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The problem is considered of generating approximate quantum-mechanical wavefunctions that
have as many as possible coefficients held exactly to zero for a given desired accuracy. Two
approaches are adopted. In the first, perturbation theory within the Davidson diagonalisation
algorithm is used to mask off small coefficients in the wavefunction against a predefined target
energy threshold. Secondly, sparsity is introduced by penalty-function optimisation, with a
norm-based compressive-sampling penalty function that decreases with increasing sparsity.
The first approach is found to be robust and reliable, whereas the second does not succeed in
keeping the wavefunction sparse.

1. Introduction

It has long been recognised that configuration interaction (CI) wavefunctions for
the electrons in molecules typically contain both near-redundant information, and
considerable sparsity. The former arises typically from disconnected products of
excitations from a dominant reference wavefunction, whilst the latter can origi-
nate in the spatial sparsity of the Hamiltonian operator (small couplings between
spatially distant orbitals) and the structure of couplings to highly excited states
through multiple applications of the two-body Hamiltonian.
Exploitation of such sparsity patterns is very commonly done by choosing a trun-

cated ansatz - for example, restricting excitations from a reference wavefunction
to be just those that move one or two electrons, or adopting a formulation like the
coupled cluster (CC) method where disconnected excitation products are brought
in automatically. Alternatively, one may look for them numerically in a general
full configuration interaction (FCI) procedure[1]; there have been numerous adap-
tive configuration-selection algorithms expored over many years [2–9]. This is also
one way of viewing algorithms such as the Density-Matrix Renormalisation Group
method (DMRG)[10, 11]
In a pioneering contribution that established the potential for performing FCI

calculations [1], Handy showed that it was possible to exploit the sparsity in both
the Hamiltonian and the wavefunction to allow reduced-precision representation
of those quantities without significant degradation of the quality of the computed
wavefunction and energy. The resulting savings in computer storage made possible
calculations that at the time would not otherwise have been feasible. Further dy-
namic pruning of the CI wavefunction can be achieved by selection of configurations
on the basis of perturbation theory[6, 8, 12–15].
General data compression technologies are ubiquitous in many areas of science

and engineering, and have been applied in this context to seek optimally sparse
representations of FCI wavefunctions[16]. An important signal-processing technique
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is that of Compressive Sampling[17, 18], in which signal data patterns that are
incoherently spread across a sparse data object can be discovered very efficiently
through automatic algorithms.
In this paper, the possibility is explored of automatically and optimally retaining

an optimally sparse wavefunction whilst computing a Hamiltonian eigenvalue to
within an initially prescribed tolerance.

2. Methods

All practical computational electronic structure computations are performed with
finite precision and finite accuracy. There is typically an intrinsic error associated
with the choice of N -electron methodology used to approximate FCI, plus a further
systematic 1-electron basis-set truncation error. In addition, there are precision er-
rors that arise from the use of finite-precision computer arithmetic (these are usu-
ally insignificant), from the incomplete iterative solution of the defining equation
systems, and from finite thresholds that truncate small intermediate quantities.
The latter are usually introduced to give rise to a reduced computational effort by
avoiding arithmetic and data movement that does not lead to a significant contri-
bution to the result[3, 14, 15, 19]. Thresholds are typically chosen ad-hoc on the
basis of experience, although there are notable exceptions where full error control is
exercised through a single numerical parameter that specifies the desired maximum
error in the result of the computation [20, 21]
In this study, we consider FCI wavefunctions, for which the only systematic error

is basis-set truncation, and focus entirely on the control of precision associated with
seeking only an incomplete, approximate eigensolution of the hamiltonian matrix.
The conclusions are expected to be transferrable in an obvious way to any other
correlated wavefunction ansatz.
The CI eigenvalue problem is usually solved using a preconditioned form of the

Lanczos algorithm as proposed by Davidson[22, 23]. At iteration n, the eigenvector
of the N × N hamiltonian matrix H is represented as a linear combination of a
sequence of expansion vectors {cm,m ≤ n ≪ N},

c′n =
n
∑

m

αm cm (1)

For the lowest eigenvalue, α is obtained by minimising the expectation value of
the energy, leading to the reduced eigenvalue problem

Hα = SαE (2)

where

σn = Hcn (3)

Hmn = c†m σn (4)

Smn = c†m cn (5)

We then construct the residual as

gn = (H− E) c′n (6)
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and the new solution as

cn+1 = c′n −Ggn (7)

where G = (H0−E1)−1 is a preconditioner usually based on the diagonal elements
ofH,H0

IJ = HII δIJ , and motivated by perturbation theory. cn+1 may then be used
directly as the next expansion vector, or it can be orthogonalised to the existing
vectors.
Once n exceeds half the number of electrons, the successive applications of the

two-body hamiltonian result in cn+1 being completely dense, apart from any spar-
sity that arises from symmetry. There are, however, computational advantages if
the expansion vectors can be kept sparse. Not only will storage be saved, but typ-
ically the cost of evaluating σn+1 can be reduced. We therefore look for strategies
to modify cn+1 such that small numbers are replaced by zero, without significant
degradation of the quality of the final eigenvalue. Note that provided the trunca-
tion strategy supports eventual sampling of the entire space, only the convergence
of the iterative process, and not the final eigenvalue, is affected.
We first consider the truncation of expansion vectors according to the estimated

contribution of individual coefficient updates to the final eigenvalue. At leading
order in cI,n+1 − c′I,n, the contribution of the update in cI to the eigenvalue is

∆IE = (cI,n+1 − c′I,n)gI = −GII g
2
I . (8)

In previous work[3, 14, 15], whenever |∆IE| ≤ η where η is a prescribed ad-hoc
threshold, the update was set to zero; here, we choose η dynamically such that

|∆IE|≤η
∑

I

|∆IE| = ǫ (9)

where ǫ is a single parameter expressing the desired precision to which the eigen-
value is computed. The value of η that satisfies (9) is determined using a simple
bisection algorithm on log η at negligible cost. ǫ is also used to control the termina-
tion of the iterative process, completing when the eigenvalue change in successive
iterations is less than ǫ. This algorithm gives automatic compression of the wave-
function based on a single input parameter
A second approach to introducing sparsity is that of Compressive Sampling[17,

18]. The principal algorithmic idea is to minimise a functional that is the energy
plus a penalty function that grows with the fractional population of the eigenvector.
We define the Lk norm of the eigenvector as

Lk =

cJ 6=0
∑

J

|cJ |
k =

∑

J

ckJ (sgn cJ)
−k (10)

where

sgnx =

{

1 x ≥ 0

−1 x < 0
(11)

and powers of negative numbers are defined as principal values. We will normally
choose α such that L2 = 1. For a fully sparse vector c = (1, 0, 0, . . . ), then Lk = 1
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for all k; for a vector whose components are all equal, c = (1, 1, 1, . . . )N−1/2,
leading to Lk = N1−k/2.
We then introduce a penalised energy functional that is invariant to overall scal-

ing of c:

Fk,l = E + µPk,l (12)

Pk,l = sgn(l(2− k)) k−1 l−1 (Ll
kL

−k l/2
2 − 1) (13)

The penalty function Pk,l is positive semidefinite, and is zero for the special case
of all but one of the components of c being zero, or of k = 2, and otherwise for
l = 0 is equal to unity. In general, the sparser is c, the smaller is Pk,l. Thus for a
penalty strength µ > 0, minimisation of Fk,l tends to increase larger and decrease
smaller components of c. k = 1, l = 1 corresponds to the previously-considered
choice[17, 18] of enhancing sparsity by penalising with the L1 norm. Note that
Pk,l is continuous for k ≥ 0, but can have discontinuous derivatives wherever any
coefficient is zero. Its differential properties are

∂Pk,l

∂cI
= sgn(l(2− k)) (LkL

−k/2
2 )l

(

ck−1
I (sgn cI)

−kL−1
k − cI L

−1
2

)

(14)

= sgn(l(2− k)) (LkL
−k/2
2 )l

(

|cI |
k−2 L−1

k − L−1
2

)

cI (15)

∂2Pk,l

∂cI ∂cJ
= sgn(l(2− k)) (LkL

−k/2
2 )l

×
{

l k
(

ck−1
I (sgn cI)

kL−1
k − cI L

−1
2

)(

ck−1
J (sgn cJ)

kL−1
k − cJ L

−1
2

)

+δIJ

(

(k − 1)ck−2
I (sgn cI)

kL−1
k − L−1

2

)

−kL−2
k ck−1

I (sgn cI)
kck−1

J (sgn cJ)
k + 2L−2

2 cI cJ

}

(16)

Thus Pk,l has continuous slope only if k ≥ 2, and for k < 1 the gradient diverges as
any cI tends to zero. Note that it is still possible to carry out minimisation when
k < 2, since zero coefficients are explicitly excluded in the definition (10) of Lk,
but convergence might be erratic.
We then approach the choice of penalty strength µ by making it consistent with

the threshold ǫ for error in the eigenvalue. We seek Ekl(µ)−E(0) ≤ ǫ, where Ekl(µ)
denotes the value of E obtained by minimising Fkl for a given value of µ. Ek(µ)
can be calculated using perturbation theory. The minimum condition g = 0,

gI ≡ 1
2

∂Fk,l

∂cI
= 1

2

∂E

∂cI
+ 1

2µ
∂Pk,l

∂cI
, (17)

is satisfied for all µ, and so

0 =
∂2E

∂cI∂cJ

dcJ
dµ

+ µ
∂2Pk,l

∂cI∂cJ

dcJ
dµ

+
∂Pk,l

∂cI
(18)

=
∂2E

∂cI∂cJ

dcJ
dµ

+
∂Pk,l

∂cI
+O(µ) (19)

which are a set of linear equations for dc/dµ.
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In the specific case of CI, E is the Rayleigh quotient

E =
c†Hc

c†c
(20)

∂E

∂cI
= 2(c†c)−1(Hc− Ec)I = O(µ) (21)

∂2E

∂cI∂cJ
= 2(c†c)−1(HIJ − EδIJ)− 4(c†c)−2(Hc− Ec)I cJ − 4(c†c)−2(Hc− Ec)J cI

(22)

= 2(c†c)−1(HIJ − EδIJ) +O(µ) . (23)

The first-order variation of E with µ is then

∂E

∂µ
=

∂E

∂cI

dcI
dµ

(24)

=
∂Pkl

∂cI
cI (25)

=

(

sgn(l(2− k)) (LkL
−k/2
2 )l

∑

I

(

|cI |
k−2 L−1

k − L−1
2

)

c2I

)

(26)

= 0, (27)

which is consistent with the variational principle, and so we have to consider
d2E/dµ2 in establishing how the energy rises in response to the penalty strength
µ.
Note also that the principal effect of l is to scale the value of ∂Pk,l/∂cI , but this

scaling is immediately undone by its incorporation in the value of µ. Thus there is
no obvious reason to choose any value of l other than 1.
The second differential of the variational condition is

0 =
∂3E

∂cI∂cJ∂cK

dcJ
dµ

dcK
dµ

+
∂2E

∂cI∂cJ

d2cJ
dµ2

+ 2
∂2Pk,l

∂cI∂cJ

dcJ
dµ

+O(µ) (28)

= 2(c†c)−1(HIJ − EδIJ)
d2cJ
dµ2

− 4cI(c
†c)−2(HJK − EδJK)

dcJ
dµ

dcK
dµ

+ 2
∂2Pk,l

∂cI∂cJ

dcJ
dµ

+O(µ) (29)

From this, we can synthesise

d2E

dµ2
=

∂2cI
dµ2

∂E

∂cI
+

∂cI
dµ

∂cJ
dµ

∂2E

∂cI∂cJ
(30)

which after some manipulation reduces to

d2E

dµ2
= −

∑

I

dcI
dµ

∂Pk,l

∂cI
(31)
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Table 1. Truncation of FCI wavefunction

for C2, cc-pVDZ basis set, as a function of

energy truncation threshold ǫ, with no com-

pressive sampling penalty. ∆E is the error

in the energy (Hartree), and q is the frac-

tion of CI coefficients that are non-zero. The

molecular orbital basis is the set of ground-

state Hartree-Fock orbitals.

ǫ ∆E q

0.01000000 0.00954013 0.00082
0.00300000 0.00298976 0.00329
0.00100000 0.00119440 0.01173
0.00030000 0.00029657 0.02338
0.00010000 0.00010243 0.05689
0.00003000 0.00003136 0.10216
0.00001000 0.00001041 0.18938
0.00000300 0.00000301 0.29849
0.00000100 0.00000112 0.40036
0.00000030 0.00000032 0.51379
0.00000010 0.00000009 0.62313
0.00000003 0.00000003 0.73109
0.00000001 0.00000001 0.81625

The coupled linear first-order equations (19) need to be solved to get dcI/dµ. We
do this by projecting onto the subspace of expansion vectors, in a generalisation
of the Davidson eigensolution algorithm. The projected form of (19) gives dα/dµ
at µ = 0, which in turn leads to a subspace approximation to d2E/dµ2. We then
choose

µ =

√

2ǫ

d2E/dµ2
(32)

such that the compressive sampling is expected to degrade the final expectation
value of the energy E(µ) by at most ǫ. Once µ is determined, we seek the α that
gives zero projection of (17) onto the subspace,

gm = c†m gn for all m ≤ n (33)

where the residual is now non-linear:

gn = (H− E) c′n + 1
2µ

∂Pk,l

∂cI

∣

∣

∣

∣

c
′

n

E =
c
′†
n Hc′n

c
′†
n c′n

(34)

=

n
∑

m

αm(σm − E cm) + 1
2µ

∂Pk,l

∂cI

∣

∣

∣

∣

c
′

n

E =
α

†Hα

α
† Sα

(35)

These subspace equations have to be iterated to convergence, constructing c′n and
evaluating the projected penalty derivative in each microiteration.

3. Results

Table 1 shows the results of FCI calculations on C2 at a bond length of 1.1 Å.
The 1Σ+

g Hartree-Fock orbitals of the cc-pVDZ basis set[24] were used, with the
two lowest energy orbitals omitted, yielding a FCI energy of −75.67189968Hartree.
Energy-directed truncation of Davidson expansion vectors following equation (9)
was used, without compressive sampling. It is seen that the actual errors in the
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Figure 1. Population q of FCI wavefunction as a function of energy trunca-
tion threshold for C2

Table 2. Truncation of FCI wavefunc-

tion for C2, cc-pVDZ basis set, as a

function of compressive sampling power

k, with ǫ = 3×10−5. ∆E is the error in

the energy (Hartree), and q is the frac-

tion of CI coefficients that are non-zero.

The molecular orbital basis is the set of

ground-state Hartree-Fock orbitals.

k ∆E q

0.50000 0.00007483 0.13202
1.00001 0.00011198 0.11333
1.50000 0.00004367 0.10419
2.00000 0.00003136 0.10216
2.50000 0.00003658 0.10172
3.00000 0.00003486 0.10156
3.50000 0.00003395 0.10148
4.00000 0.00003351 0.10143

eigenvalue, ∆E, match the target threshold ǫ faithfully, supporting the validity of
the underlying perturbative assumptions, even though in this example, the Hartree-
Fock determinant is not strongly dominant. Also shown is q, the fraction of non-zero
CI coefficients, which increases steadily as ǫ approaches zero. Figure 1 shows that
in the range 10−4 ≤ ǫ ≤ 10−8, this variation is approximately linear in log ǫ, but
outside this range q tends smoothly to its limiting constant values.
Table 2 shows the effect of compressive sampling for ǫ = 3 × 10−5, chosen as

typical for chemical applications with precision errors kept below 0.1 kJmol−1.
Calculations with a number of different k values and l = 1 are shown, including
k = 2 which is the case of no compressive sampling. It is seen that ∆E hardly
changes at all with k, indicating that the compressive sampling is not effective in
discovering exploitable sparsity.
Tables 3 and 4 show the same information for a calculation on the OH molecule at

a bond length of 1.0 Å, using the cc-pVTZ basis set[24] with O f and H d functions
omitted, spin-restricted Hartree-Fock theory, and the 1σ orbital frozen. The FCI
energy is −75.61667454Hartree. This example contains fewer electrons but more
virtual orbitals, and the correlation effects are predominantly dynamic. Exactly
the same behaviour is seen as for C2: energy threshold truncation is effective in
introducing sparsity, but penalising with Pk,l is not.
As a final example, we consider ten hydrogen atoms arranged collinearly with

7
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Table 3. Truncation of FCI wavefunction

for OH, cc-pVTZ basis set (O f and H d

functions omitted), as a function of energy

truncation threshold ǫ, with no compressive

sampling penalty. ∆E is the error in the en-

ergy (Hartree), and q is the fraction of CI

coefficients that are non-zero. The molecu-

lar orbital basis is the set of ground-state

Hartree-Fock orbitals.

ǫ ∆E q

0.01000000 0.00779437 0.00016
0.00300000 0.00271044 0.00096
0.00100000 0.00093248 0.00398
0.00030000 0.00028322 0.01118
0.00010000 0.00009827 0.01848
0.00003000 0.00002924 0.04666
0.00001000 0.00001027 0.07688
0.00000300 0.00000288 0.16263
0.00000100 0.00000103 0.24103
0.00000030 0.00000030 0.33283
0.00000010 0.00000011 0.43326
0.00000003 0.00000003 0.53159
0.00000001 0.00000001 0.62975

Table 4. Truncation of FCI wavefunc-

tion for OH, cc-pVTZ basis set (O f

and H d functions omitted), as a func-

tion of compressive sampling power k,

with ǫ = 3 × 10−5. ∆E is the error in

the energy (Hartree), and q is the frac-

tion of CI coefficients that are non-zero.

The molecular orbital basis is the set of

ground-state Hartree-Fock orbitals.

k ∆E q

0.50000 0.00008773 0.05071
1.00001 0.00005247 0.05019
1.50000 0.00003360 0.04707
2.00000 0.00002924 0.04666
2.50000 0.00003213 0.04674
3.00000 0.00003232 0.04674
3.50000 0.00003236 0.04674
4.00000 0.00003237 0.04674

separations 0.8, 0.85, . . . , 1.7 Å in the STO-3G basis set[25]. This is a tractable
prototype for a system with strong static correlation and interactions that decay
over distance. The results are shown in tables 5 and 6, and support the same
conclusions as the previous examples. Except at aggressively large ǫ thresholds,
only modest levels of sparsity are achieved in the eigenvectors.

4. Conclusion

The examples presented show that it is possible to use perturbation theory within
the Davidson diagonalisation algorithm to mask off small coefficients in the wave-
function against a predefined target energy threshold. The resulting truncation
errors in the energy are reliably close to the threshold. For a typical threshold,
however, the amount of induced sparsity is relatively modest.
We have also seen how to attempt to introduce sparsity by penalty-function

optimisation, with a norm-based penalty function that decreases with increasing
sparsity. Whilst this is an appealing and promising approach, it appears to be
ineffective in promoting wavefunction sparsity.

8
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Table 5. Truncation of FCI wavefunction

for H10, STO-3G basis set, as a function of

energy truncation threshold ǫ, with no com-

pressive sampling penalty. ∆E is the error

in the energy (Hartree), and q is the frac-

tion of CI coefficients that are non-zero. The

molecular orbital basis is the set of ground-

state Hartree-Fock orbitals.

ǫ ∆E q

0.01000000 0.01308947 0.00333
0.00300000 0.00422007 0.01548
0.00100000 0.00140513 0.05193
0.00030000 0.00057381 0.15079
0.00010000 0.00016136 0.25947
0.00003000 0.00001806 0.47979
0.00001000 0.00001272 0.64417
0.00000300 0.00000368 0.77700
0.00000100 0.00000138 0.87476
0.00000030 0.00000035 0.92457
0.00000010 0.00000012 0.96294
0.00000003 0.00000003 0.98559

Table 6. Truncation of FCI wavefunc-

tion for H10, STO-3G basis set, as a

function of compressive sampling power

k, with ǫ = 3×10−5. ∆E is the error in

the energy (Hartree), and q is the frac-

tion of CI coefficients that are non-zero.

The molecular orbital basis is the set of

ground-state Hartree-Fock orbitals.

k ∆E q

0.50000 0.00004293 0.60459
1.00001 0.00010739 0.56975
1.50000 0.00004885 0.48768
2.00000 0.00001806 0.47979
2.50000 0.00003902 0.38925
3.00000 0.00003866 0.38879
3.50000 0.00003855 0.38859
4.00000 0.00003851 0.38851
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