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Compressive Imaging Using Approximate Message

Passing and a Markov-Tree Prior
Subhojit Som and Philip Schniter

Abstract—We propose a novel algorithm for compressive

imaging that exploits both the sparsity and persistence across

scales found in the 2D wavelet transform coefficients of natural

images. Like other recent works, we model wavelet structure

using a hidden Markov tree (HMT) but, unlike other works, ours

is based on loopy belief propagation (LBP). For LBP, we adopt a

recently proposed “turbo” message passing schedule that alter-

nates between exploitation of HMT structure and exploitation of

compressive-measurement structure. For the latter, we leverage

Donoho, Maleki, and Montanari’s recently proposed approximate

message passing (AMP) algorithm. Experiments with a large

image database suggest that, relative to existing schemes, our

turbo LBP approach yields state-of-the-art reconstruction perfor-

mance with substantial reduction in complexity.

Index Terms—Belief propagation, compressed sensing, hidden

Markov tree, image reconstruction, structured sparsity.

I. INTRODUCTION

I N compressive imaging [1], we aim to estimate an image

from noisy linear observations

(1)

assuming that the image has a representation in some

wavelet basis (i.e., ) containing only a few large

coefficients (i.e., ). In (1), is a known mea-

surement matrix and is additive white Gaussian

noise. Though makes the problem ill-posed, it has been

shown that can be recovered from when is adequately

small and is incoherent with [1]. The wavelet coefficients

of natural images are known to have an additional structure

known as persistence across scales (PAS) [2], which we now

describe. For 2D images, the wavelet coefficients are naturally

organized into quad-trees, where each coefficient at level acts

as a parent for four child coefficients at level . The PAS
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property says that, if a parent is very small, then all of its chil-

dren are likely to be very small; similarly, if a parent is large,

then it is likely that some (but not necessarily all) of its children

will also be large.

Several authors have exploited the PAS property for compres-

sive imaging [3]–[6]. The so-called “model-based” approach [3]

is a deterministic incarnation of PAS that leverages a restricted

union-of-subspaces and manifests as a modified CoSaMP1 [8]

algorithm. Most approaches are Bayesian in nature, exploiting

the fact that PAS is readily modeled by a hidden Markov tree

(HMT) [9]. The first work in this direction appears to be [4],

where an iteratively re-weighted algorithm, generating an

estimate of , was alternated with a Viterbi algorithm, gen-

erating an estimate of the HMT states. More recently, HMT-

based compressive imaging has been attacked using modern

Bayesian tools [10]. For example, [5] usedMarkov-chainMonte

Carlo (MCMC), which is known to yield correct posteriors after

convergence. For practical image sizes, however, convergence

takes an impractically long time, and so MCMC must be ter-

minated early, at which point its performance may suffer. Vari-

ational Bayes (VB) can sometimes offer a better performance/

complexity tradeoff, motivating the approach in [6]. Our experi-

ments indicate that, while [6] indeed offers a good performance/

complexity tradeoff, it is possible to do significantly better.

In this paper, we propose a novel approach to HMT-based

compressive imaging based on loopy belief propagation [11].

For this, we model the coefficients in as conditionally

Gaussian with variances that depend on the values of HMT

states, and we propagate beliefs (about both coefficients and

states) on the corresponding factor graph. A recently proposed

“turbo” messaging schedule [12] suggests to iterate between

exploitation of HMT structure and exploitation of observa-

tion structure from (1). For the former, we use the standard

sum-product algorithm [13], [14], and for the latter, we use

the recently proposed approximate message passing (AMP)

approach [15]. The remarkable properties of AMP are 1) a

rigorous analysis (as with fixed, under i.i.d.

Gaussian ) [16] establishing that its solutions are governed

by a state-evolution whose fixed points—when unique—yield

the true posterior means, and 2) very low implementational

complexity (e.g., AMP requires one forward and one inverse

fast-wavelet-transform per iteration, and very few iterations).

We consider two types of conditional-Gaussian coefficient

models: a Bernoulli–Gaussian (BG) model and a two-state

Gaussian-mixture (GM) model. The BG model assumes that

1We note that CoSaMP is very closely related to the subspace pursuit algo-
rithm previously proposed by Dai and Milenkovic [7]. However, in order to
compare directly with the model-based CoSaMP extensions from [3], we focus
on CoSaMP rather than Subspace Pursuit in this work.
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Fig. 1. Left: The cameraman image. Center: The corresponding transform co-
efficients, demonstrating PAS. Right: An illustration of quad-tree structure.

the coefficients are either generated from a large-variance

Gaussian distribution or are exactly zero (i.e., the coefficients

are exactly sparse), whereas the GM model assumes that the

coefficients are generated from either a large-variance or a

small-variance Gaussian distribution. Both models have been

previously applied for imaging, e.g., the BG model was used in

[5] and [6], whereas the GM model was used in [4] and [9].

Although our models for the coefficients and the corre-

sponding HMT states involve statistical parameters like vari-

ance and transition probability, we learn those parameters di-

rectly from the data. To do so, we take a hierarchical Bayesian

approach—similar to [5] and [6]—where these statistical pa-

rameters are treated as random variables with suitable hyper-

priors. Experiments on a large image database show that our

turbo-AMP approach yields state-of-the-art reconstruction per-

formance with substantial reduction in complexity.

The remainder of the paper is organized as follows. Section II

describes the signal model, Section III describes the proposed

algorithm, Section IV gives numerical results and comparisons

with other algorithms, and Section V concludes.

Notation: Above and in the sequel, we use lowercase bold-

face quantities to denote vectors, uppercase boldface quantities

to denote matrices, to denote the identity matrix, to

denote transpose, and . We use

to denote the probability density2 function (pdf) of random

variable given the event , where often the subscript

“ ” is omitted when there is no danger of confusion. We use

to denote the -dimensional Gaussian pdf with

argument , mean , and covariance matrix , and we write

to indicate that random vector has this pdf.

We use to denote expectation, to denote the prob-

ability of event , and to denote the Dirac delta. Finally,

we use to denote equality up to a multiplicative constant.

II. SIGNAL MODEL

Throughout, we assume that represents a 2Dwavelet trans-

form [2], so that the transform coefficients

can be partitioned into so-called “wavelet” coefficients (at in-

dices ) and “approximation” coefficients (at indices

). The wavelet coefficients can be further partitioned into

several quad-trees, each with levels (see Fig. 1). We de-

note the indices of all coefficients at level of

these wavelet trees by , where refers to the root. In the

interest of brevity, and with a slight abuse of notation, we refer

to the approximation coefficients as level “ ” of the wavelet

tree (i.e., ).

2or the probability mass function (pmf), as will be clear from the context.

Fig. 2. Factor graph representation of the signal model. The variables and
are wavelet states at the roots of two different Markov trees. The variable is
an approximation state and hence is not part of any Markov tree. The remaining
are wavelet states at levels . For visual simplicity, a binary-tree is

shown instead of a quad-tree, and the nodes representing the statistical parame-
ters , as well as those representing their hyperpriors,
are not shown. The nodes represent the conditional pdfs , the
nodes represent the conditional pmfs , and the nodes represent the
prior pmfs .

As discussed earlier, two coefficient models are considered

in this paper: BG and two-state GM. For ease of exposition, we

focus on the BG model until Section III-E, at which point the

GM case is detailed. In the BGmodel, each transform coefficient

is modeled using the (conditionally independent) prior pdf

(2)

where is a hidden binary state. The approxima-

tion states are assigned the a priori activity rate

, which is discussed further

below. Meanwhile, the root wavelet states are as-

signed . Within each quad-tree,

the states have a Markov structure. In particular, the activity of

a state at level is determined by its parent’s activity (at

level ) and the transition probabilities , where

denotes the probability that the child’s state equals 0, given that

his parent’s state also equals 0, and denotes the probability

that the child’s state equals 1, given that his parent’s state also

equals 1. The corresponding factor graph is shown in Fig. 2.

We take a hierarchical Bayesian approach, modeling the

statistical parameters as

random variables and assigning them appropriate hyperpriors.

Rather than working directly with variances, we find it more

convenient to work with precisions (i.e., inverse-variances),

such as . We then assume that all coefficients at the

same level have the same precision, so that for all

. To these precisions, we assign conjugate priors [17],

which in this case take the form

Gamma (3)

Gamma (4)

where for ,

and where are hyperparameters. (Recall that

the mean and variance of are given by and
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, respectively [17].) For the activity rates and transition pa-

rameters, we assume

Beta (5)

Beta (6)

Beta (7)

Beta (8)

where Beta , and where

are hyperparameters. (Recall that

the mean and variance of Beta are given by and

, respectively [17].) Our hyperparameter choices

are detailed in Section IV.

III. IMAGE RECONSTRUCTION

To infer the wavelet coefficients , we would ideally like to

compute the posterior pdf

(9)

(10)

where denotes equality up to a multiplicative constant.

For the BG coefficient model, is specified by

(2). Due to the white Gaussian noise model (1), we have

, where denotes the th row of

the matrix .

A. Loopy Belief Propagation

While exact computation of is computationally pro-

hibitive, the marginal posteriors can be efficiently

approximated using loopy belief propagation (LBP) [11] on the

factor graph of Fig. 2, which uses round nodes to denote vari-

ables and square nodes to denote the factors in (10). In doing so,

we also obtain the marginal posteriors . For now, we

treat statistical parameters , as if they

were fixed and known, and we detail the procedure by which

they are learned in Section III-D.

In LBP, messages are exchanged between the nodes of the

factor graph until they converge. Messages take the form of pdfs

(or pmfs), and the message flowing to/from a variable node can

be interpreted as a local belief about that variable. According to

the sum-product algorithm [13], [14] the message emitted by a

variable node along a given edge is (an appropriate scaling of)

the product of the incoming messages on all other edges. Mean-

while, the message emitted by a function node along a given

edge is (an appropriate scaling of) the integral (or sum) of the

product of the node’s constraint function and the incoming mes-

sages on all other edges, where the integration (or summation)

is performed over all variables other than the one directly con-

nected to the edge along which the message travels. When the

factor graph has no loops, exact marginal posteriors result from

two (i.e., forward and backward) passes of the sum-product al-

gorithm [13], [14]. When the factor graph has loops, however,

Fig. 3. The turbo approach yields a decoupled factor graph. (a) The factor graph
of SSR. Node represents the prior used by SSR during the
th turbo iteration. (b) The factor graph of SSD. Node represents the prior

used by SSD during the th turbo iteration.

exact inference is known to be NP hard [18], and so LBP is not

guaranteed to produce correct posteriors. Still, LBP has shown

state-of-the-art performance in many applications, such as in-

ference on Markov random fields [19], turbo decoding [20],

LDPC decoding [21], multiuser detection [22], and compres-

sive sensing [15], [16], [23], [24].

B. Message Scheduling: The Turbo Approach

With loopy belief propagation, there exists some freedom in

how messages are scheduled. In this work, we adopt the “turbo”

approach recently proposed in [12]. For this, we split the factor

graph in Fig. 2 along the dashed line and obtain the two decou-

pled subgraphs in Fig. 3. We then alternate between belief prop-

agation on each of these two subgraphs, treating the likelihoods

on generated from belief propagation on one subgraph as

priors for subsequent belief propagation on the other subgraph.

We now give a more precise description of this turbo scheme,

referring to one full round of alternation as a “turbo iteration.”

In the sequel, we use to denote the message passed

from node to node during the th turbo iteration.

The procedure starts at by setting the “prior” pmfs

in accordance with the apriori activity rates

described in Section II. LBP is then iterated (to convergence)

on the left subgraph in Fig. 3, finally yielding the messages

. We note that the message can be in-

terpreted as the current estimate of the likelihood3 on , i.e.,

as a function of . These likelihoods are then treated

as priors for belief propagation on the right subgraph, as facili-

tated by the assignment for each . Due

to the tree structure of HMT, there are no loops in right subgraph

(i.e., inside the “ ” super-node in Fig. 3), and thus it suffices to

perform only one forward–backward pass of the sum-product

algorithm [13], [14]. The resulting leftward messages

are subsequently treated as priors for belief propagation on the

left subgraph at the next turbo iteration, as facilitated by the as-

signment . The process then continues for

turbo iterations , until the likelihoods converge or

3In turbo decoding parlance, the likelihood would be referred to
as the “extrinsic” information about produced by the left “decoder”, since it
does not directly involve the corresponding prior . Similarly, the mes-

sage would be referred to as the extrinsic information about
produced by the right decoder.
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a maximum number of turbo iterations has elapsed. Formally,

the turbo schedule is summarized by

(11)

(12)

In the sequel, we refer to inference of using compres-

sive-measurement structure (i.e., inference on the left subgraph

of Fig. 3) as soft support-recovery (SSR) and inference of

using HMT structure (i.e., inference on the right subgraph of

Fig. 3) as soft support-decoding (SSD). SSR details are de-

scribed in the next subsection.

C. Soft Support-Recovery via AMP

We now discuss our implementation of SSR during a single

turbo iteration . Because the operations are invariant to , we

suppress the -notation. As described above, SSR performs sev-

eral iterations of loopy belief propagation per turbo iteration

using the fixed priors . This implies that,

over SSR’s LBP iterations, the message is fixed at

(13)

The dashed box in Fig. 3 shows the region of the factor graph on

which messages are updated during SSR’s LBP iterations. This

subgraph can be recognized as the one that Donoho, Maleki,

and Montanari used to derive their so-called approximate mes-

sage passing (AMP) algorithm [15]. While [15] assumed an

i.i.d. Laplacian prior for , the approach for generic i.i.d. priors

was outlined in [24]. Below, we extend the approach of [24] to

independent non-identical priors (as analyzed in [25]), and we

detail the Bernoulli–Gaussian case. In the sequel, we use a su-

perscript- to index SSR’s LBP iterations.

According to the sum-product algorithm, the fact that

is non-Gaussian implies that is also

non-Gaussian, which complicates the exact calculation of the

subsequent messages as defined by the sum-product

algorithm. However, for large , the combined effect of

at the nodes can be approximated as

Gaussian using central-limit theorem (CLT) arguments, after

which it becomes sufficient to parameterize each message

by only its mean and variance:

(14)

(15)

Combining

(16)

with , the CLT then implies that

(17)

(18)

(19)

The updates and can then be calculated from

(20)

where, using (16), the product term in (20) is

(21)

Assuming that the values satisfy

(22)

which occurs, e.g., when is large and are generated

i.i.d. with variance , we have ,

and thus (20) is well approximated by

(23)

(24)

In this case, the mean and variance of become

(25)

(26)

(27)

where

According to the sum-product algorithm, , the pos-

terior on after SSR’s th-LBP iteration, obeys

(28)

whose mean and variance determine the th-iteration MMSE

estimate of and its variance, respectively. Noting that the

difference between (28) and (20) is only the inclusion of the

th product term, these MMSE quantities become

(29)

(30)

(31)
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(32)

Similarly, the posterior on after the th iteration obeys

(33)

where

(34)

Since , it can be

seen that the corresponding log-likelihood ratio (LLR) is

(35)

Clearly, the LLR and the likelihood function

express the same information, but in different ways.

The procedure described thus far updates variables

per LBP iteration, which is impractical since can be very

large. In [24], Donoho, Maleki, and Montanari proposed, for

the i.i.d. case, further approximations that yield a “first-order”

AMP algorithm that allows the update of only variables

per LBP iteration, essentially by approximating the differences

among the outgoing means/variances of the nodes (i.e.,

and ) as well as the differences among the outgoing

means/variances of the nodes (i.e., and ). The resulting

algorithm was then rigorously analyzed by Bayati and Monta-

nari in [16]. We now summarize a straightforward extension of

the i.i.d. AMP algorithm from [24] to the case of an independent

but non-identical Bernoulli–Gaussian prior (13):

(36)

(37)

(38)

(39)

(40)

where , and are defined as

(41)

(42)

(43)

(44)

For the first turbo iteration (i.e., ), we initialize AMP

using , and for all . For

subsequent turbo iterations (i.e., ), we initialize AMP by

setting equal to the final values of

generated by AMP at the previous turbo iteration. We terminate

the AMP iterations as soon as either or a

maximum of 10 AMP iterations have elapsed. Similarly, we ter-

minate the turbo iterations as soon as either

or a maximum of 10 turbo iterations have elapsed. The

final value of is output as the signal esti-

mate .

D. Learning the Statistical Parameters

We now describe how the precisions are learned. First,

we recall that describes the a priori precision on the ac-

tive coefficients at the th level, i.e., on , where the

corresponding index set is of

size . Furthermore, we recall that the prior on

was chosen as in (4). Thus, if we had access to the true values

, then (2) implies that

(45)

which implies4 that the posterior on would take the form

of where and

. In practice, we do not have access to the true

values nor to the set , and thus we propose to build

surrogates from the SSR outputs. In particular, to update after

the th turbo iteration, we employ

(46)

(47)

and , where and denote the final LLR on

and the final MMSE estimate of , respectively, at the th

turbo iteration. These choices imply the hyperparameters

(48)

(49)

Finally, to perform SSR at turbo iteration , we set the vari-

ances equal to the inverse of the expected precisions,

i.e., . The noise variance is learned

similarly from the SSR-estimated residual.

Next, we describe how the transition probabilities are

learned. First, we recall that describes the probability that a

child at level is active (i.e., ) given that his parent

(at level ) is active. Furthermore, we recall that the prior on

was chosen as in (7). Thus, if we knew that there were

active coefficients at level , of which had active children,

then5 the posterior on would take the form of Beta ,

where and . In practice, we

do not have access to the true values of and , and thus we

build surrogates from the SSR outputs. In particular, to update

after the th turbo iteration, we approximate by the

event , and based on this approximation set (as

4This posterior results because the chosen prior is conjugate [17] for the like-
lihood in (45).

5This posterior results because the chosen prior is conjugate to the Bernoulli
likelihood [17].
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in (47)) and . The corresponding hyperparameters are then

updated as

(50)

(51)

Finally, to perform SSR at turbo iteration , we set

the transition probabilities equal to the expected value

. The parameters , and are

learned similarly.

E. The Two-State Gaussian-Mixture Model

Until now, we have focused on the BG signal model (2). In

this section, we describe the modifications needed to handle the

GM model

(52)

where denotes the variance of “large” coefficients and

denotes the variance of “small” ones. For either the BG or GM

prior, AMP is performed using the steps (36)–(40). For the BG

case, the functions , and are

given in (41)–(44), whereas for the GM case, they take the form

(53)

(54)

(55)

(56)

where

(57)

(58)

(59)

(60)

Likewise, for the BG case, the extrinsic LLR is given by (35),

whereas for the GM case, it becomes

(61)

IV. NUMERICAL RESULTS

A. Setup

The proposed turbo6 approach to compressive imaging was

compared to several other tree-sparse reconstruction algo-

rithms: ModelCS [3], HMT IRWL1 [4], MCMC [5], VB

[6]; and to several simple-sparse reconstruction algorithms:

CoSaMP [8], SPGL1 [26], and BG AMP. All numerical ex-

periments were performed on 128 128 (i.e., )

grayscale images. Unless otherwise mentioned, -level

2D Haar wavelet decomposition was used, yielding

approximation coefficients and individual

Markov trees. In all cases, the measurement matrix had

i.i.d. Gaussian entries. Unless otherwise specified,

noiseless measurements were used. We used normalized mean

squared error (NMSE) as the performance

metric.

We now describe how the hyperparameters were chosen

for the proposed Turbo schemes. Below, we use to denote

the total number of wavelet coefficients at level , and

to denote the total number of approximation coefficients.

For both Turbo-BG and Turbo-GM, the Beta hyperparame-

ters were chosen so that and

with

, and . These informative

hyperparameters are similar to the “universal” recommenda-

tions in [27] and, in fact, identical to the ones suggested in

the MCMC work [5]. For Turbo-BG, the hyperparameters for

the signal precisions were set to and

. This choice is motivated

by the fact that wavelet coefficient magnitudes are known

to decay exponentially with scale (e.g., [27]). Meanwhile,

the hyperparameters for the noise precision were set to

. Although the measurements were noiseless,

we allow Turbo-BG a nonzero noise variance in order to make

up for the fact that the wavelet coefficients are not exactly

sparse, as assumed by the BG signal model. (We note that the

same was done in the BG-based work [5], [6].) For Turbo-GM,

the hyperparameters for the signal precisions

were set at the values of for the BG case,

while the hyperparameters for were set

as and . Meanwhile, the noise variance

was assumed to be exactly zero, because the GM signal

prior is capable of modeling non-sparse wavelet coefficients.

For MCMC [5], the hyperparameters were set in accordance

with the values described in [5]; the values of are

same as the ones used for the proposed Turbo-BG scheme, while

. For VB, the same hyperpa-

rameters as MCMC were used except for and

, which were the default values of hyperparame-

ters used in the publicly available code.7We experimented with

the values for both MCMC and VB and found that the default

values indeed seem to work best. For example, if one swaps the

6An implementation of our algorithm can be downloaded from http://www.
ece.osu.edu/~schniter/turboAMPimaging

7http://people.ee.duke.edu/~lcarin/BCS.html
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Fig. 4. Reconstruction from observations of a 128 128 (i.e., ) section of the cameraman image using i.i.d. Gaussian .

TABLE I
NMSE AND RUNTIME AVERAGED OVER 591 IMAGES

hyperparameters between VB and MCMC, then the av-

erage performance of VB and MCMC degrade by 1.69 dB and

1.55 dB, respectively, relative to the values reported in Table I.

For both the CoSaMP and ModelCS algorithms, the prin-

cipal tuning parameter is the assumed number of non-zero co-

efficients. For both ModelCS (which is based on CoSaMP) and

CoSaMP itself, we used the Rice University codes,8 which in-

clude a genie-aided mechanism to compute the number of ac-

tive coefficients from the original image. However, since we

observed that the algorithms perform somewhat poorly under

that tuningmechanism, we instead ran (for each image) multiple

reconstructions with the number of active coefficients varying

from 200 to 2000 in steps of 100, and reported the result with

the best NMSE. The number of active coefficients chosen in this

manner was usually much smaller than that chosen by the Rice

procedure.

To implement BG-AMP, we used the AMP scheme described

in Section III-C with the hyperparameter learning scheme de-

scribed in Section III-D; HMT structure was not exploited. For

this, we assumed that the priors on variance and activity

were identical over the coefficient index , and assigned

Gamma and Beta hyperpriors of and

, respectively.

8http://dsp.rice.edu/software/model-based-compressive-sensing-toolbox

Fig. 5. A sample image from each of the 20 types in the Microsoft database.
Image statistics were found to vary significantly from one type to another.

For HMT IRWL1, we ran code provided by the authors with

default settings. For SPGL1,9 the residual variance was set to 0,

and all parameters were set at their defaults.

B. Results

Fig. 4 shows a 128 128 section of the “cameraman” image

along with the images recovered by the various algorithms.

Qualitatively, we see that CoSaMP, which leverages only simple

sparsity, and ModelCS, which models persistence-across-scales

(PAS) through a deterministic tree structure, both perform rel-

atively poorly. HMT IRWL1 also performs relatively poorly,

due to (we believe) the ad-hoc manner in which the HMT

structure was exploited via iteratively re-weighted . The

BG-AMP and SPGL1 algorithms, neither of which attempt to

exploit PAS, perform better. The HMT-based schemes (VB,

MCMC, Turbo-GM, and Turbo-GM) all perform significantly

better, with the Turbo schemes performing the best.

For a quantitative comparison, we measured average perfor-

mance over a suite of images in a Microsoft Research Object

Class Recognition database10 that contains 20 types of images

(see Fig. 5) with roughly 30 images of each type. In particular,

we computed the average NMSE and average runtime on a

2.5-GHz PC, for each image type. These results are reported

in Figs. 6 and 7, and the global averages (over all 591 images)

are reported in Table I. From the table, we observe that the

9http://www.cs.ubc.ca/labs/scl/spgl1/index.html

10We used 128 128 images extracted from the “Pixel-wise labelled image
database v2” at http://research.microsoft.com/en-us/projects/objectclassrecog-
nition. What we refer to as an “image type” is a “row” in this database.
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Fig. 6. Average NMSE for each image type.

Fig. 7. Average runtime for each image type.

proposed Turbo algorithms outperform all the other tested al-

gorithms in terms of reconstruction NMSE, but are beaten only

by CoSaMP in speed.11 Between the two Turbo algorithms,

we observe that Turbo-GM slightly outperforms Turbo-BG in

terms of reconstruction NMSE, while taking the same runtime.

In terms of NMSE performance, the closest competitor to

the Turbo schemes is MCMC,12 whose NMSE is 0.39 dB

worse than Turbo-BG and 0.65 dB worse than Turbo-GM.

The good NMSE performance of MCMC comes at the cost

of complexity, though: MCMC is 15 times slower than the

Turbo schemes. The second closest NMSE-competitor is VB,

11The CoSaMP runtimes must be interpreted with caution, because the re-
ported runtimes correspond to a single reconstruction, whereas in practice mul-
tiple reconstructions may be needed to determined the best value of the tuning
parameter.

12TheMCMC results reported here are for the default settings: 100MCMC it-
erations and 200 burn-in iterations. Using 500MCMC iterations and 200 burn-in
iterations, we obtained an average NMSE of dB (i.e., 0.12 dB better)
at an average runtime of 1958 s (i.e., slower).

Fig. 8. Average NMSE for images of type 1.

showing performance 1.5 dB worse than Turbo-BG and 1.7 dB

worse than Turbo-GM. Even with this sacrifice in performance,

VB is still twice as slow as the Turbo schemes. Among the

algorithms that do not exploit PAS, we see that SPGL1 offers

the best NMSE performance, but is by far the slowest (e.g.,

20 times slower than CoSaMP). Meanwhile, CoSaMP is the

fastest, but shows the worst NMSE performance (e.g., 1.16 dB

worse than SPGL1). BG-AMP strikes an excellent balance

between the two: its NMSE is only 0.22 dB away from SPGL1,

whereas it takes only 2.7 times as long as CoSaMP. However,

by combining the AMP algorithm with HMT structure via the

turbo approach, it is possible to significantly improve NMSE

while simultaneously decreasing the runtime. The reason for

the complexity decrease is twofold. First, the HMT structure

helps the AMP and parameter-learning iterations to converge

faster. Second, the HMT steps are computationally negligible

relative to the AMP steps: when, e.g., , the AMP

portion of the turbo iteration takes approximately 6 s while the

HMT portion takes 0.02 s.

We also studied NMSE and compute time as a function of

the number of measurements, . For this study, we examined

images of Type 1 at 2500, 5000, 7500, 10 000, 12 500. In

Fig. 8, we see that Turbo-GM offers the uniformly best NMSE

performance across . However, as decreases, there is little

difference between the NMSEs of Turbo-GM, Turbo-BG, and

MCMC. As increases, though, we see that the NMSEs of

MCMC and VB converge, but that they are significantly out-

performed by Turbo-GM, Turbo-BG, and—somewhat surpris-

ingly—SPGL1. In fact, at 12 500, SPGL1 outperforms

Turbo-BG, but not Turbo-GM. However, the excellent perfor-

mance of SPGL1 at these comes at the cost of very high

complexity, as evident in Fig. 9.

We have used -level wavelet decomposition so far. We

have also studied the reconstruction performance as a function

of wavelet decomposition depth for images of Type 1. Fig. 10

shows the reconstruction error from observations

for the Bayesian algorithms. We observe minimal improvement

in performance of the algorithms beyond .
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Fig. 9. Average runtime for images of type 1.

Fig. 10. Average NMSE for images of type 1.

V. CONCLUSION

We proposed a new approach to HMT-based compressive

imaging based on loopy belief propagation, leveraging a turbo

message passing schedule and the AMP algorithm of Donoho,

Maleki, and Montanari. We then tested our algorithm on a

suite of 591 natural images and found that it outperformed the

state-of-the-art approach (i.e., variational Bayes) while halving

its runtime.
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