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Abstract—We introduce a new approach to radar imag-
ing based on the concept of compressive sensing (CS). In
CS, a low-dimensional, nonadaptive, linear projection is
used to acquire an efficient representation of a compress-
ible signal directly using just a few measurements. The
signal is then reconstructed by solving an inverse problem
either through a linear program or a greedy pursuit.
We demonstrate that CS has the potential to make two
significant improvements to radar systems: (i) eliminating
the need for the pulse compression matched filter at the
receiver, and (ii) reducing the required receiver analog-to-
digital conversion bandwidth so that it need operate only at
the radar reflectivity’s potentially low “information rate”
rather than at its potentially high Nyquist rate. These ideas
could enable the design of new, simplified radar systems,
shifting the emphasis from expensive receiver hardware to
smart signal recovery algorithms.

I. INTRODUCTION

A typical radar system transmits a wideband pulse
(linear chirp, coded pulse, pseudonoise (PN) se-
quence, etc.) and then correlates the received signal
with that same pulse in a matched filter (effecting
pulse compression) [1]. A traditional radar receiver
consists of either an analog pulse compression sys-
tem followed by a high-rate analog-to-digital (A/D)
converter or a high-rate A/D converter followed
by pulse compression in a digital computer (see
Figs. 1 and 2); both approaches are complicated and
expensive.

Achieving adequate A/D conversion of a wide-
band PN/chirp radar signal (which is compressed
into a short duration pulse by the matched filter)
requires both a high sampling frequency and a large
dynamic range. Currently available A/D conversion
technology is a limiting factor in the design of
ultrawideband (high resolution) radar systems, be-
cause in many cases the required performance is
either beyond what is technologically possible or
too expensive.

In this paper, we introduce a new approach to
radar imaging based on the concept of compres-
sive sensing (CS) [2], [3]. In CS, an incoherent
linear projection is used to acquire an efficient
representation of a compressible signal directly us-
ing just a few measurements. Interestingly, random
projections play a major role. The signal is then
reconstructed by solving an inverse problem either
through a linear program or a greedy pursuit.

We demonstrate that when the CS theory applies,
significantly fewer samples/measurements of the
radar signal need to be acquired in order to obtain an
accurate representation for further processing. The
potential impacts on radar hardware are promising;
we will show that CS can: (i) eliminate the need
for the matched filter in the radar receiver, and (ii)
reduce the required receiver A/D conversion band-
width so that it need operate only at the reflectivity’s
potentially low “information rate” rather than at its
potentially high Nyquist rate (see Fig. 3).

II. COMPRESSIVE SENSING

Consider a length-N discrete-time signal x of any
dimension (without loss of generality, we will fo-
cus on one-dimensional (1D) signals for notational
simplicity) indexed as x(n), n = 1, . . . , N . We can
interpret x as an N × 1 column vector. The signal
x is sparsely representable if there exists a sparsity
basis {ψi} that provides a K-sparse representation
of x; that is

x =

N∑
i=1

θi ψi =

K∑
�=1

θ(i�)ψi� , (1)

where x is a linear combination of K basis vec-
tors chosen from {ψi}, {i�} are the indices of
those vectors, and {θi} are the weighting coeffi-
cients. Alternatively, by stacking the basis vectors
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pulse
generator −→ sT (t) to transmit antenna

Fig. 1. Prototypical radar transmitter.

(a) sR(t) from receive antenna −→
analog

matched
filter

−→ high-rate
A/D

−→ processing

(b) sR(t) from receive antenna −→ high-rate
A/D

−→
digital

matched
filter

−→ processing

Fig. 2. Prototypical digital radar receivers for the transmitter in Fig. 1 perform matched filtering either in the (a) analog or (b) digital domain.

sR(t) from receive antenna −→ low-rate
A/D

−→ y −→ processing

Fig. 3. Compressive radar receiver for the transmitter in Fig. 1 performs neither matched filtering nor high-rate analog-to-digital conversion.

as columns into the N × N sparsity basis matrix
Ψ = [ψ1| . . . |ψN ], we can write in matrix notation

x = Ψθ, (2)

where θ is an N×1 column vector with K nonzero
elements. Various expansions, including wavelets,
the DCT, and Gabor frames [4], are widely used
for the representation and compression of natural
signals, images, and other data.

Using ‖ · ‖p to denote the �p norm, we can
write that ‖θ‖0 = K; that is, the �0 “norm” ‖θ‖0

merely counts the number of nonzero entries in the
vector θ. The signal x is compressible if the sorted
magnitudes of the coefficients {|θi|} decay rapidly
to zero; this is the case, for example, if θ ∈ �p for
p ≤ 1. Compressible signals are well-approximated
as sparse.

The standard procedure for compressing sparse
signals, known as transform coding, is to (i) acquire
the full N-point signal x via Nyquist-rate sampling;
(ii) compute the complete set of transform coeffi-
cients {θi}; (iii) locate the K largest, significant co-
efficients and discard the (many) small coefficients;
(iv) encode the values and locations of the largest
coefficients.

This procedure has three inherent inefficiencies.
First, for a wideband signal, we must start with a
large number of Nyquist-rate samples N . Second,

the encoder must compute all of the N transform
coefficients {θi}, even though it will discard all but
K of them. Third, the encoder must encode the
locations of the large coefficients since the locations
change with each signal.

In compressive sensing (CS), we do not measure
or encode the K significant θi directly. Rather, we
measure and encode M < N linear projections
y(m) = 〈x, φT

m〉 of the signal onto a second set of
vectors {φm}, m = 1, . . . ,M , where φT

m denotes the
transpose of φm and 〈·, ·〉 denotes the inner product.
In matrix notation, we measure

y = Φx, (3)

where y is an M × 1 column vector and the
measurement matrix Φ is M × N with each row
a measurement vector φT

m.
Since M < N , recovery of the signal x from

the measurements y is ill-posed in general. How-
ever, the CS theory tells us that when the matrix
ΦΨ has the Restricted Isometry Property (RIP)
[2], [3], [5], then it is indeed possible to recover
the K largest θi’s from a similarly sized set of
M = O(K log(N/K)) measurements y. The RIP is
closely related to an incoherency property between
Φ and Ψ, where the rows of Φ do not provide a
sparse representation of the columns of Ψ and vice
versa. The RIP and incoherency hold for many pairs



of bases, including for example, delta spikes and
Fourier sinusoids, or sinusoids and wavelets.

An interesting, powerful, and somewhat surpris-
ing choice for the measurement matrix Φ is a
(pseudo) random, noise-like matrix. For example,
we may select its MN entries as iid Bernoulli
or Gaussian random variables (see Fig. 4). It can
be shown that many random measurement matrices
are universal in the sense that they are incoherent
with any fixed basis Ψ (spikes, sinusoids, wavelets,
Gabor functions, curvelets, and so on) with high
probability [2], [3], [5].1

When the RIP/incoherency holds, the signal x
(via its coefficents θ) can be recovered exactly from
y by solving an �1 minimization problem [2], [3]

θ̂ = arg min ‖θ‖1 such that y = ΦΨθ. (4)

This optimization problem, also known as Basis
Pursuit [6], can be solved with traditional linear
programming techniques. At the expense of slightly
more measurements, iterative greedy algorithms
such as Matching Pursuit and Orthogonal Match-
ing Pursuit (OMP) [7] can recover the signal x
from the measurements y. The same CS framework
of incoherent measurements and optimization-based
reconstruction also applies to recovering a close
approximation to a compressible signal.

Another choice for the measurement matrix Φ
that offers good performance in many cases is a
causal, quasi-Toeplitz matrix where each row is an
�N/M�-place right-shift of the row immediately
above it; that is, φm,n = p(�N/M�m−n) for some
vector p. In this case, y = Φx can be implemented in
a streaming fashion as a linear time-invariant filter
followed by decimation by D = �N/M� [8]

y(m) =

N∑
n=1

p(Dm− n) x(n) (5)

for m = 1, . . . ,M . When p is a PN sequence, we
dub this approach random filtering (see Fig. 5).

1We note that it is critical that the measurement matrix Φ be known
to both the encoder and decoder, so in practice it is sufficient to use
a pair of pseudo-random number generators at both the encoder and
decoder with a common seed known to both.

III. CS-BASED RADAR

In order to illustrate our CS-based radar concept,
consider a simplified 1D range imaging model of
a target described by u(r) with range variable r. If
we let the transmitted radar pulse sT (t) interact with
the target by means of a linear convolution [1], then
the received radar signal sR(t) is given by

sR(t) = A

∫
sT (t− τ) u(τ) dτ, (6)

where we have converted the range variable r to
time t using t = 2r

c
, with c the propagation velocity

of light, and where A represents attenuation due to
propagation and reflection. If the transmitted signal
has the property that sT (t) ∗ sT (−t) ≈ δ(t) (which
is true for PN and chirp signals), then a band-
limited measurement of the radar reflectivity u(t)
can be obtained by pulse compression, that is, by
correlating sR(t) with sT (t) in a matched filter
(recall Fig. 2) [1]. A/D conversion occurs either
before or after the matched filtering, resulting in N
Nyquist-rate samples.

Our CS-based radar approach is based on two
key observations. First, the target reflectivity func-
tions u(t) that we wish to obtain through the
radar process are often sparse or compressible in
some basis. For example, a set of K point targets
corresponds to a sparse sum of delta functions as
in u(t) =

∑K
i=1 ai δ(t − κi); smooth targets are

sparse in the Fourier or wavelet domain; and range-
Doppler reflectivities are often sparse in the joint
time-frequency (or ambiguity) domain [1]. Such
target reflectivity functions u(t) are good candidates
for acquisition via CS techniques.

Second, time-translated and frequency-modulated
versions of the PN or chirp signals transmitted
as radar waveforms sT (t) form a dictionary (the
extension of a basis or frame) that is incoherent with
the time, frequency, and time-frequency bases that
sparsify or compress the above mentioned classes
of target reflectivity functions u(t) [8]. This means
that PN or chirp signals are good candidates for the
rows of a CS acquisition matrix Φ as a “random
filter” (recall (5)).

By combining these observations we can both
eliminate the matched filter in the radar receiver and
lower the receiver A/D converter bandwidth using
CS principles. Consider a new design for a radar



(a) (b)

Fig. 4. Theoretical compressive sensing (CS) measurement matrices Φ of size N = 64 and M = 16: (a) iid Bernoulli (±1) measurements
and (b) iid Gaussian measurements. In the color map, blue corresponds to large negative, green to zero, and red to large positive.

(a) (b)

Fig. 5. “Random filter” measurement matrices Φ of size N = 64 and M = 16 based on (a) PN signal and (b) chirp signal. Compare to Fig. 4
and note the causal, quasi-Toeplitz, yet “rich” structure. Same color map as Fig. 4.

system that consists of the following components.
The transmitter is the same as in a classical radar;
the transmit antenna emits a PN or chirp signal
sT (t) (recall Fig. 1). However, the receiver does
not consist of a matched filter and high-rate A/D
converter but rather only a low-rate A/D converter
that operates not at the Nyquist rate but at a rate pro-
portional to the target reflectivity’s compressibility
(see Fig. 3).

We make the connection explicit for a PN-based
CS radar with a simple sampling model. Consider
a target reflectivity generated from N Nyquist-rate
samples x(n) via u(t) = x(�t/∆�), n = 1, . . . , N ,
on the time interval of interest 0 ≤ t < N∆. The
radar transmits a PN signal generated from a length-
N random Bernoulli ±1 vector p(n) via sT (t) =
p(�t/∆�). The received radar signal sR(t) is given
by (6); we sample it not every ∆ seconds but rather
every D∆ seconds, where D = �N/M� and M <
N , to obtain the M samples, m = 1, . . . ,M ,

y(m) = sR(t)|t=mD∆

= A

∫ N∆

0

sT (mD∆ − τ) u(τ) dτ

= A

N∑
n=1

p(mD − n)

∫ n∆

(n−1)∆

u(τ) dτ

= A

N∑
n=1

p(mD − n) x(n), (7)

which are precisely a scaled version of (5). In words,
a PN sequence radar implements a random filter in
the sense of [8], and hence the low-rate samples
y contain sufficient information to reconstruct the
signal x corresponding to the Nyquist-rate samples
of the reflectivity u(t) via linear programming or a
greedy algorithm. Chirp pulses yield similar results.

Figure 6 illustrates the scheme in action. A radar
reflectivity profile is probed with a PN pulse se-
quence, measured at one-half the Nyquist sampling
rate, and subsequently recovered exactly using an
OMP greedy algorithm and a sparsity frame Ψ
combining delta spikes and Haar wavelets.

Additional gains can be expected for 2D CS radar
imaging. We illustrate this with a simple simulation
of SAR data acquisition and imaging. Figure 7(a)
shows the reflectivity function that is to be recovered
from the SAR data. We simulated a SAR data ac-
quisition using the method described in [9]. Figure
7(b) shows the result of a 2D CS implementation
with four times undersampling, which gives an exact
recovery of the reflectivity function. The traditional
SAR image (Fig. 7(c)) shows artifacts of the limited
aperture of the imaging operator, which are absent
in the CS image. The result is similar to what is ob-
tained with the feature-enhanced imaging approach
of [10]. However, the CS-based approach has some
advantages, such as an almost infinite number of
sparse representations to choose from as well as
more efficient signal recovery algorithms.



0 200 400
0

0.5

1

1.5

2

2.5

3

3.5
(c)

0 100 200
0

20

40

60
(b)

0 200 400
0

0.5

1
(a)

reflectivity
recovered signal

Fig. 6. CS radar example. (a) Transmitted PN pulse sT (t), (b) low-rate measurement y, and (c) true and recovered reflectivity profiles u(t).
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Fig. 7. CS synthetic aperture radar (SAR) example. (a) 2D reflectivity, (b) CS SAR image, and (c) traditional SAR image.

IV. DISCUSSION AND CONCLUSIONS

Using compressive sensing (CS) ideas, we have
proposed two potential improvements to a wide
class of radar systems: (i) we can eliminate the
matched filter in the radar receiver, and (ii) we
can reduce the required sampling rate of the re-
ceiver A/D converter so that it need only operate at
the target reflectivity’s potentially low “information
rate” rather than at its potentially high Nyquist rate.
For example, for a scene consisting of K point
targets, just M = O(K log(N/K)) rather than N
measurements will suffice. These ideas could enable
the design of new, simplified radar systems, shifting

the emphasis from expensive hardware (A/D con-
version, matched filtering) to smart signal recovery
algorithms. Reconstruction, estimation, detection,
and so on are performed using a digital algorithm
and can even be performed off-line.

CS techniques are appropriate for monostatic,
bistatic, and multiscatic (many receivers and trans-
mitters) scenarios. Since the radar receiver is greatly
simplified, CS provides a powerful yet inexpensive
framework for multistatic sensor network radars,
where the radar signals resulting from one trans-
mitting antenna are received at many receiving
antennas that, by virtue of our simplifications, can



be made very simply and inexpensively. Our results
can also be combined with the theory of distributed
compressed sensing (DCS) [11], [12] for array
processing and beamforming type applications. The
CS-based imaging framework introduced here also
applies directly to other modalities such as sonar
and synthetic aperture sonar imaging.

While the CS literature has focused almost ex-
clusively on problems in signal reconstruction, ap-
proximation, and estimation, CS is information scal-
able to a much wider range of statistical inference
tasks. Detection, classification, and recognition do
not require a reconstruction of the signal, but only
require estimates of the relevant sufficient statistic
for the problem at hand [13]. A key point is that it
is possible to directly extract these statistics from a
small number of random measurements without ever
reconstructing the signal. The two upshots are that
significantly fewer measurements can be required
for signal detection than for signal reconstruction
and that the computational complexity of detection
can be much reduced compared to reconstruction.
Both of these bode well for radar applications,
since if we are merely interested in detecting targets
rather than reconstructing images of them, then we
can use an even lower sampling rate for the CS-
based receiver. Moreover, in many radar applica-
tions, target detection, classification, and recognition
decisions are often made based on the result of
some kind of matched filtering or correlation with a
set of templates. Information scalability enables us
to compute close approximations to these matched
filter results directly from incoherent measurements
without having to perform expensive reconstruction
or approximation computations [14].

There are a number of challenges to be overcome
before an actual CS-based radar system will become
a reality. First, the target reflectivity being probed
must be compressible in some basis, frame, or
dictionary. Second, the signal recovery algorithms
must be able to handle real-world radar acquisition
scenarios with sufficient computational efficiency
and robust performance for noisy data. Third, there
is a subtle tradeoff to optimize between the reduc-
tion in sampling rate �N/M� and the dynamic range
of the resulting CS system [15]. These are areas of
active research for both our team and the broader CS

community. In particular, there could be links with
recent work on finite rate of innovation sampling
for ultrawideband communication systems [16].
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