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Abstract— We propose a novel design for light field image
acquisition based on compressive sensing principles. By placing
a randomly coded mask at the aperture of a camera, incoherent
measurements of the light passing through different parts of the
lens are encoded in the captured images. Each captured image
is a random linear combination of different angular views of a
scene. The encoded images are then used to recover the original
light field image via a novel Bayesian reconstruction algorithm.
Using the principles of compressive sensing, we show that light
field images with a large number of angular views can be
recovered from only a few acquisitions. Moreover, the proposed
acquisition and recovery method provides light field images with
high spatial resolution and signal-to-noise-ratio, and therefore is
not affected by limitations common to existing light field camera
designs. We present a prototype camera design based on the
proposed framework by modifying a regular digital camera.
Finally, we demonstrate the effectiveness of the proposed system
using experimental results with both synthetic and real images.

Index Terms— Bayesian methods, coded aperture, compressive
sensing, computational photography, image reconstruction, light
fields.

I. INTRODUCTION

RECENT advances in computational photography [1]

provided effective solutions to a number of photographic

problems, and also resulted in novel methods to acquire

and process images. Novel camera designs allow for the

capturing of information of the scene which is not possible

to obtain using traditional cameras. This information can then
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be used for example to generate the three-dimensional scene

geometry, or for novel applications, such as digital refocusing

or synthetic aperture [1].

Light field cameras are one of the most widely used class of

computational cameras. The light field expresses the radiance

density function on the camera sensor, or the light energy of

all rays in 3D space passing through the camera. For instance,

a four-dimensional (4D) discrete light field image x(i, k, m, n)

with spatial dimensions i , k and angular dimensions m, n

contains images of a scene from a number of angles, which

provide information about the 3D structure of the scene. Each

2D image x(i, k, m0, n0) with fixed angular coordinates m0,

n0 is called an angular image. Traditional cameras integrate

these angular images (or equivalently, light rays) over their

2D aperture to obtain the image, which results in the loss of

valuable depth information about the scene. On the other hand,

light field cameras capture the angular data and provide means

to work directly with the light-rays instead of pixels, allowing

one to produce many views of the scene, or perform many

photographic tasks after the acquisition is made. This provides

a clear advantage for light field imaging over traditional

photography and makes many novel applications possible.

Compressive sensing (CS) [3], [4] has recently become very

popular due to its interesting theoretical nature and wide area

of applications. The theory of compressive sensing dictates

that a signal can be recovered very accurately from a much

smaller number of measurements than required by traditional

methods, provided that it is compressible (or sparse) in some

transform basis, i.e., only a few basis coefficients contain the

major part of the signal energy. Besides sparsity, compressive

sensing makes use of the incoherent measurement principle1,

and has led to many interesting theoretical results and novel

applications (see, for instance, [5], [6]).

In this paper, we present a novel application of compres-

sive sensing, namely, a novel framework to acquire light

field images. We show that light field acquisition can be

formulated using a incoherent measurement principle. We

then demonstrate that light field images have a highly sparse

nature, which, in combination with incoherent measurements,

can be exploited to reconstruct the light field images with

much fewer image acquisitions than traditionally required.

By exploiting this sparsity in light field images, we develop

a novel reconstruction algorithm that recovers the original

images from few compressive measurements with a very high

degree of fidelity.

1Loosely speaking, incoherent measurements refer to non-adaptive and
uncorrelated with the signal of interest. See, for instance, [3], [5] for technical
definition and interpretations.
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In addition, we propose a novel camera design based

on the developed acquisition framework. We build our

design on ideas from coded aperture imaging, computational

photography and compressive sensing. By exploiting the fact

that different regions of the aperture of a camera correspond

to images of the scene from different angles, we incorporate a

compressively coded mask placed at the aperture to obtain

incoherent measurements of the incident light field. These

measurements are then decoded using the proposed recon-

struction algorithm to recover the original light field image.

We exploit the highly sparse nature of the light field images

to obtain accurate reconstructions with a small number of

measurements compared to the high angular dimension of the

light field image. The proposed camera design provides images

with high signal-to-noise ratio and does not suffer from the

spatio-angular resolution trade-off in most existing light field

camera designs. Finally, we demonstrate the efficiency of the

proposed framework with both synthetic experiments and real

images captured by a prototype camera.

The paper is organized as follows. First we review related

prior work in light field and coded aperture imaging in Sec. II.

In Sec. III we present the proposed acquisition method to

obtain incoherent measurements of the light field image. We

model the acquisition system and the light field images using

a Bayesian framework, which is described in Sec. IV. The

Bayesian inference procedure used to develop the reconstruc-

tion algorithm is presented in Sec. V. We present a prototype

light field camera based on the proposed framework in Sec. VI.

The effectiveness of the proposed system is demonstrated with

both synthetic and real light field images in Sec. VII and

conclusions are drawn in Sec. VIII.

II. RELATED PRIOR WORK

A. Light Field Acquisition

Light field acquisition, based on the principles of integral

photography, was first proposed over a century ago [7], [8].

The same ideas appeared in the computer vision literature

first as the plenoptic camera [9], and then the potential of

light field imaging was demonstrated in [10] and [11]. The

original design in [9] is implemented in a hand-held camera

in [12], where a microlens (lenticular) array is placed between

the main lens and the camera sensor. A similar approach

is proposed in [13], where instead of using microlenses, a

lens array is placed in front of the camera main lens. In

both approaches, the light field image is captured using one

acquisition. The additional lens array is used to capture the

angular information, and reordering the captured image results

in images of different views of the scene. Other proposed

light field camera designs include multi-camera systems [14]

and mask-based designs [15], [16], which encode the angular

information using frequency-multiplexing.

Many of these designs suffer from the spatio-angular reso-

lution2 trade-off [13], that is, one cannot obtain light field

images with both high spatial- and high angular resolution.

2The spatial and angular resolution here only refer to the number of digitally
acquired elements such as pixels and images. Certain optical effects such as
diffraction due to aperture size are not included in this analysis.

This problem is inherent in designs with one recording sensor

(or film) and where only one acquisition is made. If the

captured light field image has an angular resolution of Nh×Nv ,

and a spatial resolution of Ph × Pv , then Nh × Nv × Ph × Pv

can only be less than or equal to the number of pixels in

the camera sensor. For instance, a typical light field image

captured using the plenoptic camera in [12] provides 14 × 14

angular images of size approximately 300 × 300 in a

16 megapixel camera. Multi-camera systems [14] are not

affected from the spatio-angular resolution trade-off, but they

are very costly to implement and cumbersome for practical

usage.

Recently, a programmable aperture camera is proposed

[17], where a binary mask is used to code the aperture. Angular

images are multiplexed into single 2D images similarly to the

principle of coded aperture imaging. After multiple acquisi-

tions are made, a linear estimation procedure is employed

to recover the full light field image. Although this design

captures images with both high spatial and angular resolution,

the number of acquisitions are equal to the number of angular

dimensions. Therefore, obtaining a light field image with a

high angular resolution is not practical.

During the development of this work, we became aware of

[18], which appeared after [2], and independently considered

the application of compressive sensing to light field acqui-

sition. The work in [18] devises a linear recovery proce-

dure from compressive measurements incorporating statistical

correlations among the angular images via their autocorrela-

tion matrix. In contrast, in this work we exploit the structure

within the light field more explicitly using nonlinear relation-

ships among the angular images.

B. Coded Aperture Imaging

Coded aperture imaging is developed in order to collect

more light in situations where a lens system cannot be used,

due to the measured wavelengths. Imaging systems with

coded apertures are currently widely used in astronomy and

medicine. The technique is based on the principle of pinhole

cameras, but instead of only one pinhole which suffers from

low SNR, a specially designed array of pinholes is used.

This array of pinholes provides images that are overlapping

copies of the original scene, which can then be decoded using

computational algorithms to provide a sharp image. There is

a vast literature on coded aperture methods in astronomy and

medicine (see, for example, [19], [20]).

Recent works considered coded aperture methods for devel-

oping novel image acquisition methods. In [21], the aperture is

coded in the time-domain to modify the exposure for motion

deblurring. Spatially modifying the aperture has been used for

a range of applications: Levin et. al. [22] proposed utilizing an

aperture mask to reconstruct both the original image and the

depth of the scene from a single snapshot. A lensless imaging

system is proposed in [23] that allows for the manipulation of

the captured scene in ways not possible by traditional cameras,

such as splitting field of view. Nayar et. al. [24] used a spatial

light modulator to control the exposure per pixel, which can

be used to obtain high-dynamic range images. Other uses
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(c) (d)

(a) (b)

Fig. 1. Basic principle of utilizing a coded aperture to obtain light
field images. (a)–(c) The angular images when only corner blocks of
the aperture are left open. Both horizontal and vertical parallax can
be observed between these images (horizontal and vertical dashed lines
are shown to denote the vertical and horizontal parallax, respectively).
(d) Captured image with the randomly coded aperture used in the proposed
compressive sensing light field camera. All images are from a synthetic light
field image (see Section VII).

of coded apertures include super resolution [25] and range

estimation [26].

Compressive sensing methods have also been applied in

conjunction with coded apertures or compressively coded

blocking masks. Novel imaging methods have been proposed

for spectral imaging [27], dual-photography [28], and the

design of structured light for recovering inhomogeneous

participating media [29]. Most recently, compressively coded

aperture masks are used for single-image super-resolution and

shown to provide higher quality images than traditional coded

apertures [30], [31].

A related approach to coded aperture imaging is wavefront

coding [32], where the image is intentionally defocused using

phase plates so that the defocus is uniform throughout the

image. The captured image can then be deconvolved to obtain

an image with an enlarged depth of field.

III. COMPRESSIVE SENSING OF LIGHT-FIELDS

In this section, we will show that light field image acquisi-

tion can be formulated within the compressive sensing frame-

work. We first show that light field images can be acquired

by coding the camera aperture, and then present the proposed

compressive acquisition system. In the following, a 4D light

field image is denoted by x, which is the collection of N

angular images x j , such that x = {x j }, j = 1, . . . N .

A. Light-Field Acquisition by Coded Apertures

A fundamental principle used in this work is that different

regions of the aperture capture images of the scene from

different angles3 [17], [23], [33], [34]. Specifically, the main

camera lens can be interpreted as an array of multiple virtual

lenses (or cameras). This concept is illustrated in Fig. 1(a)-(c),

where only certain parts (white blocks) of the aperture are

left open. As can be seen from Fig. 1(a)-(c), the acquired

images exhibit vertical and horizontal parallax. By separately

opening one region of the aperture and blocking light in the

others, the complete light field with an angular dimension of

N can be captured with N exposures. However, obtaining

the light field image in this fashion has two disadvantages:

First, due to the very small amount of light arriving to the

sensor at each exposure, the captured angular images have very

low signal-to-noise ratios (SNR). Second, a large number of

acquisitions have to be made in order to obtain high angular

resolution. The programmable aperture camera design in [17]

addressed the first problem by incorporating a multiplexing

scheme, but the second problem remains a serious drawback.

We address both of these issues by using a randomly coded

non-refractive mask in front of the aperture. Each image

acquired in this fashion is a random linear combination (and

therefore an incoherent measurement) of the angular images.

An example image captured in this fashion is illustrated in

Fig. 1(d), where the amount of light passing through different

regions of the aperture are randomly selected (shown at the

bottom of Fig. 1(d)). As shown in the following, using such

a random mask overcomes both of the problems described

above.

The mathematical principle behind this idea is formulated as

follows. Let us assume that the aperture of the main camera

lens is divided into N blocks, with N = Nh × Nv where

Nh and Nv represent the number of horizontal and vertical

divisions. During each acquisition i, each block j is assigned a

weight 0 ≤ ai j ≤ 1 which controls the amount of light passing

through this block. Therefore, ai j represents the transmittance

of the block j , i.e., it is the fraction of incident light that

passes through the block. As mentioned above, each block

j captures an angular image x j in the light field image,

and therefore the acquired image yi at the i th acquisition

can be represented as a linear combination of the N angular

images as

yi =

N
∑

j=1

ai j x j , i = 1, . . . , M (1)

where we use the vector notation such that yi and x j are

both P × 1 vectors, with P the number of pixels in each

image. Note that in a traditional camera, the acquired image

is the average of all angular images, i.e., ai j = 1
N

, since

the aperture integrates all light rays coming from different

directions.

After M acquisitions (M ≤ N), the complete set of

observed images {yi} can be expressed in matrix-vector

3This is a widely used model employing a geometric optics perspective.
A more recent analysis of lightfields based on wave optics provide additional
views on the transformation of light fields through lenses [35].
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with I the P×P identity matrix. The system in (2) is expressed

in a more compact form as

y = Ax (3)

with
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where ⊗ is the Kronecker product. Taking also the acquisi-

tion noise into account, the final observation model can be

expressed as

y =
(

Â ⊗ I
)

x + n = Ax + n (5)

with n the P M × 1 noise vector.

B. Compressively Coded Apertures

If the linear measurement matrix A satisfies certain prop-

erties dictated by the theory of compressive sensing [3], the

light field acquisition system in (5) can be seen as a noisy

incoherent measurement system. A sufficient condition for a

matrix to be a compressive sensing matrix is the restricted

isometry property (RIP) [3], [36], which is proven to hold

with a very high probability for a general class of matrices

with their entries drawn from certain random probability distri-

butions. For instance, if Â in (5) is constructed by indepen-

dently drawing its entries from a Gaussian distribution, then

Â satisfies RIP with an overwhelming probability.

It is straightforward to show that if Â is a valid compressive

sensing matrix, then A is a valid compressive sensing matrix

as well. A simple proof is as follows. The mutual coherence

of matrix Â is given by [37]

µ
(

Â
)

= max
i �= j

| ÂT
i Â j |

‖ Âi ‖ ‖ Â j ‖
(6)

where Âi is the i th column of Â. The mutual coherence

characterizes the correlation between the columns of matrix Â,

and it is always positive for matrices with more columns than

rows. It is shown that the mutual coherence provides a bound

for the RIP constants [38], and therefore RIP-based guarantees

can be applied using mutual coherence. Using properties of the

Kronecker product, it can be seen that

AT A =
(

Â ⊗ I
)T (

Â ⊗ I
)

(7)

= ÂT Â ⊗ I. (8)

Thus, the inner products of columns of A have the exact

same values as the columns of Â, and therefore they have

the same mutual incoherence. If the mutual coherence of Â is

sufficiently small so as to satisfy RIP [38], A also satisfies

the restricted isometry property and it is therefore a valid

compressive sensing matrix.

Based on this, the acquisition system in (5) is an inco-

herent measurement system of angular images x j , where each

acquired image is a random linear combination of the angular

images. The theory of compressive sensing then dictates that

if the unknown image x can be represented sparsely in some

transform domain, then it can be recovered with much fewer

measurements than traditionally required (M ≪ N). Due

to the nature of multi-view images and especially in the

specific case considered in this work where the angular images

are aligned on a small-baseline, the redundancy within the

light field images is very high. In fact, there are multiple

sources of sparsity inherent in light field images, due to

correlations both within and in between the angular images

(see Sec. IV-B for details). Therefore, light field images can

be very accurately reconstructed with very few acquisitions

by utilizing the compressive acquisition system in (5) and by

exploiting their sparse nature within nonlinear reconstruction

frameworks.

An important design issue is the selection of the measure-

ment matrix A, which determines the level of incoherence

of the measurements and therefore the reconstruction perfor-

mance. The design of measurement matrices for compressive

sensing is an active area of research, and many of the existing

designs can be used for the proposed aperture mask. In

this work, we specifically experimented with two different

types of measurement matrices, namely, uniform spherical

and scrambled Hadamard ensembles [39]. If fractional values

of the block transmittances are permitted, a general class of

matrices can be utilized, with positivity of the matrix entries as

the only constraint. In this case, uniform spherical ensembles

(with values ranging between 0 and 1) are very suitable

as measurement matrices. If the mask is limited to binary

codes, scrambled Hadamard ensembles can be used to code

the aperture. Moreover, the measurement matrices can also

be selected depending on specific requirements of the optical

systems, e.g., the expected amount of transmitted light can

be varied by varying the mean value of the corresponding

probability distribution, or by choosing a specific construction

of the random measurement matrix.

It should be noted that since many (or possibly all) blocks

are open in each exposure, each captured image has a high

SNR due to the small amount of loss of light. In fact, the

measurement matrices can be designed to optimize the amount

of passing light while maintaining the random structure.

Moreover, as shown in the experimental results section,

incorporating a nonlinear reconstruction mechanism provides

images with much higher SNRs than those of linear recon-

struction methods, such as demultiplexing.

Finally, it should be noted that the coded aperture setup

used in this work is a specific application of the acquisition

system in (5). The proposed compressive sensing formulation

for light field acquisition can be applied to a wider range

of light field imaging applications. For instance, multiple

camera or multiple lens imaging systems such as camera arrays
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and stereo cameras can equally well incorporate the inco-

herent measurement system in (5) and significantly reduce the

number of acquisitions without sacrificing spatial or angular

resolution.

IV. HIERARCHICAL BAYESIAN MODEL FOR

RECONSTRUCTION

In order to reconstruct the angular images x1, x2, . . . , xN

from the incoherent measurements y1, y2, . . . , yM and A,

both the observation process (5) and the unknown light field

image x have to be modeled. For this modeling, we use the

hierarchical Bayesian framework by employing a conditional

distribution p(y|x, β) for the observation model in (5) and

a prior distribution p(x|αTV,αc) on the unknown light field

image x. These distributions depend on the model parameters

β, αTV and αc, which are called hyperparameters. In the

second stage of the hierarchical model we use additional

prior distributions, called hyperpriors, to model them. In the

following subsections, we present the specific forms of each

of these distributions.

A. Observation (Noise) Model

The observation noise is assumed to be independent and

Gaussian with zero mean and variance equal to β−1, that is,

using (5),

p(y|x, β) = N (y|Ax, β−1). (9)

B. Light-Field Image Model

The choice of randomly programmed coded apertures makes

the exact/approximate recovery of the angular images possible

through the use of sparsity inherent in light field images.

There are two sources of sparsity within a light field image

that can be exploited. The first one is sparsity within each

angular image. It is already well known that two-dimensional

images can be very accurately represented by only a small

number of coefficients of a sparsifying transform, such as

wavelet transforms or total-variation (TV) function applied on

the image. In the case of light field images, there is another

fundamental source of sparsity, that is, the angular images are

very closely related to each other. Specifically, each angular

image can be accurately estimated from another one using

dense warping (or correspondence) fields, as shown below.

Based on the above, we use the following factorized form

of the prior distribution

p(x|αTV,αc) = p(x|αTV) p(x|αc) C(αTV, αc) (10)

where p(x|αTV) is the TV image prior employed on each

angular image separately, p(x|αc) is the prior that models

the sparsity arising from the strong dependency between

angular images and C(αTV, αc) is a function of the unknown

hyperparameters needed for the image prior model to integrate

to one. In this work, we assume C(αTV, αc) is constant.

Next we describe the specific models used for each of the

prior distributions in this factorization.

1) Total Variation Image Prior: The angular images xi are

natural images, hence they are expected to be mostly smooth

except at a number of discontinuities (e.g., spatial edges). As

spatial domain image priors, we employ the total variation

function which, due to its edge-preserving property, does

not over-penalize discontinuities in the image while imposing

smoothness [40]. Specifically, p(x|αTV) is expressed as

p(x|αTV) ∝

N
∏

i=1

(

αi
TV

)P/2
exp

[

−
1

2
αi

TVTV(xi )

]

(11)

with

TV(xi ) =
∑

k

√

(�h
k (xi ))2 + (�v

k(x
i ))2 (12)

where �h
k and �v

k correspond to, respectively, horizontal and

vertical first order differences, at pixel k, that is, �h
k (xi ) =

(

xi
)

k
−
(

xi
)

l(k)
and �v

k(x
i ) =

(

xi
)

k
−
(

xi
)

a(k)
, where l(k) and

a(k) denote the nearest neighbors of pixel k, to the left and

above, respectively.

2) Cross-Image Prior: As mentioned above, there is a high

correlation between angular images in the light field image.

Specifically, disregarding occlusions, each angular image xi

can be very closely approximated by another angular image

x j using the dense warping field Mi j between i and j , that

is, xi ≈ Mi j x j . Therefore, the dependency of each angular

image on another one is very strong and can be exploited while

modeling x. Based on this, we use the following cross-image

prior between angular images

p(x|αc) ∝ exp

⎛

⎝

N
∑

i=1

∑

j∈�(i)

−
α

i j
c

2

∥

∥

∥xi − Mi j x j
∥

∥

∥

2

Oi j

⎞

⎠ (13)

= exp

⎛

⎝

N
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i=1

∑

j∈�(i)

−
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i j
c

2

(

xi−Mi j x j
)T

Oi j
(

xi−Mi j x j
)

⎞

⎠ (14)

where α
i j
c is the precision of the registration error, and Oi j is

a diagonal matrix with 0 and 1’s on the diagonal to account

for occlusions. In the occluded areas, the corresponding entries

are set equal to zero, and the remaining entries equal to 1. This

usage of the weighted norm is equivalent to the assumption

that Oi j xi ≈ Oi j Mi j x j, that is, the angular image xi can

be closely approximated by the warped angular image Mi j x j

except at the occluded areas. Notice that the occluded areas

(hence matrices Oi j ) can easily be extracted if the warping

fields Mi j are known.

In (14), �(i) defines a neighborhood of xi, which consists

of the angular images with closest viewpoints to that of xi

(a maximum of 8 images on a rectangular grid). In other

words, angular images captured by nearby regions in the

aperture are treated as neighboring images. This neighbor-

hood is imposed in (14) for several reasons. First, angular

images far apart in the aperture can be less accurately

related by dense warping fields due to the 3D structure

of the scene and increased size of the occluded areas.

Second, incorporating a cross-image prior between each pair

of angular images in x largely increases memory requirements

and therefore it is computationally not efficient during the
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reconstruction phase. Finally, since xi is part of at least

one neighborhood defined on x, the warping constraint is

propagated to all angular images during the reconstruction

algorithm.

The cross-image prior in (14) can be written in

matrix-vector form as

p(x|αc) = zc exp

(

−
1

2
xT � x

)

(15)

where zc is the partition function, and � is a sparse N P ×N P

matrix constructed from N × N blocks of size P × P . Its

explicit form is given by

� =

⎛

⎜

⎜

⎜

⎜

⎝

�11 �12 . . �1N

�21 �22 . . �2N

. . . . .

. . . . .

�N1 �N2 . . �N N

⎞

⎟

⎟

⎟

⎟

⎠

. (16)

The P × P block �i j can be obtained from (14) as

�i j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∑

s∈�(i) αis
c Ois + αsi

c

(

Msi
)T

OsiMsi if i = j

−α
i j
c Oi j Mi j − α

j i
c Oi j

(

M j i
)T

if j �= i,

j ∈ �(i)

0 else

The form of the matrix � makes the calculation of the

partition function zc of the distribution in (15) intractable. To

overcome this difficulty, we approximate the partition function

by a quadratic form, and use the following as the cross-image

prior

p(x|αc) = c

⎡

⎣

∏

i, j

(

α
i j
c

)P/2

⎤

⎦ exp(−
1

2
xT � x) (17)

with c being a constant.

It is clear that incorporating the cross-image prior requires

knowledge of the dense warping fields Mi j, which cannot be

directly obtained from the compressive measurements. In this

work, we overcome this problem by acquiring two additional

images from two opposite diagonal sides of the aperture. These

images exhibit full horizontal and vertical parallax, and a dense

registration algorithm based on graph-cuts [41] is employed

to obtain the warping field from them. Due to the uniform

partitioning of the aperture, this warping field can be used

to obtain approximate intermediate warping fields between all

angular images. The disadvantage of this approach is that two

additional exposures have to be taken with small apertures (and

therefore with low SNR), and combined with the approximate

calculation of the intermediate warping fields, the constraints

imposed in the cross-image prior might not fully characterize

the actual relations within the light field image. However, our

experiments have shown that this approach provides accurate

enough warping fields so that accurate reconstructions are

obtained. Moreover, estimating the precision variables α
i j
c

along with the image compensates for the inaccuracies in the

warping fields during reconstruction.

An alternative method is to use xi ≈ x j, which is similar

to the approximation used in the compressive video sensing

algorithm in [42]. Although this method does not require

knowledge of the warping fields, it is a very crude approx-

imation and therefore does not provide reconstruction results

comparable to the ones reported here. However, it can be

used with relatively high performance in the case of very

densely packed angular images, since the variation between

two neighboring angular images will be very small.

It should be emphasized that the modeling in (14) is an

approximation to the structure within the light field image.

It implicitly assumes that the scene is Lambertian, and that

the occluded areas between neighboring angular images are

relatively small in size. Nevertheless, it provides a close

approximation to the light-field structure (especially with

small-baseline angular images as considered in this paper), and

as shown in the experimental results section, it leads to a high

reconstruction performance. Without such an enforcement of

the internal structure of the light-field (i.e., without the use

of the cross-image priors) and by only using separate image

priors on the angular images, accurate reconstructions cannot

be obtained. On the other hand, the role of the intra-image

priors is to individually impose smoothness on the angular

image estimates while preserving the sharp image features,

and the advantages of employing them are demonstrated in a

number of works in the literature (see, e.g., [43]).

C. Hyperpriors on the Hyperparameters

The form of the hyperprior distributions on the hyperpara-

meters β, αTV and αc determines the ease of calculation of

the posterior distribution p(x, β,αTV,αc|y). Since the distri-

butions p(y|x, β) and p(x|αc) are Gaussian distributions, and

we will approximate the distribution p(x|αTV) by a Gaussian

distribution (shown in Section V), we chose to utilize Gamma

distributions for all hyperparameters, as it is the conjugate

prior for the inverse variance (precision) of the Gaussian distri-

bution [44]. Thus, the hyperprior distributions are given by

p(β) = Ŵ(β|ao, bo) =
(bo)ao

Ŵ(ao)
βao−1 exp

[

−boβ
]

(18)

p(αi
TV) = Ŵ(αi

TV|ao, bo), i = 1, . . . , N (19)

p(α
i j
c ) = Ŵ(α

i j
c |ao, bo), i = 1, . . . , N, j ∈ �(i) (20)

with identical shape and inverse scale parameters ao and bo,

respectively. These parameters are set equal to small values

(e.g., 10−5) to make the hyperpriors vague, which makes

the estimation process depend more on the observations

than the prior knowledge. Note, however, that if some

prior knowledge about the hyperparameters is available (for

example, approximate values of the noise variances in the

observations), this knowledge can easily be incorporated

into the estimation procedure using appropriate values of the

shape and inverse scale parameters (see, for example, [43]).

V. RECONSTRUCTION ALGORITHM

Let us denote by � = {β,αTV,αc, x} the set of all

unknowns. The Bayesian inference is based on the posterior

distribution

p(� | y) = p(x, β,αTV,αc|y) =
p(x, β,αTV,αc, y)

p(y)
(21)
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where p(β,αTV,αc, x, y) is given by

p(y, x,β,αTV,αc)=p(y|x, β)p(x|αTV,αc)p(β)p(αTV)p(αc).

(22)

Unfortunately, the posterior p(� | y) is intractable (since p(y)

is intractable), and therefore approximations are utilized. A

common approximation is to represent the posterior by a delta

function at its mode. Then, using p(x|y,�) ∝ p(�, y), the

unknowns can be found by

� = arg max
�

p(� | y) = arg max
�

p(�, y)

Note that this formulation results in the well-known maximum

a posteriori (MAP) estimate of �. Specifically, assuming

uniform hyperpriors on the hyperparameters, the estimates

found by this inference procedure are equivalent to the solution

of the following regularized inverse problem:

� = arg min
�

[

β ‖ y − Ax ‖2 +

N
∑

i=1

αi
TVTV(xi )

+

N
∑

i=1

∑

j∈�(i)

α
i j
c ‖ xi − Mi j x j ‖2

Oi j + log zα

]

(23)

where zα =
∏

i, j (α
i
TV)P/2(α

i j
c )P/2 represents all (approxi-

mate) normalizing terms in p(x|αTV,αc). Therefore, existing

methods for TV-regularized optimization can also be employed

for solving the recovery problem (see, for example, [45], [46]).

However, even with the MAP approximation, the calculation

of the hyperparameters is hard due to the use of the TV priors.

Therefore, we resort to the majorization-minimization method

proposed in [43]. We omit the details of the derivations here,

and provide only the form of the updates of each unknown

variable.

The estimate for the light field image x̂ can be calculated

as

x̂ = 	x βAT y (24)

	−1
x = diag

(

αi
TV(�h)

T
Wi

TV(�h) + αi
TV(�v)T Wi

TV(�v)
)

+� + βAT A (25)

where the first matrix term in (25) is a N P × N P block

diagonal matrix created by P×P blocks αi
TV(�h)

t
Wi

TV(�h)+

αi
TV(�v)t Wi

TV(�v). The matrices Wi
TV are calculated by

Wi
TV = diag

(

1
√

(

wi
TV

)

k

)

, k = 1, . . . P (26)

where

(

wi
TV

)

k
= (�h

k (x̂i ))2 + (�v
k(x̂

i ))2. (27)

It is clear that the vector wi
TV (and hence the matrix Wi

TV)

represents the local spatial activity in each angular image xi

using its total variation. The estimates of the hyperparameters

(a) (b)

Fig. 2. (a) Our prototype camera where an LCD array is mounted to the lens
of a digital camera. (b) LCD array showing an example mask combination.

are given by

β =
1
2 N P + ao − 1

1
2

‖ y − Ax ‖2 +bo
(28)

αi
TV =

1
2

P + ao − 1
∑

k

(

wi
TV

)

k
+ bo

(29)

α
i j
c =

1
2

P + ao − 1
1
2 ‖ xi − Mi j x j ‖2

Oi j +bo
. (30)

Finally, the algorithm iterates among estimating the light

field image using (24), the spatial adaptivity vectors using (27),

and the hyperparameters using (28)-(30) until convergence.

VI. PROTOTYPE LIGHT FIELD CAMERA

We have assembled a prototype of the proposed system as

shown in Fig. 2(a). A binary LCD array (Electronic Assembly

DOGL128S-6), shown in Fig. 2(b), is mounted to the lens of a

digital camera. The LCD array consists of 128×64 pixels and

we used 8×8 pixel segments as the aperture blocks. To avoid

excessive vignetting, we only use the central 56 × 40 pixel

part of the LCD array as the mask; the remaining part outside

this area is covered with black carton to block light. Note that

since the LCD array is binary, uniform measurement matrices

cannot be realized with this mask, which require LCDs that

can produce gray-scale values.

Both the LCD array and the digital camera are controlled by

a computer. A specifically designed computer program succes-

sively changes the LCD image and makes an acquisition using

the camera. The delay between the mask display and exposure

is negligible, hence the total acquisition time approximately

consists of the exposure times of each image.

Since the LCD array is not designed for this purpose,

there are multiple sources of imperfections in the acquisi-

tions4. For instance, the diffraction due to pixel boundaries

in the LCD causes some artifacts in the acquired images.

More importantly, a black pixel in the LCD array does not

completely block light passing through it, which changes the

effective measurement matrix. Similarly, a white pixel does not

completely pass the light. Also, the pixels in the LCD array

have different responses, which cause inhomogeneity within

the images. To compensate for these effects, we have acquired

4Notice also that the LCD array is not placed right at the aperture plane,
but in front of the lens, as the former requires extensive modification of the
main lens. This also introduces some artifacts in the angular images.
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 3. Reconstruction examples with uniform matrices. (a) Original angular
image. Reconstructed images from (b) and (e) 9 measurements, (c) and (f)
13 measurements, and (d) and (g) 17 measurements. (b)–(d) Low-noise case.
(e)–(g) High-noise case.

images of white backgrounds and color calibration boards,

and used these acquisitions to approximately calculate the

pixel responses. These pixel responses are then used to calcu-

late the actual measurement mask. Although this calibration

significantly reduced artifacts, this prototype system can be

considerably improved with specially designed hardware. For

instance, [33] recently reported that Liquid Crystal on Silicon

devices are more suitable for aperture coding than LCDs. Our

incoherent acquisition and reconstruction framework can be

directly applied to this system as well.

VII. EXPERIMENTAL RESULTS

A. Synthetic Experiments

For synthetic experiments, a 4D light field image is

constructed using the Blender software [47]. We constructed

a toy 3D scene with three objects at different depths, and

the camera is moved vertically and horizontally to acquire

angular images that compose the 4D light field image with

both horizontal and vertical parallax. One angular image from

this set is shown Fig. 3(a). The light field image has a spatial

resolution of 200×150 and an angular resolution of 5×7. The

warping fields between the angular images are assumed to be

known to test the best-case reconstruction performance. Our

current (unoptimized) MATLAB implementation takes about

10 minutes on a 3GHz Core2 Duo CPU to obtain the final

reconstructions.

We experimented with two different measurement matrices

A: 1) The uniform spherical ensemble, where the entries of

A are drawn from a uniform distribution and are between 0

and 1, and 2) scrambled Hadamard matrices, where a random

subset of rows of a S-matrix [48] is chosen to generate A.

In both cases, the expected mean of the entries in one row

of A is 0.5, as the mean of the distribution is 0.5 in the

first case and due to the property of the Hadamard matrices

in the second case. Therefore, the expected amount of light
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Fig. 4. Number of measurements versus relative reconstruction error
(averaged over 20 runs) at two different noise levels (a) with uniform and
(b) with scrambled Hadamard measurement matrices.

passing through the aperture in each acquisition is half of the

maximum possible with both measurement matrices. Finally,

we add zero-mean Gaussian noise to the measurements to

obtain the final observations. We tested the reconstruction

performance at two different noise levels with corresponding

variances 0.001 and 1, where the intensity interval of the

images is [0, 255].

We vary the number of acquired images M from 3 to 35

and apply the proposed reconstruction algorithm using the

incoherent observations to obtain estimates of the original

light field image. The relative reconstruction error is calculated

according to ‖x̂ − x‖2
2/‖x‖2

2, where x and x̂ are the original

and estimated images, respectively.

Average reconstruction errors over 20 runs are shown in

Fig. 4. Multiple remarks can be made from this figure: First,

using uniform ensembles as measurement matrices generally

result in lower reconstruction errors than in the case of

scrambled Hadamard matrices. This is an expected result, as

the uniform measurement matrices collect information from all

angular images at each acquisition whereas when Hadamard

matrices are used, only some of the acquired images contain

information about a particular angular image. Therefore, more

acquisitions are generally required to achieve the same recon-

struction error.

Second, note that when the number of acquisitions is very

low, e.g., 3-7, in some cases the algorithm is unable to

provide successful restorations with Hadamard measurements,

whereas we can always obtain some estimate of the light

field image with the uniform measurements. Note, however,

that although uniform measurements are clearly superior to

Hadamard measurements with a low number of measurements,

they achieve almost the same reconstruction performance

when the number of measurements is higher than 11. This is

an important result as the practical application of Hadamard

matrices is much easier than employing masks with uniform

measurements.

Note that the difference in the reconstruction errors between

low- and high-noise cases is not significant. It is clear that the

reconstruction method is very successful in reconstructing the

light field image when heavy noise is present. This is espe-

cially evident in the reconstruction error at full measurement

(M = 35); the error level is around the same order as when

M ≥ 9 in the uniform measurement case and M ≥ 11 in the

Hadamard measurement case, and the visual fidelity of the

reconstructed light field remains nearly unchanged.
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 5. Reconstruction examples with scrambled Hadamard matrices.
(a) Original angular image. Reconstructed images from (b) and (e) 9 measure-
ments, (c) and (f) 13 measurements, and (d) and (g) 17 measurements. (b)–(d)
Low-noise case. (e)–(g) High-noise case.

Fig. 6. Nine angular images from the light field reconstructed with 13
uniform measurements and σ 2 = 10−3. The displayed images are smaller
compared to the original images.

Overall, it is clear that very accurate reconstructions can be

obtained using few measurements compared to the angular

dimension of the light field image. In the low-noise case,

average reconstruction errors of around 6×10−4 and 3×10−4

from 9 and 15 measurements, respectively, are obtained with

uniform measurement matrices. With scrambled Hadamard

matrices, same error levels are achieved with about 11 and

17 measurements.

For visual quality assessment, examples of reconstructed

images using 9, 13 and 17 measurements are shown in Fig. 3

for uniform and in Fig. 5 for Hadamard matrices, respectively.

Note that in both cases, the reconstructed images are very close

to the original angular image; the image details and structure

of the scene are accurately reconstructed. The visual quality

of the reconstructions can also be observed from Fig. 6, where

(a)

(b)

(c)

Fig. 7. Digital refocusing examples using (a) original light field
image. (b) Reconstructions using uniform matrices from nine measurements.
(c) Reconstructions using the scrambled Hadamard matrices from nine
measurements.

(a)

(b)

(c)

(d)

(e)

Fig. 8. Reconstruction results from a real dataset. (a) Three of the acquired
images. (b) Reconstructed images using linear Hadamard inversion from
35 images. Reconstructed images using the proposed scheme from (c) 10,
(d) 15, and (e) 20 acquired images.

nine angular images from the light field reconstructed from 13

measurements with uniform matrices are shown.
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(a)

(b)

(c)

(d)

Fig. 9. Detailed parts from Fig. 8. (a) Reconstruction results using
linear Hadamard inversion from 35 images. Reconstruction results using the
proposed scheme from (b) 10, (c) 15, and (d) 20 acquired images.

Light field images have a number of applications in image

based rendering, with typical ones being novel view synthesis

and refocusing. To assess the visual quality of the recon-

structed images in such a postprocessing application, we

present digital refocusing results in Fig. 7. Notice that although

only the reconstructed 35 images are used to obtain the

refocused images, the results are of high visual quality without

ghosting artifacts. Moreover, the refocused images using the

reconstructions are nearly indistinguishable from the refocused

images rendered using the original light field image.

In summary, it can be observed that using the proposed

design the number of acquisitions can be significantly reduced

(by a factor between 4 and 6). Furthermore, the reduction

in the number of acquisitions is expected to be much higher

with larger light field images, due to the increased level of

sparsity.

B. Experiments With Real Images

Using the camera described in Section VI, we have acquired

a real light field image of a representative scene. The acquired

light field has angular dimensions 5 × 7, and each acquired

image is around 10 megapixels (3888 × 2592). To reduce the

computational load for demonstration purposes, we cropped

and downsampled them to 350×230 images. We have acquired

a full set of measurements (total of 35 exposures) with

Hadamard measurements to compare the compressive sensing

reconstruction with linear reconstruction (such as the method

in [17]). The warping fields are obtained by acquiring the

single-block images from the opposite ends of the mask, and

using the procedure described in Section IV-B.2.

Three of the 35 acquired images are shown in Fig. 8(a).

Three angular images reconstructed using linear Hadamard

inversion from the full set of 35 images are shown in Fig. 8(b).

The amplified noise level is clearly visible, which is not

surprising since no postprocessing (such as denoising) is

applied to handle the noise during the acquisition and multi-

plexing phase. Figures 8(c)-(e) show corresponding recon-

structed angular images using the proposed scheme with 10,

15 and 20 measurements, respectively. The central parts of the

images are shown in Fig. 9 for a closer inspection. Although

much fewer acquisitions are used, the quality of the recon-

structed images is higher than using linear reconstruction with

the full dataset. It is clear that the proposed method success-

fully controls the trade-off between noise amplification and

smoothness of the solution, thus resulting in noise-free images

with sharp edges, while correcting the vignetting artifacts and

nonuniform lighting to some extent. Notice that no additional

postprocessing is applied to the final images to demonstrate the

effectiveness of the reconstruction algorithm; the remaining

illumination differences between the angular images can be

corrected by employing additional postprocessing algorithms.

VIII. CONCLUSION

In this paper, we proposed a novel application of compres-

sive sensing to a new camera design to acquire 4D light

field images. We have shown that incoherent measurements

of angular images can be collected by using a randomly

coded mask placed at the aperture of a traditional camera.

These measurements are then used to reconstruct the original

light field image. We developed a reconstruction algorithm

which exploits the high degree of information redundancy

(and hence, sparsity) inherent in the light field images, and

have shown that the complete light field image can be recon-

structed using only a few acquisitions. Moreover, the captured

images have high signal-to-noise ratios due to small amount

of loss of light. The proposed design provides high spatial

and angular resolution light field images, and does not suffer

from limitations of many existing light field imaging systems.

Finally, the proposed design can be implemented by simple

modifications of traditional cameras. Experimental results with

both synthetic and real image sets show the effectiveness and

potential of this approach for light field acquisition.

The proposed design, although powerful in terms of

providing both high spatial- and angular-resolution, also has

several limitations. Most importantly, it requires the scene

and the camera to be static as a number of acquisitions have

to be made. Any object or camera motion will necessarily

introduce significant artifacts in the reconstructed images.

In addition, our current implementation of the reconstruc-

tion method requires simultaneous processing of all angular

images and the observations. Although we observed that the

convergence is generally very fast, this processing might lead

to high computational load if the size of the light field is

large. Although not explored in this paper, this problem can

potentially be addressed by processing images in patches and

by parallel processing.
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