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Compressive-Projection Principal
Component Analysis

James E. Fowler, Senior Member, IEEE

Abstract—Principal component analysis (PCA) is often central
to dimensionality reduction and compression in many applica-
tions, yet its data-dependent nature as a transform computed via
expensive eigendecomposition often hinders its use in severely
resource-constrained settings such as satellite-borne sensors.
A process is presented that effectively shifts the computational
burden of PCA from the resource-constrained encoder to a
presumably more capable base-station decoder. The proposed
approach, compressive-projection PCA (CPPCA), is driven by
projections at the sensor onto lower-dimensional subspaces
chosen at random, while the CPPCA decoder, given only these
random projections, recovers not only the coefficients associated
with the PCA transform, but also an approximation to the PCA
transform basis itself. An analysis is presented that extends ex-
isting Rayleigh–Ritz theory to the special case of highly eccentric
distributions; this analysis in turn motivates a reconstruction
process at the CPPCA decoder that consists of a novel eigenvector
reconstruction based on a convex-set optimization driven by
Ritz vectors within the projected subspaces. As such, CPPCA
constitutes a fundamental departure from traditional PCA in that
it permits its excellent dimensionality-reduction and compression
performance to be realized in an light-encoder/heavy-decoder
system architecture. In experimental results, CPPCA outperforms
a multiple-vector variant of compressed sensing for the recon-
struction of hyperspectral data.

Index Terms—Hyperspectral data, principal component analysis
(PCA), random projections, Rayleigh–Ritz theory.

I. INTRODUCTION

P RINCIPAL component analysis (PCA) has long played
a central role in dimensionality reduction and compres-

sion of multidimensional datasets in myriads of signal-pro-
cessing applications. However, PCA—also known as the
Karhunen–Loève transform—is a data-dependent transform
arising from the eigendecomposition of the covariance matrix
of the signal in question. Thus, in traditional compression and
communication applications using PCA, the encoder must
calculate the PCA transform before it can be applied to the
data. Unfortunately, the computational burden that this process
entails may well exceed the limited capabilities of many en-
coding platforms.
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For example, there has traditionally been substantial interest
in applying PCA for the decorrelation and dimensionality re-
duction of spectral bands in hyperspectral imagery—PCA has
been employed in hyperspectral compression (e.g., [1] and [2])
as well as prior to various processing such as enhancement/de-
noising and classification (e.g., [3]–[5]). Yet, many hyperspec-
tral sensing platforms are often severely resource-constrained,
e.g., satellite-borne devices. For such hyperspectral sensors, as
well as similar sensors in other application areas, it would be
greatly beneficial if PCA-based dimensionality reduction and
compression could be accomplished without the heavy encoder-
side burden entailed by PCA.

In this paper, we present a process that effectively shifts the
computational burden of PCA from the resource-constrained
encoder to the decoder which presumably resides on a signif-
icantly more powerful “base-station” system. Our approach,
compressive-projection PCA (CPPCA), is driven by projections
at the signal sensor onto lower dimensional subspaces chosen
at random. The CPPCA decoder, given only these random
projections, recovers not only the coefficients associated with
the PCA transform, but also an approximation to the PCA
transform basis itself.

Coupling random projections at the sensor with simple scalar
quantization and entropy coding yields a lightweight CPPCA
encoder. On the other hand, the bulk of the computation resides
at the CPPCA decoder which consists of a novel eigenvector-re-
construction process based on a projections-onto-convex-sets
(POCS) optimization. CPPCA constitutes a fundamental depar-
ture from the traditional use of PCA in that it permits the excel-
lent dimensionality-reduction and compression performance of
PCA to be realized in an light-encoder/heavy-decoder system
architecture. We know of no other approach to “decoder-side”
PCA that accomplishes anything similar.

The primary contributions of this paper are twofold. As the
first contribution, we provide an extensive analysis to justify our
CPPCA approach. Specifically, we invoke Rayleigh–Ritz theory
[6] which defines Ritz vectors in projected subspaces. Our anal-
ysis provides insight into the relation between these Ritz vectors
and orthonormal projections of eigenvectors and argues that the
former can be used to approximate the latter. This analysis then
leads to the second contribution, the CPPCA reconstruction al-
gorithm itself, wherein we use Ritz vectors to drive a POCS op-
timization to recover approximations to eigenvectors of the PCA
transform directly from the projected subspaces.

We note that, in its reliance on encoder-side random projec-
tions, CPPCA bares some similarity to the emerging mathe-
matical paradigm of compressed sensing1 (CS) (e.g., [7]–[11]).

1Also known as compressive sampling.
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Although both CS and CPPCA consist of lightweight projec-
tion-based encoding, their decoder-side reconstructions differ
significantly—CS assumes a fixed basis ensuring sparsity while
CPPCA determines a data-specific PCA basis directly from the
random projections. Experimental results presented below re-
veal that CPPCA achieves reconstruction performance substan-
tially superior to that of a multiple-vector CS variant when ap-
plied to hyperspectral data.

Below, we detail our CPPCA approach. We start with Sec-
tion II which surveys relevant background surrounding PCA and
Rayleigh–Ritz theory. The first main contribution of the paper,
our central analysis that argues that Ritz vectors can approxi-
mate projected eigenvectors, follows as Section III. Section IV
in turn describes the CPPCA algorithm, the second main con-
tribution of the paper. Section V briefly relates CPPCA to other
work, including CS, while experimental results on hyperspec-
tral data are presented in Section VI. Finally, we make some
concluding remarks in Section VII. We note that preliminary
descriptions of the CPPCA algorithm and analysis appeared in
[12] and [13], respectively. We also note that source code to re-
produce all the experimental results to follow can be found at
http://www.ece.msstate.edu/~fowler/CPPCA.

II. BACKGROUND

A. PCA and Projections

Consider a dataset of vectors , where
each ; we assume that the vectors have zero mean. The
covariance matrix of is . For a given vector,

, in , the PCA of results from the application of a linear
transform, , where transform matrix
emanates from the eigendecomposition of ; i.e.,

(1)

where contains the unit eigenvectors of column-wise.
In the sequel, we will be interested in the effect that projection

onto a subspace has on PCA. Specifically, suppose we have
orthonormal vectors that form the basis of -dimensional
subspace such that provides an orthogonal
projection onto . Using the terminology of [6], we call an
orthonormal matrix. Then, the orthogonal projection of

onto is ; expressed with respect to the
basis , we have , such that . The
projected vectors then have covariance

(2)

In the next section, we consider the relation between the eigen-
vectors of and those of .

B. Rayleigh–Ritz Procedure

In the classic problem of the calculation of eigenvalues and
eigenvectors of a matrix, a number of solutions proceed by
finding a sequence of subspaces containing approximations to
the eigenvectors that increase in accuracy with each subsequent
subspace [14]. Consequently, a crucial issue in any of these
solutions methods is the production of approximations to
eigenvectors within a given subspace. Perhaps the best-known

Fig. 1. Data distribution of � in is projected onto 2-D subspace� as �; the
first Ritz vector, � , lies close to the normalized projection, � , onto � of the
first eigenvector, � , of �.

method for such subspace approximation is the Rayleigh–Ritz
procedure which we discuss briefly below. We note that our
focus is PCA; consequently, the matrix in question is the real,
symmetric covariance matrix . We, therefore, follow the
treatment of the symmetric eigenvalue problem given by Parlett
[6].

Rayleigh–Ritz theory [6] describes the relation be-
tween the eigenvectors of and those of as given by
(2). Assume covariance matrix has spectrum

, where the eigenvalues satisfy
. The corresponding unit eigenvectors are

. Thus, , where ,
, and . The eigen-

decomposition of is , where
, , ,

and . The eigenvalues are
called Ritz values; additionally, there are vectors, known as
Ritz vectors, defined as

(3)

where are the eigenvectors of . Note that . Fi-
nally, we define normalized projection as the orthogonal pro-
jection of onto , normalized to unit length; i.e.,

(4)

These vectors are illustrated for an example distribution in the
simple case of and in Fig. 1.

The Rayleigh–Ritz procedure postulates that the pairs
, , are a reasonable approximation

to some eigenpairs of the original matrix
as , and the “gap theorem” (Theorem 11.7.1 of

[6]) bounds the difference between the Ritz vectors and the
eigenvectors. That is, suppose that, for a given Ritz vector ,
the eigenpair has the eigenvalue closest to the
Rayleigh quotient of ; i.e.,

(5)
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where the Rayleigh quotient is . The gap the-
orem holds that, if the eigenvalues are sufficiently well-sepa-
rated from one another, then the angle between and can
be bounded. Specifically, suppose that is separated from
the other eigenvalues by at least ; i.e.,

(6)

Then

(7)

where is the angle between and , and is the angle
between and its corresponding normalized projection
(see Fig. 1). The right inequality in (7) is the gap theorem from
[6]; the left inequality arises simply from the fact that the or-
thogonal projection is the closest vector in to (i.e., has
the smallest angle). We note that, contrary to what one might ex-
pect to be the case, the Ritz vectors do not generally align with
the orthogonal projections of any of the eigenvectors [6]; i.e.,

and in general.
We now depart from traditional Rayleigh–Ritz theory in that

we hold fixed rather than have it increase towards . How-
ever, we observe that a large for a particular Ritz vector will
tend to drive the upper bound close to the lower bound in (7),
suggesting that is close to in this case. In other words,
the Ritz vector is a close approximation to a normalized pro-
jection into the subspace of some eigenvector if
is large. Unfortunately, to the best of our knowledge, existing
theory does not tell us which out of the eigenvectors
possesses the close normalized projection. Nor does the theory
guarantee that is large for all (or even any) of the Ritz
vectors.

CPPCA is built on the idea that, if subspace is chosen ran-
domly, and the distribution of the vectors in is highly eccen-
tric in that eigenvalue is sufficiently separated in value
with respect to the other eigenvalues, then it is likely that its
corresponding normalized projection, , will be quite close to
the Ritz vector, , corresponding to the Ritz value . Of
course, it is possible for to be oriented such that this is not
the case (i.e., if happens to be close to being orthogonal to

); however, for a randomly chosen and highly eccentric
distribution, such an occurrence is rare. The analysis in the next
section verifies the validity of this conjecture.

III. ANALYTICAL MOTIVATIONS

In a general setting, the normalized projections, , of the
eigenvectors, , of do not typically align with any of the
Ritz vectors, , of . However, under the imposition
of additional structure—specifically, an eccentric distribu-
tion that results in highly separated eigenvalues for —existing
Rayleigh–Ritz theory can be substantially enhanced. In fact, in
this section, we show that, for a single-spike covariance model
wherein one eigenvalue is large while the rest are small and iden-
tical, we have that the first Ritz vector is exactly identical to the
first normalized projection; i.e., . This result is then

extended to show that, under a more general, but still eccentric,
covariance (one eigenvalue large, the rest small but not neces-
sarily identical), the angle of deviation between and is
bounded, and, with selected randomly, this bound is expected
to be small.

The remainder of this section is as follows. We first focus
on the first eigenvector corresponding to the largest eigenvector
in Section III-A. We then consider the remaining eigenvectors
in Section III-B. Finally, we discuss the practical relevance of
the eccentricity assumptions that underlie the analysis in Sec-
tion III-C. Throughout, only the main results are presented while
detailed proofs are relegated to the appendices.

A. First Eigenvector

Theorem 1: Let be a single-spike covariance matrix; that
is, is an symmetric, positive-definite matrix with spec-
trum . Let
be the first eigenvector of associated with the first eigenvalue,

. For orthonormal matrix such that ,
the first eigenvector of is .
The corresponding first eigenvalue is

(8)

where .
Proof: See Appendix II.

Theorem 1 shows that, under the extreme structure of perfect
eccentricity (only a single large eigenvalue in the covariance),
Rayleigh–Ritz theory can be substantially strengthened—in this
case, we are guaranteed perfect alignment between the first Ritz
vector, , and the first normalized projection, , ex-
cept when the projection happens to be orthogonal to the first
eigenvector . We note that, if we are choosing at random,
then this exceptional situation will almost never occur.

We now consider the case of a more general covariance ma-
trix that is eccentric but not perfectly so; that is, eigenvalues

are small but not necessarily identical to one
another. We first establish Theorem 2 which provides a general
bound on the angle between and . We then analyze the
expected value of this bound when is selected randomly in
Theorem 3.

Theorem 2: Let be a general positive-definite
covariance matrix with spectrum

, and let for such
that . Let be the first eigenvector of associ-
ated with the first eigenvalue, . Let be an orthonormal

matrix such that . Then, if and

(9)

the first eigenvector, , of satisfies

(10)

where .
Proof: See Appendix III.
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Fig. 2. Expected bound on � as given by (11) of Theorem 3 (for � � ���).

Theorem 3: For a fixed and, therefore, fixed and as
defined in Theorem 2, the expected value of the upper bound in
(10) is

(11)

Proof: See Appendix IV.
We note that, if , then will be

large. Assuming further that , (11) implies that in
Theorem 2 is likely to be small. Thus, if the covariance matrix
is highly eccentric in the direction of the first eigenvector ,
we expect that the first eigenvector of will be close
to aligning with the projection of the eigenvector, . That
is, we expect that the first Ritz vector, , will be close to the
first normalized projection, .

To experimentally evaluate the ramifications of Theorems 2
and 3, consider Figs. 2 and 3. In Fig. 2, we plot the bound
of (11) for varying values of and . Fig. 2 predicts
that we will achieve a small angle between and if

is small; for example, with , we will have
for . To see if this accuracy holds

up in practice, we consider matrix ,
where , and is an arbitrary

orthonormal matrix. We use , set
(i.e., ), and vary between 1.00001 and 11 (i.e.,

). We generate 1000 random orthonormal pro-
jection matrices and average the resulting angles measured
between and for these projections. The results are shown
in Fig. 3. We observe that the behavior of the curves in Fig. 3 is
fairly similar to that of the curves in Fig. 2, except that the ac-
tual values are somewhat lower than those predicted by the
bound of Theorem 3. This is likely due to the fact that the bound
of Lemma 2 (see Appendix I) is not particularly tight, resulting
in a somewhat loose bound in Theorem 2. Nevertheless, Figs. 2
and 3 affirm that, if , we will have the first Ritz vector

lie close to the first normalized projection as our analysis
suggests.

Fig. 3. Experimental evaluation of � for ��� � ����� with ��� �
���	
� � � � �� �� � � � � �� and � � ���.

B. Subsequent Eigenvectors

The analysis of the previous section focused exclusively on
the first normalized projection and its corresponding Ritz
vector . However, the following result argues that we can ex-
tend this approximation beyond the first Ritz vector to subse-
quent Ritz vectors. That is, we can use the other Ritz vectors,

, , etc., to successfully approximate the normalized pro-
jections , , etc.

Approximation 1: Let be a general covariance matrix as in
Theorem 2. Assume that such that suc-
cessfully aligns with the first eigenvector, , of ;
that is, in (10) is small such that

(12)

and

(13)

in (8). Then, if

(14)

where and are eigenvectors of and , respectively, cor-
responding to the second-largest eigenvalues and .

Justification: See Appendix V.
Approximation 1 argues that, if our distribution is sufficiently

eccentric in the direction of its first eigenvector to yield close
alignment between the first normalized projection and the first
Ritz vector, we will also have close alignment between the
second normalized projection and the second Ritz vector, as
long as we also have sufficient eccentricity in the direction of
the second eigenvector. It is a straightforward process to extend
this argument to the other eigenvectors as well via successive
application of the deflation operation [see (51) in Appendix V]
for , , etc. Approximation 1 implies that, if the separation
between the the other eigenvalues is large, then will
be close to .
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Fig. 4. Histogram of angle � between Ritz vector � and normalized projec-
tion � for � � �� � � � � �; averages: � � ��� , � � ��� , � � ��� ,
� � �	�� .

To experimentally evaluate Approximation 1 and its implica-
tions, we consider matrix , where

(15)

and is an arbitrary orthonormal matrix. We generate
1000 random orthonormal projection matrices ; we arbitrarily
set and . Fig. 4 illustrates the histograms of
the angles for , where is the angle between the
Ritz vector and the corresponding normalized projection .
We see that, as expected, is typically close to 0 , indicating
that, indeed, is very close to as predicted by Theorems 2
and 3. Additionally, as foreseen by Approximation 1, we have
fairly close alignment between and for 2, 3, and 4.
We note that increases for increasing —this is in line with
the exponentially decreasing spectrum of , since, as the gap
between successive eigenvalues decreases, we expect that the
approximations in Approximation 1 will become successively
less accurate. Below, we argue that we will often encounter de-
caying spectra of this nature in many applications; thus, we ex-
pect to see this phenomenon of increasing angle for real data
in practice.

C. Eccentricity in Practice

The preceding analysis—as well as the CPPCA technique
proposed in the next section—depends on the distribution of
being sufficiently eccentric. That is, if we wish to approximate
the first normalized projections using the first Ritz vectors,
we need that the first eigenvalues are sufficiently distinct from
not only the other eigenvalues but also from one another. One
might question how reliably such eccentricity arises in practice.

The prime objective in many applications of PCA is to reduce
dimensionality, and, for this, one must select a certain number
of principal components to retain. Consequently, there is great
interest in determining “intrinsic dimensionality”—the number
of components that account for most of the variation in . Jol-
liffe [15] and Jackson [16] discuss extensively in their classic

Fig. 5. LEV plot of the first 50 eigenvalues of the “Cuprite” hyperspectral
dataset.

texts on PCA that, while this problem of intrinsic dimension-
ality has been studied for many decades, several simple and ad
hoc heuristics are widely used despite attempts to develop more
formal methods, simply because the ad hoc approaches seem in-
tuitively plausible and are indeed effective in practice. Foremost
of these techniques is the scree2 plot [17] whose very name sug-
gests the ubiquity of eccentric distributions in practice. In the
scree plot, which is a graph of against , the intrinsic
dimensionality is selected to be the point of a sharp “elbow”
between a steep descent in principal eigenvalues and a relative
shallow slope of the remaining lower eigenvalues. In fact, in
some applications, the dynamic range of the principal eigen-
values is so great that is plotted on a log scale in what
is known as a log-eigenvalue (LEV) plot [18], [19]. Such is the
case for the hyperspectral data we consider in Section VI; this
is exemplified by the LEV plot of Fig. 5.

The bottom line is that, while it is trivial to construct distri-
butions with closely spaced—or worse, equal—principal eigen-
values, such distributions are extremely unlikely to arise in prac-
tical PCA applications. On the contrary, as witnessed by the
widespread use of scree and LEV plots across numerous fields
of application and as exemplified here in Fig. 5, we expect to find
distributions that are sufficiently eccentric in their primary prin-
cipal components so as to permit the analysis above, as well as
the CPPCA technique developed next, to be broadly applicable.

IV. CPPCA ALGORITHM

The analysis of the previous section establishes that Ritz vec-
tors form suitable approximations to orthonormal projections of
eigenvectors. We now use this analysis as the basis for a system
that uses random projections at the signal sensor as a lightweight
encoder. The corresponding decoder then uses the insight from
the analysis in the preceding section to implement recovery of
not only the PCA coefficients for the transmitted dataset, but
also an approximation to the PCA transform basis itself. In this

2Scree: an accumulation of loose stones or rocky debris lying on a slope or
at the base of a hill or cliff (Merriam-Webster).
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sense, the resulting CPPCA system in effect shifts the compu-
tational complexity of PCA from the encoder to the decoder.

Specifically, in the CPPCA encoder, the vectors of
are merely each subjected to random projection.

On the other hand, the CPPCA decoder then must recover not
only the PCA transform coefficients, but also the basis vectors
of the transform itself, all from the projections. We assume that
the decoder knows only the projection operator and its resulting
projections, but not or its statistics (e.g., covariance). Below,
we present an overview of the CPPCA approach which expands
on the initial description put forth in [12]. We initially consider
recovery of the eigenvectors and the PCA coefficients alone
without the effects of quantization (Sections IV-A and IV-B);
Section IV-C then examines issues arising when quantization is
then inserted into the process.

A. Eigenvector Recovery

Traditional design methods for PCA produce the transform
via the eigendecomposition given by (1); however, in the

CPPCA decoder, one has access to merely and not as
required in (1). The goal of CPPCA is thus to approximate

from without knowledge of , given that results
from random projection. The CPPCA decoder first recovers
an approximation to the PCA transform basis by recovering
approximations to the first eigenvectors of from random
projections. We observe that, if we knew the true normalized
projection of eigenvector in subspace , we could form
subspace as

(16)

the direct sum of the orthogonal complement of with a 1-D
space containing . Clearly, would lie in . Suppose then
that we produce distinct random -dimensional subspaces,

through , each containing a normalized projection,
through , respectively, produced via (4) using the

corresponding projection matrices, through . We
could then form subspaces through via (16) using

and . The eigenvector would
thus be in the intersection . This situation
is illustrated in Figs. 6 and 7 for the case of , ,

, and the eigenvector in question being .
In the CPPCA decoder, though, we do not have access to

the true normalized projections; instead, we can form Ritz vec-
tors in each subspace via an eigendecomposition of the

corresponding projected covariance matrix . Motivated by
the analysis in Section III, we use these Ritz vectors to ap-
proximate normalized projections; i.e., we use instead of

to form the spaces . Since the Ritz vectors will differ
slightly from the true normalized projections, the intersection

is almost certain to be empty. However, since
the are closed and convex, a parallel implementation of
POCS will converge to a least-squares solution minimizing the
average distance to the subspaces [20]; this POCS solution

Fig. 6. Two 2-D subspaces� and� with corresponding normalized pro-
jections � and � .

can then be used to approximate . Specifically, for iteration
, we form an estimate of the eigenvector as

(17)

where projection onto is performed by the matrix , and
we initialize to the average of the Ritz vectors; (17) will
converge to ; normalizing this will approximate the desired
normalized eigenvector (up to sign).

In order to avoid producing multiple random projections for
each vector in our dataset, the CPPCA encoder splits the dataset
of vectors into partitions , each
associated with its own randomly chosen projection ,

. It is assumed that the dataset splitting is conducted such
that each closely resembles the whole dataset statisti-
cally and so has approximately the same eigendecomposition.3

The encoder transmits the projected data to
the decoder which is assumed to know the projection operators

a priori. In the CPPCA decoder, is calculated from

, a set of Ritz vectors is produced from , and then
the Ritz vectors are used in place of the normalized projections
to drive the POCS recovery of (17). The CPPCA decoder repeats
this POCS procedure using the first Ritz vectors to approxi-
mate the first principal eigenvectors which are assembled into

matrix , an approximation to the -component PCA
transform, .

To empirically evaluate the performance of the proposed
POCS recovery of eigenvectors, let us again consider
matrix , with as in (15) and an arbitrary

orthonormal matrix. We apply the POCS iteration of
(17) using the Ritz vectors in the place of the normal-
ized projections . Let be the angle between the true
eigenvector and its approximation that results from

3Dataset subsampling is commonly used to expedite covariance-matrix cal-
culation in traditional applications of PCA, e.g., [2], [21]; we suggest modulo
partitioning such as � � �� � ����� ������ � � � ��.
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Fig. 7. Subspaces � and � whose intersection uniquely determines
eigenvector � up to a sign.

Fig. 8. Average error angle � between eigenvector� and its approximation
� resulting from POCS-based eigenvector recovery.

(17). We generate sets of random matrices, each set containing
projection matrices through for ;

we average results over 100 trials. Fig. 8 shows the average
error angle as both the number of projections and the
dimensionality of the projections (relative to ) vary. Fig. 9
shows similar results for the error angle associated with
the second eigenvector. We see that, when the dimensionality
of the projection spaces is small ( small), then a larger
number, , of distinct projections is needed to produce a small
error between and . However, there is an aspect of di-
minishing returns—the amount of reduction in decreases for
each increase in . Subsequently, we focus on which
appears to give a reasonable tradeoff between approximation
accuracy and computational complexity for our data.

Fig. 9. Average error angle � between eigenvector� and its approximation
� resulting from POCS-based eigenvector recovery.

B. Coefficient Recovery

Once obtaining , the CPPCA decoder then proceeds to re-
cover the PCA coefficients by solving for
PCA coefficients in the least-squares sense for each . This
linear reconstruction can be accomplished in several ways, for
example, by using the pseudoinverse

(18)

C. Quantization Issues

True data compression, and not just dimensionality reduction,
must necessarily involve some form of quantization. In CPPCA,
quantization of the projections will produce distortions in both
the coefficient-recovery process as well as in the eigenvector
recovery used to approximate the PCA transform. However,
known results from perturbation theory argue that the eigen-
vector-recovery procedure central to CPPCA is robust under
quantization.

Specifically, in CPPCA, original vector is projected
into a -dimensional subspace as . Assume uni-
form scalar quantization (USQ) is applied to the components of

. In order to analyze the effect of this quantization process on
the performance of CPPCA, we adopt a simplified, high-reso-
lution model [22] of USQ as additive noise of variance ,
where is the quantizer stepsize for component of . That
is, is quantized as where noise has covariance

and zero mean. Let
and note . The covariance of is then

(19)

CPPCA will recover both the PCA coefficients as well as the
basis vectors of the PCA transform itself from the quantized
projections . Suppose is the first eigenvector of , and its
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gap is . Then, if , from
Proposition 3 (see Appendix I), we have

(20)

where is the angle between and . We note that similar
bounds result for for via Theorem 8.1.12
of [23].

We note that the central idea driving CPPCA in the first
place—that Ritz vectors form reasonable approximations to
normalized projections of eigenvectors—relies on the dis-
tribution of being eccentric, i.e., the eigenvalues being
sufficiently distinct from one another. We see thus that the
same phenomenon that permits eigenvector recovery—mu-
tually distinct eigenvalues—also encourages stability of the
result under scalar quantization. The bound of (20) ensures
a graceful degradation in the accuracy of the CPPCA eigen-
vector-recovery procedure as the maximum quantizer stepsize
increases. Furthermore, eigenvector recovery is more robust to
quantization distortion as the gap between the eigenvalues and,
consequently, the eccentricity of the distribution, increases.

We observe that, despite the stability to quantization dis-
cussed here, CPPCA, like CS, is unlikely to be competitive
with traditional source-coding algorithms in terms of rate-dis-
tortion performance. On the contrary, the strength of CPPCA
lies in random projections that provide encoder simplicity and
universality, advantages that may be of great use in certain
applications.

V. CONNECTIONS TO OTHER WORK

CPPCA bears some similarity to CS in that both effectuate
a recovery from random projections; however, there are some
significant differences. In brief, CS (e.g., [7]–[10]) produces a
sparse signal representation directly from a small number of
projections onto another basis, recovering the sparse transform
coefficients via nonlinear reconstruction. The main tenet of CS
theory holds that, if signal can be sparsely repre-
sented (i.e., using only nonzero coefficients) with some basis,
then we can recover from -dimensional projections

under certain conditions; here , and
. For recovery of a set of multiple, possibly corre-

lated vectors , there have been proposals
for multivector extensions of CS under the name of “multitask”
[24] or “distributed” [25] CS; these, in turn, link closely to a
larger body of literature on “simultaneous sparse approxima-
tion” (e.g., [26]–[30]). In experimental results below, we com-
pare the performance of CPPCA to that of Multi-Task Bayesian
Compressive Sensing (MT-BCS) [24] which introduces a hier-
archical Bayesian framework into the multivector CS-recovery
problem to share prior information across the multiple vectors.
We note that, on the surface, although CPPCA and MT-BCS
appear somewhat similar in their functionality, there exist some
crucial differences. MT-BCS, like other CS techniques, oper-
ates under an assumption of sparsity in a known basis , but
the pattern of sparsity (i.e., which components are nonzero)

is unknown. On the other hand, CPPCA reconstruction operates
under a known sparsity pattern (i.e., the first principal com-
ponents), but the transform itself is unknown. Additionally,
while MT-BCS can recover the vectors of from the same
set of projections which drive the CPPCA re-
covery process, it can also function on arbitrarily small numbers
of vectors, even down to (in which case, MT-BCS be-
comes the special case of “single-task” CS recovery). CPPCA,
on the other hand, requires to be sufficiently large to enable
covariance-matrix calculation in the subspaces.

Finally, we note that the analysis in Section III that under-
lies CPPCA is consistent with the celebrated Johnson–Lin-
denstrauss Lemma [31]–[33] which holds that points in

can be projected into a -dimensional subspace while
approximately maintaining pairwise distances as long as

. If we project eigenvectors into -dimen-
sional subspace , we have that the points represented by
the eigenvectors will roughly maintain pairwise distances, and
the eigenvectors will approximately maintain their lengths.
Since the eigenvectors are mutually orthogonal in , by the
Pythagorean theorem, the projected eigenvectors will also be
approximately mutually orthogonal in , if is sufficiently
large with respect to . Since the Ritz vectors used to drive
CPPCA reconstruction are necessarily mutually orthogonal in

, it is plausible that they could approximate the projected
eigenvectors. In this respect, CPPCA is consistent with the
Johnson–Lindenstrauss Lemma.

VI. EXPERIMENTAL RESULTS

We now examine the performance of CPPCA reconstruction
in the form of (17) and (18). Since both CPPCA and MT-BCS
feature lightweight encoding via random projections, and there
is increasing interest in integrating CS methodology directly
into hyperspectral sensors (e.g., [34]–[36]), our comparisons
focus on CPPCA performance relative to that of MT-BCS for
real hyperspectral data.

We use hyperspectral images cropped spatially to size 100
100 (i.e., ); we use the popular “Cuprite” and

“Jasper Ridge” images, AVIRIS datasets with spec-
tral bands. The mean vector has been removed from the vectors
to impose a zero-mean condition. For CPPCA, we use
projection partitions as discussed above while ranges between
3 and 30, depending on the specific used. For MT-BCS,
we consider several orthonormal bases commonly used with
hyperspectral data: an -point DCT (MT-BCS-DCT) as well
as DWTs using both the Haar basis (MT-BCS-Haar) and the
length-4 Daubechies basis (MT-BCS-D4). We apply the same
random projections as used for CPPCA. We use the MT-BCS
implementation provided by its authors.4

Clearly, the performance of both CPPCA and MT-BCS will
depend on the degree of dataset reduction inherent in the pro-
jections; this quantity is characterized as a relative projection
dimensionality in the form of expressed as a percentage.
We see from Figs. 10 and 11 that CPPCA yields average SNR
substantially higher than that of the fixed-basis MT-BCS ap-
proaches over a broad range of practical values.

4http://www.people.ee.duke.edu/~lihan/cs/.
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Fig. 10. Reconstruction performance for the “Cuprite” hyperspectral
dataseta—average SNR for varying dimensionality ��� .

Fig. 11. Reconstruction performance for the “Jasper Ridge” hyperspectral
dataset—average SNR for varying dimensionality ��� .

In terms of computational complexity, none of the imple-
mentations we employ are optimized for execution speed. In-
formally, however, we have observed that both the POCS-based
eigenvector recovery of (17) as well as the linear coefficient re-
covery of (18) are quite fast. In the production of the experi-
mental results of this section, CPPCA runs about an order of
magnitude faster than MT-BCS.

VII. CONCLUSION

In this paper, we presented an approach that exploits encoder-
side compressive projections to effectively shift the computa-
tional burden of PCA from the encoder to the decoder. This
CPPCA technique coupled random projections at the encoder
with a Rayleigh–Ritz process for approximating eigenvectors at
the decoder. Central to this development was an extensive anal-
ysis of the relation between Ritz vectors and normalized pro-
jections of eigenvectors. Our analysis provided a bound on the

angle between the first Ritz vector and the first normalized pro-
jection that was expected to be small under the conditions of
widely separated eigenvalues (i.e., a highly eccentric data dis-
tribution) as well as randomly selected subspace projections.
Additionally, further deflation-based analysis argued that this
approximation strategy—using Ritz vectors to approximate pro-
jected eigenvectors—could be extended beyond the first eigen-
pair. This analysis provided the motivation for our proposed
CPPCA algorithm for reconstruction in which a POCS-based
optimization driven by Ritz vectors approximated the eigen-
vectors constituting the PCA transform. As a consequence, the
CPPCA decoder, given only the random projections created by
the encoder, recovered not only the coefficients associated with
the PCA transform, but also an approximation to the PCA trans-
form basis itself.

We anticipate that CPPCA will be most useful in applica-
tions in which the encoder-side random projections are not a
computationally separate process but are instead integrated di-
rectly into the signal sensing and acquisition device. In this
manner, with dimensionality reduction performed simultane-
ously with signal acquisition, one can avoid not only the com-
putational burden of explicit dimensionality reduction, but also
the production of onerous quantities of data in the first place.
We expect such operation to be of great value in situations of
resource-constrained signal-sensing platforms, particularly in
satellite-borne remote-sensing applications. Although we have
focused the experimental results of this paper on hyperspectral
data, CPPCA itself is, however, algorithmically more general.
Indeed, CPPCA is applicable to any dataset that takes the form
of a collection of vectors, as long as it makes sense from an
application perspective to apply PCA to those vectors. In such
cases, CPPCA promises to be an effective strategy to provide
simultaneous signal sensing and compression along with effec-
tive reconstruction.

APPENDIX I
PRELIMINARIES

Proposition 1: Let be an orthonormal projection
matrix. Denote the columns of as and the rows as such
that . Let ma-
trix ; i.e., the columns of form an orthonormal
basis of the nullspace of such that . Let the
columns and rows of be and , respectively. Form or-
thonormal matrix as . Let the columns
and rows of be and , respectively, and define
matrix as

(21)

Then

(22)

and the diagonal elements, , of are

(23)
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Define the spectrum of matrix to be
such that

(24)

where is the largest eigenvalue of . The following
results from [23] characterize how the eigendecomposition of

is affected by a symmetric perturbation .
Proposition 2: If and are symmetric matrices

(25)

for .
Proof: This is Theorem 8.1.5 of [23].

Proposition 3: Suppose and are symmetric ma-
trices. Define the gap , and let the first
eigenvector of be . Consider with first eigenvector

. If and , then

(26)

where is the angle between and .
Proof: This result is an immediate consequence of Ap-

pendix A.1 of [37] which in turn derives from Theorem 8.1.12
of [23].

We now consider how transformations in the form of
affect the eigendecomposition of diagonal matrices . We start
with the simple rank-1 case.

Lemma 1: Let be an rank-1 diagonal matrix
with nonzero eigenvalue . That is,

. Then, for orthonormal matrix
, the matrix has spectrum

, where .
Proof: Because matrix has unit rank while

,
we have then that is at most 1. Thus, we
can form , factor as

, and then know that is
positive semidefinite ([38], Theorem 6E). As a consequence,

, and only is potentially
nonzero.

The multiplication simply scales the row of by
. Thus

(27)
and along the diagonal we have

(28)

where . For a rank-1 matrix, the trace is
equal to the first eigenvalue; thus

(29)

where the inequality is a consequence of (22).
We now employ Proposition 2 to aid in establishing the more

general diagonal case.

Lemma 2: Suppose positive-semidefinite diagonal
matrix , where
is as defined in Lemma 1 in the case and
otherwise. For matrix with orthonormal columns

(30)

Proof: The first eigenvalue of satisfies

(31)

where the first inequality is due to the right side of (25) in Propo-
sition 2 and the second is due to Lemma 1. Applying this result
recursively to the rightmost term yields

(32)

APPENDIX II
PROOF OF THEOREM 1

For the analysis here and in the next appendix, we as-
sume a diagonal covariance matrix of the form

where
are the eigenvalues with corresponding eigenvectors being
columns of the identity matrix. We argue that we can do so
without loss of generality since the alignment of the eigen-
vectors with the coordinate axes of is merely a matter of
the selection of the coordinate system for , and a unitary
rotation will suffice to achieve this alignment in the more
general case of a nondiagonal . The quantities of interest
in the following proofs—vector lengths and angles between
vectors—are invariant to such unitary rotations.

We have diagonal, single-spike covariance with first eigen-
vector

(33)

and . Define
matrix as

(34)

and form an orthonormal matrix from by concate-
nating additional orthonormal columns; i.e., let
where as in Proposition 1. Define also as in
(21) and note that implies , and

(35)

from (21) and (22).
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The similarity transform yields

(36)

Since is an eigenpair of ,
is an eigenpair of due to the inherent nature
of a similarity transform (Theorem 5P of [38]); thus,

, or

(37)

Considering only the first row of (37), and noting that
, we have

(38)

from the definition of in (34). From (33) and (34), we see
that , where is the first element on the
diagonal of . Thus, (38) becomes

(39)

or

(40)

Thus, we see that is an eigenvector of .
We now must establish that is in fact the largest

eigenvalue of such that is actually its first
eigenvector. We note that

(41)

since . Due to the fact that all eigenvalues of
are , the inequalities in Proposition 2 become equalities,
and we have

, (42)

where we note that is a rank-1 diagonal matrix and invoke
Lemma 1 to reveal that for . From (35),

, and the eigenvalue in question, ,
satisfies

(43)

Thus, must be , the first eigenvalue, and
(8) is established following simple algebra.

APPENDIX III
PROOF OF THEOREM 2

Without loss of generality, consider a diagonal ma-
trix, , where
we define and

. We have

(44)

From Theorem 1, we have that is the first eigenvector of
. From Proposition 3, we have then

(45)

However, we have from Lemma 2 that

(46)

From (42), we have , while The-
orem 1 determines the first eigenvalue to be

. Thus, the denominator of (45) becomes

(47)

Combining (45), (46), and (47) yield (10), the desired result.
Note that, for Proposition 3 to apply here, we need

(48)

However, if (9) is true, then, from (46) and (47), so is (48).

APPENDIX IV
PROOF OF THEOREM 3

To create a random projection matrix , let us use the fol-
lowing procedure. Populate as an matrix of indepen-
dent, identically distributed, zero-mean, unit-variance Gaussian
random variables, and partition into matrix and

matrix as . Create an orthonormal
from by orthogonalizing its rows; i.e., normalize

the first row of and orthogonalize the remaining rows with
respect to the first via a Gram–Schmidt procedure. This proce-
dure will result in (and ) having orthonormal columns. To
prove Theorem 3, we first prove the following lemma.

Lemma 3: For random orthonormal matrix formed via the
procedure outlined above, has a beta distribution

(49)

with mean , where is the first row of .
Proof: is the sum of the squares of unit-variance

Gaussian random variables; it, thus, has a chi-square distribu-
tion with degrees of freedom [39], . Likewise,

. After normalization, has a beta distri-
bution with parameters and since

(50)

(see Sec. 25.2 of [40]). As for the mean, we note that it is known
that if random variable , then .
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Now, to prove Theorem 3, we again assume without loss of
generality the case of a diagonal covariance matrix such that

. It is known that, if random variable ,
then [40]. Thus, from (49),

which yields (11).

APPENDIX V
JUSTIFICATION OF APPROXIMATION 1

Given with first eigenpair , the usual approach
for determining pairs , for is to successively
apply some form of deflation (see [6, Chap. 5]). For example,
the first eigenpair of

(51)

is . Applying to this deflated matrix yields

(52)

where the approximation stems from (12). However, (13) yields

(53)

where the second approximation assumes5 that
. From (52), we have then

(54)

the right side of which is the deflation of . Theorem 2
bounds the angle between and , the first eigenvector

of . But, since and , (14) holds if
is small, which Theorem 2

argues will be the case if .
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