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Compressive Near-Field Localization For Multipath
RIS-aided Environments

Omar Rinchi, Member, IEEE, Ahmed Elzanaty, Senior, Member, IEEE, and Mohamed-Slim Alouini, Fellow, IEEE

Abstract—Reconfigurable intelligent surfaces (RISs) are con-
sidered among the key techniques to be adopted for sixth-
generation cellular networks (6G) to enhance not only commu-
nications but also localization performance. In this regard, we
propose a novel single-anchor localization algorithm for a state-
of-the-art architecture where the position of the user equipment
(UE) is to be estimated at the base station (BS) with the aid of a
RIS. We consider a practical model that accounts for both near-
field propagation and multipath environments. The proposed
scheme relies on a compressed sensing (CS) technique tailored
to address the issues associated with near-field localization and
model mismatches. Also, the RIS phases are optimized to enhance
the positioning performance, achieving more than one order of
magnitude gain in the localization accuracy compared to RISs
with non-optimized phases.

Index Terms—Reconfigurable Intelligent Surface (RIS); local-
ization; positioning; 6G; compressed sensing; near-field;

I. INTRODUCTION

The sixth-generation cellular networks (6G) are expected
to consider higher frequency bands, wider bandwidths, and
massive antenna arrays to enhance the performance of wireless
communications and localization systems [1]. Some issues
may arise due to considering high-frequency bands, such as
the blockage of the line-of-sight (LOS) signal. In this regard,
reconfigurable intelligent surfaces (RISs) has been recently
introduced to alleviate this problem by providing an alternative
reflective path that can be controlled [2]–[4].

In [5], the positioning performance limit of a RIS-aided
single-anchor localization architecture is derived in terms of
the Cramér-Rao lower bound (CRLB). Regarding position-
ing algorithms, the authors in [6] propose a received sig-
nal strength (RSS)-based positioning scheme. However, these
works consider a far-field model, which may not be valid,
especially for large RISs with high-frequencies, and hence the
spherical wavefront cannot be exploited [7].

On the other hand, the authors in [8] consider the local-
ization performance limits in RIS-aided scenarios through a
model that is also valid for near-field, accounting for the
position information embedded in the spherical wavefront.

Nevertheless, the aforementioned schemes do not consider
multipath environments, which are typical in communications,
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Fig. 1: The proposed architecture for RIS-aided localization.

especially indoors. In [9], a localization scheme is considered
in multipath RIS-assisted environments. The complexity of this
scheme is high as it relies on a maximum a posteriori (MAP)
estimator, and it also considers a far-field model. To the best
of the authors’ knowledge, efficient localization algorithms in
near-field multipath scenarios, as in indoor and/or large RIS-
aided positioning, are still lacking.

In this paper, we propose an uplink positioning scheme
where the user equipment (UE) is to be localized by a base
station (BS), exploiting the beam focusing capabilities of a
RIS. First, we estimate the steering angles and distances using
compressed sensing (CS), accounting for the near-field mul-
tipath model. Then, we address the basis mismatch problem
due to the grid-based CS. Finally, we iteratively design the RIS
phases to maximize the signal-to-noise ratio (SNR), enhancing
the localization performance. The main contributions can be
summarized as follows.

• We propose a framework to localize a UE in a multipath
near-field RIS-aided model using CS.

• We estimate the model mismatch error introduced by CS.
• We propose a RIS phase design that is based on maxi-

mizing the SNR at the BS.
Notation: Matrices will be represented by a capital bold

letter X, vectors will be denoted by bold lowercase letter x,
scalars will be represented by non-bold letter x or X , (.)H ,
(.)∗ and (.)† are Hermitian transpose, conjugate, and pseudo-
inverse operators, diag(.) is an operator that takes a vector
and transforms it to a diagonal matrix, tr(.) is an operator
that computes the trace of a matrix, rank(.) is an operator
that accounts for the matrix rank, INM is an identity matrix
of size NM, E{.} is the expected value operator, ||.||ℓ is the
ℓth norm, ||.||F is the Frobenius norm, al represents the lth

column of a matrix A, ab∗ is its bth row, and ab,l is the bth

element of the vector al, and M ≜ {−M,−M + 1, · · · ,M}
and B ≜ {−B,−B + 1, · · · , B}.
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II. SYSTEM MODEL

In the considered system, the BS, RIS, and UE are located
at pB = [xB, yB], pR = [xR, yR], and pM = [xM, yM],
respectively, all are equipped with multiple-input multiple-
output (MIMO) uniform linear arrays (ULAs) with number of
elements NB, NR, and NM. We consider a geometric model
with LRM and LBR paths between the (UE and RIS) and (RIS
and BS), respectively, and the LOS between the UE and the
BS is blocked [10], as depicted in Fig. 1.

The received signal at the BS can be written as

Y = H X + Z, (1)

where X ∈ CNM×M o
is a positioning reference signal (PRS)

containing orthogonal columns pilots having Mo sequences
with power P , i.e, XXH = P

NM INM , and Z ∈ CNB×Mo

is
an additive white Gaussian noise (AWGN) such that zi,j ∼
CN(0, σ2

n). The matrix H ∈ CNB×NM
represents the overall

channel between the BS and UE, and it can be expressed as

H = HBRΩHRM, (2)

where Ω ∈ CNR×NR
is a diagonal phase matrix of the RIS

with diagonal Θ ≜
[
ζ1e

jθ1 , ζ2e
jθ2 , · · · , ζNRejθNR

]
that is

assumed to be ideal (i.e., ζr = 1), and HBR ∈ CNB×NR

represents the channel between the BS and RIS while HRM ∈
CNR×NM

accounts for the channel between the RIS and UE.
In particular, we have

HBR = A(ϕBR, rBR) diag(ρBR)AH(θBR,dBR), (3)

where A(ϕBR, rBR) ∈ CNB×LBR
and A(θBR,dBR) ∈ CNR×LBR

are steering matrices with angle of arrivals (AOAs), θBR, and
angle of departures (AODs), ϕBR, while rBR and dBR represent
the distances between the (BS and scatterers) and (scatterers
and RIS), respectively. In the near-field, the elements of each
steering matrix A in (3) can be approximated using the Fresnel
approximation of the spherical wavefront model [11], [12] by
its angle and distance as

ab,l(ϕ
BR
l , rBR

l ) = exp
(
j [b ωBR

l + b2 γBR
l ]

)
, (4)

where ωBR
l ≜ f(ϕBR

l ) and γBR
l ≜ g(ϕBR

l , rBR
l ) with

f(ϕ) = −2πδ

λ
sin (ϕ), g(ϕ, r) =

πδ2

λ r
cos2 (ϕ), (5)

where λ is the wavelength, δ is the distance of adjacent
elements in the ULA. We take the element at the center as a
reference such that the distance from the center to the element
of index b is δ b where b ∈ B and B ≜ (NB − 1)/2.1 For
the diagonal matrix diag(ρBR) ∈ CLBR×LBR

, it represents the
propagation gains of each path between the RIS and BS. The
propagation gain of path l can be modeled as

ρBR
l =

(
c

4π(rBR
l + dBR

l )fc

)µ
2

F, (6)

where c is the speed of light, fc is the carrier frequency, and F
is a standard complex Gaussian random variable representing
the fading. The channel HRM can be expressed in a similar
way.

1Without loss of generality, we assume NB to be an odd number.

III. RIS-AIDED LOCALIZATION ALGORITHM
Our goal is to enhance the positioning performance by

controlling the RIS phases. In this regard, we first estimate
the geometric parameters, i.e., distances and steering angles,
from the received signal using CS, and then the estimated
location is used to design the RIS phases. We re-estimate the
position using the optimized phases and repeat this procedure
till convergence.
A. Estimation of the Localization Parameters

In near-field, due to the spherical wavefront, CS can not
be directly applied on the received signal Y. More precisely,
the sparsifying basis, which is adopted to represent the sparse
signal, requires gridding over both the angle and distance
vectors, leading to higher computational complexity compared
to the far-field case that requires gridding over only the angles.

In this regard, we propose to exploit the spatial correlation
in the channel matrix H. This allows us to decompose the
two-dimensional CS problem into smaller simplified one-
dimensional models, relaxing the coupling between the steer-
ing angle and distance vectors. In particular, we propose
to estimate the channel and its empirical covariance matrix.
Then, the measured signal in the CS model is considered as
the empirically estimated covariance matrix rather than the
directly received signal Y.

More precisely, let us define V as the matrix containing
some properly selected elements from the covariance matrix
of the actual channel, i.e.,2

vb,m≜E
{
hb,mhp,n

∗}= LBR∑
i=1

LRM∑
k=1

NR∑
r=1

NR∑
z=1

σBR
i σRM

k e2jbω
BR
i

e−j[rαBR
i +r2βBR

i ]ej[zα
BR
i +z2βBR

i ]ej[rω
RM
k +r2γRM

k ]e−j[zωRM
k +z2γRM

k ]

e−2jmαRM
k ejθre−jθz ,∀m ∈M, b ∈ B, p = −b, n = −m, (7)

where σBR and σRM contains the variance of each path, M ≜
(NM − 1)/2, and αRM

k ≜ f(θRM
k ), and βRM

k ≜ g(θRM
k , dRM

k ).
The selected elements in the covariance matrix (with p = −b
and n = −m) are chosen such that the parts with γBR

l , which
depends on the angles and distances, cancel out. This permits
decoupling the angles and distances, as the remaining ωBR

l

depends only on the angle.
To be able to estimate the left-hand side of (7) one can use

V = V̂− Γ, (8)

where V̂ is the covariance matrix of the estimated channel,
and Γ is the covariance of the error in the channel estimation,
such that Γb,m = E{zb∗xH

m∗(z−b∗xH
−m∗)

H} = 0. The matrix
V̂ can be ideally estimated using v̂b,m = E

{
ĥb,m(ĥ−b,−m)∗

}
but for a limited number of snapshots T we have

ṽb,m = T−1
T∑

t=1

ĥt
b,m(ĥt

−b,−m)∗,∀m ∈M, b ∈ B, (9)

with V̂ = Ṽ + Λ where Λ is the error due to the limited
number of snapshots, and Ĥ = YX† is the least square (LS)
estimate of the channel. The matrix Ṽ ∈ CB×M is written as

Ṽ = S1(ϕBR)C1 + Γ−Λ. (10)

2In the following, we refer to V as the covariance matrix, albeit it represents
a part of the covariance matrix.
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Each vector s1l (ϕ
BR) in S1(ϕBR) ∈ CB×LBR

is expressed as

S1(ϕBR)=
[
e2jbω(ϕBR

1 ), e2jbω(ϕ2)
BR
, . . . , e2jbω(ϕBR

LBR )
]
. (11)

In (11), we defined S1(ϕBR) to be a combination of LBR atoms
each with a specific angle ϕBR

l . In order to estimate the angle
ϕ̂

BR
l using CS, we define the the gridded measurement matrix

S1 ∈ CB×N to be a combination of N atoms such that every
single atom s1n(ϕ

BR) is associated with the angle 2πn−π(N+1)
N−1

where n is the grid counter and N is the grid size. The support
matrix C1 ∈ CN×M is LBR-sparse which means that it is a
matrix with N rows but only LBR of them have non-zero
elements and by finding the indices of the non-zero rows,
one can recover the corresponding angles ϕ̂

BR
up to some

quantization error.
Several sparse recovery algorithms can be used to estimate

the angles from the multiple measurement vectors (MMV)
Ṽ. For instance, the angles can be recovered by minimizing
the ℓ0 quasi-norm of C1

when B ≥ 2LBR + 1 − rank(C1
)

[13], [14]. However, this problem has been shown to be NP-
hard. Alternatively, the angles can be recovered using a less
computationally complex optimization, i.e., ℓ1 minimization,
albeit with a higher number of measurements, e.g., B > cLBR

where c > 1 is an overmeasuring factor [15], [16]. Several
algorithms have been proposed to solve the MMV problem,
e.g., multiple orthogonal matching pursuit (M-OMP), joint ℓ2,0
approximation (JLZA) and temporal multiple sparse Bayesian
learning (T-MSBL), under some conditions on the restricted
isometry constant of the measurement matrix S1

[17]. The
other angle θ̂

RM
can be estimated by taking the Hermitian

transpose of (10) and that is

Ṽ
H

= S2(θRM)C2 + ΓH −ΛH . (12)

Now by constructing the gridded measurement matrix S2

similar to S1
, one can solve for the LRM sparse support matrix

C2 ∈ CN×B using CS. To estimate the distances r̂BR that
corresponds to the angle ϕ̂

BR
, first, we rewrite (1) as

Y = A(ϕBR, rBR)C3 + Z. (13)

Then, we apply CS on the gridded model, where the gridded
measurement matrix is S3

= A(ϕ̂
BR
, rBR) where A(ϕ̂

BR
, rBR)

is the steering matrix that is defined in (4), ϕ̂
BR

is the previous
estimated angle and rBR is the gridded distances vector with
Fraunhofer distance being its known upper bound. Now r̂BR

can be estimated using CS. The distance d̂
RM

can be estimated
similar to r̂BR by taking the by taking the Hermitian transpose
of (13) and that is

YH = XHA(θRM,dRM)C4 + ZH . (14)

We define the the gridded measurement matrix as S4
=

XHA(θ̂
RM

,dRM
) and d̂

RM
can be estimated similarly to all the

previous parameters using CS. Similarly, the other localization
parameters can be recovered.
B. Off-grid estimation

Compressed sensing considers that the angles can take only
specific values on a grid with a certain resolution, leading to

Algorithm 1 RIS-aided near-field positioning

Input: Y
1: Initialize: Ω← random phase design.
2: for i = 1 to I do
3: Estimate Ṽ using (9).
4: Construct the measurement matrix S1

as in (11) using
the required resolution.

5: Estimate the Ĉ
1

using the sparse recovery algorithm
and recover ϕ̂

BR
from it.

6: Compute the Hermitian transpose of Ṽ and repeat
steps 4 and 5 to estimate θ̂

RM
.

7: Construct the measurement matrix as in (13) using the
required resolution..

8: Estimate Ĉ
3

using the sparse recovery algorithm and
recover r̂BR from it.

9: Compute the Hermitian transpose of Y and repeat
steps 7 and 8 to estimate d̂

RM
.

10: Compute the mismatch using (16) for all the parame-
ters.

11: Use (21) to compute for Ω.
12: end for
13: Compute the UE location p̂M using (18).

Output p̂M

a model mismatch problem. Solving this problem requires an
off-grid estimation, typically with high computational com-
plexity [18]. The off-grid CS algorithms can provide higher
estimation accuracy at the expense of higher computational
complexity. Alternatively, we first consider on-grid CS, and
then we represent the actual measurement matrix S as a
sum of two parts: i) the on-grid variable S; ii) the bias
mismatch error E. For instance, to compensate for the model
mismatch in (10) we can represent S1(ϕBR) as: S1(ϕ̂

BR
,ϕ) ≈

S1(ϕ̂
BR
) + S1

ϕBR(ϕ̂
BR
)diag(ϕ− ϕ̂

BR
) where S1

ϕBR(ϕ̂
BR
) is the

first order derivative of S1 around ϕ̂
BR

, i.e.,

S1
ϕBR

(
ϕ̂

BR)
=

[
∂s1(ϕBR)

∂ϕBR |ϕBR=ϕ̂BR
1
,. . .,

∂s1(ϕBR)

∂ϕBR |ϕBR=ϕ̂BR
LBR

]
. (15)

diag
(
ϕ − ϕ̂

BR)
is a diagonal matrix containing the angles

that minimize the mismatch error. In order to estimate, ϕBR

we start by solving the following optimization problem

ϕ⋆=arg min.
ϕ
||S1(ϕ̂

BR
)Ĉ

1
+S1

ϕBR(ϕ̂
BR
)diag(ϕ− ϕ̂

BR
)Ĉ

1
−Ṽ||2F

s.t. − 0.5∆ ≤ ϕl − ϕ̂BR
l ≤ 0.5∆,∀l∈

{
1, 2, · · · , LBR} , (16)

where ∆ is the grid resolution. Now ϕBR ≈ ϕ̃
BR

= ϕ̂
BR

+
(ϕ⋆ − ϕ̂BR). Similarly, the off-grid errors in θRM, rBR, and
dBR can be estimated.
C. Positioning

The position of the UE can be obtained from the estimated
parameters, e.g., the angles and distances.3 We consider the
location of BS as the reference frame. The location of the

3The estimated parameters can also be used to estimate the location of
scatterers, realizing simultaneous localization and mapping (SLAM).
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scatterers between the BS and RIS, pS,BR = [xS,BR, yS,BR], can
be estimated as

x̂S,BR
l = r̃BR

l sin
(
ϕ̃BR
l

)
, ŷS,BR

l = −r̃BR
l cos

(
ϕ̃BR
l

)
. (17)

From each of the LRM paths, we can obtain initial estima-
tions for the UE location. The position of the UE, pM, can
be estimated through a weighted average of all path-based
estimations as

x̂M =

LRM∑
l=1

νl

(
xR + r̃RM

l sin
(
ϕ̃RM
l

)
+ d̃RM

l sin
(
θ̃RM
l

))
,

ŷM =

LRM∑
l=1

νl

(
yR + r̃RM

l cos
(
ϕ̃RM
l

)
− d̃RM

l cos
(
θ̃RM
l

))
, (18)

where νl is the lth path weight,
∑LRM

l=1 νl = 1. Note that the
weights νl of the reliable paths, e.g., the LOS path, can have
higher values. Similarly, the location of the scatterers between
the RIS and UE, pS,RM = [xS,RM, yS,RM], can be estimated as

x̂S,RM
l = x̂M + d̃RM

l cos
(
θ̃RM
l

)
,

ŷS,RM
l = ŷM + d̃RM

l sin
(
θ̃RM
l

)
. (19)

D. Proposed Phase Design

The goal is to minimize the localization error by optimizing
the RIS phases. Nevertheless, it is challenging to derive an
analytical expression for the error. Alternatively, one can
minimize the CRLB; however, the derivation of the CRLB
in near-field considering reflective RIS channel with multiple
scatterers is still an open problem. In this regard, we propose
to maximize the SNR, as the error typically depends on it. For
the SNR, it can be maximized by aiming to align the phases
at the BS by minimizing the sum of the square distance of the
phases from their related centroid ϵ̄(θ), i.e.,4

θ⋆ = arg min.
θ∈[0,2π]NR

∑
b,m,i,k,r

[
(bω̂BR

i + b2γ̂BR
i )+ (rα̂BR

i + r2β̂BR
i )

+(rω̂RM
k +r2γ̂RM

k )+ (m α̂RM
k +m2β̂RM

k )+θr−ϵ̄(θ)
]2
, (20)

where
∑

b,m,i,k,r ≜
∑B

b=−B

∑M
m=−M

∑LBR

i=1

∑LRM

k=1

∑NR

r=1,
ϵ̄(θ) defined similar to [8]. Using similar techniques to [8],

4If the RIS has radio frequency chains, ρBR
l and ρRM

l can be estimated, and
the amplitudes and phases of the paths can be considered in the optimization.

after some manipulations, the proposed RIS phases can be
written as

θ⋆r =

(
(2M + 1)(2B + 1)LBRLRM

)−1 ∑
b,m,i,k

[
b ω̂BR

i

+b2γ̂BR
i + r α̂BR

i + r2β̂BR
i + r ω̂RM

k + r2γ̂RM
k

+m α̂RM
k +m2β̂RM

k

]
, ∀r ∈

{
1, 2, · · · , NR} . (21)

The proposed localization scheme is illustrated in Algorithm 1.

E. Computational Complexity

The proposed algorithm consists of three main steps: i)
estimating the localization parameters using CS; ii) estimating
the off-grid error; and iii) designing the RIS phases. For the
first part, we consider the T-MSBL algorithm with complexity
O(B2N) [17]. On the other hand, the CVX [19] is considered
for all other convex optimization problems. For instance, the
off-grid optimization can be solved with complexity, in the
worst case, of order O((LBR)3). Finally, the proposed RIS
phase design is a closed-form solution with the complexity of
O(NR) for computing the NR phases.

IV. NUMERICAL RESULTS

The BS, RIS, and UE are located at pB = [0, 0], pR =
[5, 5], and pM = [10, 0]. We assume thermal noise such
that σ2

n = Bt Tk K where Bt = 10 MHz is the bandwidth,
Tk = 290 is the temperature in Kelvin, and K is Boltzmann
constant. We set LBR = 2, LRM = 2, fc = 28 GHz, P = 1
Watt, NR = 100, NB = 51, NM = 21, M o = 60, and µ = 3,
unless stated otherwise.

In Fig. 2, we show the convergence of the proposed al-
gorithm in terms of the localization error vs the number of
iterations for various phase design methodologies: i) proposed;
ii) Eigen-beamforming (EBF) [20]; iii) random; iv) mirror
(zero phases); v) 5-level quantized phases; and vi) optimized
with interior point method (IPM). We can see that the proposed
algorithm with various optimized phases can result in up to one
order of magnitude reduction in the positioning error compared
to non-optimized phases (i.e., Mirror and Random). Also, the
proposed closed-form phase design, which does not require
channel state information (CSI) knowledge, behaves as well
as high computationally complex phase design methods, i.e.,
EBF and IPM, that require CSI knowledge.
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Fig. 3 investigates the convergence of the proposed scheme
in terms of the SNR. The SNR increases as the number of
iterations increases till saturation after almost 4 iterations.

Fig. 4 depicts the localization error vs number of RIS
elements for various numbers of BS antennas. It can be noticed
that better performance can be achieved with higher number
of elements, allowing the RIS to focus more power toward
the BS. Also, higher number of BS antennas leads to higher
number of CS measurements and better performance.

In Fig. 5, we show the impact of SNR on the localization
performance by sweeping σ2

n, for different numbers of PRS
streams. The results show that the higher the SNR, the lower
the localization error. Also, increasing the number of PRS
streams enhances the positioning performance.

Fig. 6 represents a heat map of the localization error as a
function of the UE location in the XY-plane. Here, the RIS
is fixed in the location pR = [0, 0], the BS is at pB =
[−25,−25], and the scatterers are located at pS,BR

1 = [−20, 0],
pS,BR
2 = [−10, 5], pS,RM

1 = [10,−5], pS,RM
2 = [20, 0]. The

simulation shows that the error, in general, increases when the
distance between the UE and RIS increases. Nevertheless, the
geometry of the problem, e.g., the location of the scatterers,
plays a significant role in increasing or decreasing the error.
For example, the reflected signals from scatterers can be added
constructively or destructively depending on their phases.

Fig. 7 shows another potential of our algorithm for si-
multaneous localization and mapping (SLAM) applications,
where scatterers are localized along with the UE. The black
dots represent the scatterers, and the colored dots are their
estimated locations. We can see that the estimated location of
the UE and scatters are close to the actual positions.

V. CONCLUSIONS

In this paper, we propose a RIS-aided positioning algo-
rithm that accounts for near-field propagation and multipath
environments. The algorithm relies on a CS solution that
addresses both near-field and model mismatch issues. Our
localization scheme can achieve more than one order of
magnitude reduction in positioning error compared to non-
optimized RIS phases. These results can be used to further
investigate the localization capabilities of the near-field RIS-
aided models, enhancing intelligent navigation and tracking
systems.
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