ |a∗| |Fννν |+
d

∑
l=1

∣

∣

∣

∣

∂a∗

∂xl

∣

∣

∣

∣

∣

∣

∣

∣

∂Ψννν

∂xl

∣

∣

∣

∣

≤ |a∗|+
d

∑
l=1

∣

∣

∣

∣

∂a∗

∂xl

∣

∣

∣

∣

.

Combining the above inequality with the conclusion (A.10) of §A.5.1 (Step 2) yields

‖Φννν‖L∞ ≤ |−∇ · (a∇tΨννν)|+ |−∇ · (a∗∇Ψννν )| ≤ |e000|+β +‖a∗‖L∞ +
d

∑
l=1

∥

∥

∥

∥

∂a∗

∂xl

∥

∥

∥

∥

L∞

.

This concludes the proof of Proposition 2.

A.6. Sparse recovery in bounded Riesz systems

We start by recalling the definition of Restricted Isometry Property (RIP), which is a popular tool used to

derive sufficient conditions for accurate and stable recovery in compressive sensing (see, e.g., (Foucart

and Rauhut, 2013, Chapter 6) and references therein).

Definition 2 (Restricted Isometry Property (RIP)) A matrix M ∈ Cm×N has the Restricted Isometry

Property (RIP) of order k ∈ N if there exists 0≤ δ < 1 such that

(1−δ )‖zzz‖2
2 ≤ ‖Azzz‖2

2 ≤ (1+δ )‖zzz‖2
2, ∀zzz ∈ C

N , ‖zzz‖0 ≤ k. (A.18)

The smallest 0≤ δ < 1 such that the above condition holds is called the k-th restricted isometry constant

δk of M.

We now consider a sufficient lower bound on m in order for the compressive Fourier collocation

matrix A to the RIP with high probability. This is an immediate consequence of the RIP theorem

(Brugiapaglia et al., 2021a, Theorem 2.3) for general random sampling in bounded Riesz systems and

of Proposition 2 (that establishes that {Φννν}ννν∈Λ is a bounded Riesz system).

Theorem 5 (RIP for High-dimensional Compressive Fourier Collocation) Consider the same setting

as in Proposition 2. Then there exist a universal constant c > 0 such that the following holds. Let
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δ ∈ (1−bΦ/BΦ,1) and assume that the number of collocation points m satisfies

m≥ cmax{B−2
Φ ,1}K2

Φξ−2sL,

where

L = log2(sK2
Φ max{B−2

Φ ,1}ξ−2) log(eN)+ log(2ε−1),

ξ = δ − 1+ bΦ/BΦ > 0, and N is the cardinality of the index set Λ. Then, the rescaled compressive

Fourier collocation matrix 1√
BΦ

A, where A is defined as in (2.6), has the RIP(δ ,s) with probability at

least 1− ε .

We now present a result showing that the RIP is sufficient to achieve accurate and stable recovery

via OMP and QCBP. The following results combines Foucart and Rauhut (2013, Theorem 6.25) (where

the constant 1/13 arises from taking into account column normalization – see also Brugiapaglia et al.

(2021a, Theorem 3.7)) and Cai and Zhang (2013, Theorem 2.1) with t = 2. For more details on the

RIP-based analysis of OMP we also refer to the seminal paper Zhang (2011) and Cohen et al. (2017).

Theorem 6 (RIP ⇒ Accurate and stable recovery via OMP and QCBP) There exist universal

constants C1,C2 > 0 such that the following recovery guarantee holds for OMP and QCBP. Let s ∈ N

and assume that M ∈ Cm×N satisfies one of the following conditions:

{

δ26s <
1
13
, (OMP)

δ2s <
1√
2
. (QCBP)

(A.19)

Then, for every zzz∈CN and every eee∈Cm, the following holds. Let bbb = Mzzz+eee and ẑzz be either the vector

computed via K = 24s iterations of OMP (Algorithm 1) or any solution to QCBP with γ ≥ ‖eee‖2. Then,

ẑzz satisfies

‖zzz− ẑzz‖2 ≤C1

σs(zzz)1√
s

+C2‖eee‖2.

A.7. Proof of Theorem 3

First, using Theorem 5 we find a sufficient condition on m that guarantees suitable RIP properties for

the compressive Fourier collocation matrix A needed to apply Theorem 6.

Step 1: Condition on m⇒ RIP. Let us focus on the OMP case first. Thanks to the sufficient condition

(3.8), we have

1− bΦ

BΦ
<

0.98

13
.

Hence, since in order to apply Theorem 6 we need the RIP with δ < 1/13 and in Theorem 5 we have

the restriction δ > 1− bΦ/BΦ, these two inequalities are compatible and the choice δ = 0.99/13 is

admissible. This leads to

ξ = δ −1+
bΦ

BΦ
>

0.01

13
.

Hence, the factor ξ−2 in the sample complexity bound of Theorem 6 can be dropped, up to choosing

the universal constant c large enough. We now justify the log factor in (3.10). This is due to the fact that
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the cardinality bound (2.10) leads to

log(eN)≤min{log(4en516d), log(e3n2+log2(d))} ≤ c1 min{log(n)+d, log(2n) log(2d)).

This shows that the condition (3.9) is sufficient to apply Theorem 6 (with s replaced by 26s). The same

argument can be applied to the case of QCBP up to modifying the constants accordingly. This shows

that the matrix A/
√

BΦ satisfies the RIP condition (A.19) with probability at least 1− ε .

Step 2: RIP⇒ Coefficient recovery. We are now in a position to apply Theorem 6. Again, we discuss

only the OMP case in detail. The proof for QCBP is similar. Recall the notation described in §2.1.

Assume the exact solution to the diffusion equation has the following expansions with respect to the

spectral basis and to the L2-orthonormal Fourier basis:

u = ∑
ννν∈Zd

cνννΨννν = ∑
ννν∈Zd

c̃νννFννν . (A.20)

Here the ccc, c̃cc ∈ ℓ2(Zd) are the coefficients of the spectral basis (with rescaling) and orthogonal Fourier

basis respectively. They satisfy the relation

cννν = (2π)2‖ννν‖2
2 c̃ννν , ∀ννν ∈ Z

d .

Moreover, their truncated versions satisfy

cccΛ = Dc̃ccΛ, (A.21)

where D = (2π)2 diag{‖ννν1‖2
2, . . . ,‖νννN‖2

2}. Recall that the truncated solution on a finite multi-index set

Λ is denoted by uΛ. Then

uΛ = ∑
ννν∈Λ

cνννΨννν = ∑
ννν∈Λ

c̃ννν Fννν .

We recall from (2.15) that

AcccΛ = bbb+ eee.

Therefore, thanks to Theorem 6, we have

‖cccΛ− ĉcc‖2 ≤C1

σs(cccΛ)1√
s

+C2‖eee‖2.

Step 3: Coefficient recovery⇒ Solution recovery. To obtain (3.11), we first apply the triangle inequality

‖∆(u− û)‖L2 ≤ ‖∆(u−uΛ)‖L2 +‖∆(û−uΛ)‖L2 .

Then, recalling that −∆Ψννν = Fννν , we note that

‖∆(uΛ− û)‖L2 = ‖cccΛ− ĉcc‖2 ≤
C1σs(cccΛ)1√

s
+C2‖eee‖2.

Finally, recall from (2.17) that ‖eee‖2 ≤ ‖∇ · (a∇(u− uΛ))‖L∞ . Combining the above inequalities yields

(3.11).
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Let us now show (3.12). Using the triangle inequality, we see that

‖u− û‖L2 ≤ ‖u−uΛ‖L2 +‖uΛ− û‖L2

Using that Dii ≥ 4π2 (because 000 /∈ Λ), the second term can be bounded as

‖uΛ− û‖L2 = ‖D−1(cccΛ− ĉcc)‖2 ≤
1

4π2

(

C1σs(cccΛ)1√
s

+C2‖eee‖2

)

This, combined with (2.17), implies the L2-error bound (3.12) and concludes the proof.

A.8. Further details on numerical experiments

Hardware and software specifications. All the experiments have been performed on a Dell G3 3590

with 8GB of RAM and 2.40GHz Intel i5-9300H processor, using MATLAB® 2019b.

Computation of (2.6). The right-hand side bbb of the linear system (2.6) is evaluated using the exact

solution via sixth-order finite difference scheme. The entries of the matrix A are instead computed

explicitly.

Recovery via OMP, and QCBP. For OMP (Algorithm 1), we use K = m/2 iterations. The QCBP

optimization program (2.12) is numerically solved using the CVX MATLAB® package Grant and Boyd

(2008, 2014) with the MOSEK solver and the cvx precision parameter always set as ’default’.

The tuning parameter η of QCBP is chosen according to an “oracle” approach. Namely, a reference

solution c̃cc ≈ cccΛ is pre-computed using a large number of collocation points (m = 4|Λ|). Then, the

tuning parameter η is set as η = ‖Ac̃cc−bbb‖2. We note that this idealized strategy is not recommended in

practice since it requires a large number of collocation points. In practice, one could tune η via cross-

validation or, even better, replace QCBP with a “noise blind” decoder such as the square-root LASSO,

which does not require any a priori estimate of the unknown error norm ‖eee‖2 (see Adcock et al. (2019)).

Randomization of experiments and visualization. Due to the randomized nature of compressive Fourier

collocation, we consider 25 random runs for each test. Moreover, the number of sampling points m is

always a power of 2 in our experiments. The curves represent the sample geometric mean of the errors,

and the size of the lightly shaded areas is the corrected standard geometric mean. For more details on

the visualization strategy, we refer to (Adcock et al., 2022, Appendix A.1.3)
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