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ABSTRACT 

 

Julin M Shah. M.S.Egr., Department of Electrical Engineering, Wright State University, 2015. 

Analog Front End Design of the Compressed Sensing in TSMC 180 nm CMOS Technology. 

 

In order to accurately reconstruct signal waveform a signal must be sampled at least twice as 

fast as the bandwidth of the signal.  Ultra Wideband (UWB) signals have extraordinary potential 

for high information transmission while a central focus of wireless has been the mobile 

communication.  It is an emerging area that involves development of RF sensing and spectral 

applications over multiple GHz bandwidths. Even though our technology is improving, it is very 

challenging to build ADC’s that are compatible and keep up with the growth of ultra-wideband 

range. Compressive sensing does “sampling” and “compressing” at the same time and exploits 

the sparsity for commensurate power saving by enabling sub-Nyquist under-sampling 

acquisition.  The main idea behind compressive sensing is to recover specific signals from very 

few samples as compared to conventional Nyquist samples.  In this thesis, a compressive sensing 

front-end (CSFE) is designed and analyzed to mitigate sampling approach limitations of the 

architecture in a CMOS process.  CSFE has four main components: pseudo random sequence 

generator (PBRS), multiplier, integrator, and ADC.   The PBRS (implemented by a Gold code 

generator) and the multiplier are designed in Cadence Spectre using TSMC 180nm technology.  

The integrator and the 10-bit ADC are designed and verified using both Verilog-A and Matlab.   

Using 4 GHz PBRS and 800 MHz under sampling ADC, the CSFE design can detect signal frequency 

up to 2 GHz after applying the Orthogonal Matching Pursuit algorithm to reconstruct the under-

sampling ADC data. 
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 Figure 1.1 Magnitude of the Fourier transform of a bandlimited function [15] 

Chapter 1 

Introduction 

 
1.1 Conventional technique for sampling 

In order to reconstruct a band limited signal we use the Nyquist/Shannon theorem which states 

that, the sampling rate should be at least two times of a signals bandwidth. Assume our signal in 

a time domain is x (t), which is a continuous time signal and X (f) is a Fourier transform of x (t). 

We can represent X (f) as X(f) =  ∫ x (t)e−i2Πft dt∞−∞                                   (1) 

Signal x (t) can be considered as band-limited if we have some bandwidth B such that X(f) is zero 

for all the values other than |f|>B, according to the Nyquist theorem to reconstruct the original 

signal successfully we have to take samples at a rate which is twice that of the bandwidth of the 

original signal [15]. 

1.2 Limitation of Nyquist theorem 

We are into the world of “BIG DATA” and its growing fast. We are using ultra wideband to 

transmit signals that are higher than 500 MHz.  According to the  
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Nyquist theorem, hardware should be capable of working in Gigahertz (GHz) range.  Even though 

our technology is improving, our technology is not capable of fulfilling the requirement of current 

applications. The main component in the hardware to sample data is an ADC (Analog – Digital 

Converter) and it is very challenging to build a high-resolution ADC that is compatible in the ultra-

wideband range. 

 

1.3 Overview of Compressed Sensing 

Compressed sensing was firstly introduced by Candes, Tao, Donoho and Romberg in 2006. 

Compressed sensing also known as compressive sensing (CS) is a technique, which does 

“sampling” and “compressing” at the same time. The main idea behind compressed sensing is to 

recover specific signals from very few samples as compared to traditional Nyquist samples. 

Compressed Sensing relies on two key principles that are Sparsity and Incoherence [5]. 

Recent research in the field of signal processing states that we can transform most of the signals 

into other forms in which that signal has sparse representation. Sparse signal refers to a signal in 

which most of the information is contained by very few number of its component, all the other 

components in that signal contains very few or no information and you can discard that 

information. The signal can be transformed back to its original form by keeping those few 

information and their locations. Example of a sparse signal is shown in the image below where 

on the left is the original image, at the center is its wavelet transform and the image on the right 

is the image which is recovered from the wavelet transform. In wavelet transform you can see 

that very few coefficients contains large amount of data and the rest has very little to no data. 

The image on  



3 

 

 

Figure 1.2 Compressed Sensing example [5] 

 

The right is constructed from only 2.5% of the larger wavelet coefficients and the quality of the 

image is not that degraded. 

 

1.4 Problem Statement 

Compressed sensing is a signal processing technique that exploits this sparsity for commensurate 

power saving by enabling sub-Nyquist under-sampling acquisition. In this study CMOS 

compressive sensing front-end design will be designed and analyzed to mitigate sampling 

approach limitations of the conventional architecture. All the front-end components are designed 

in TSMC 180nm CMOS technology. 
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1.5 Organization of Thesis 

Chapter-2 discusses compressed sensing operation, basic mathematical models, and important 

theorems which supports compressed sensing.  Brief discussion about previous analog front-end 

design is also provided.  Chapter 3 presents proposed design of random demodulator. Schematic 

design and simulation results of Gold code generator, 1-bit multiplier, Integrator and under-

sampling ADC are discussed.  Chapter 4 discusses performance evaluation of compressed sensing 

front-end design.  In chapter 5 we concluded the compressed sensing front-end design, its impact 

and contribution of it. We also discuss future work to improve our design limitations. 
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Chapter 2 

Compressed Sensing 

 

2.1 Compressed sensing problem  

Let’s start with the input signal X ∈ RN X 1, which is a real valued, finite and discrete one 

dimensional time signal, in which we consider signal X as a 𝑁 × 1 column vector. We can 

represent any picture or any data by vectorising it in an one-dimensional matrix. Any signal in the 

RN can be treated as a basis of 𝑁 × 1 vectors {Ψi}i=1N  and we consider basis as an orthonormal.  

Any discrete signal x can be represented as 

    X =  ∑ α𝑛Ψ𝑛 =  Ψα𝑁𝑛=1                     (1) 

α = [α1, α2, α3, α4 … … … . . α𝑛] is a transform coefficient vector that is calculated as α𝑛 =(𝑋, Ψ𝑛) , here we can say that x and α both are representing the same signal but the difference 

is x represents it in time domain and α represents it in Ψ domain [13]. Here we can define this 

signal as K-sparse if we have K coefficients with large amplitude and all other N-K coefficients 

with zero or very small amplitude.  In this case we are interested in K<< N. The signals that we 

are considering must be sparse .  Let's consider an example of digital camera: 

 

 N                                                    K<<N   

    Samples                                            Samples  

Transmitter

     Sample      Compress      Transmit/ Store 
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    K<<N   

 

Receiver 

 Figure 2.1 Conventional Compression paradigms 

 

In a digital camera whenever you capture an image it will take N samples of that image and after 

that when you save that image using JPEG format, it will represent it in wavelet transform in 

which there are K coefficients that have large amplitude and all other N-K have zero or small 

amplitude.  So basically what we do here is taking all the N samples and after that ignoring N-K 

samples from it and proceed with K samples. The main drawback of this is, first we have to start 

with large number of N samples and we have to store those N samples. Second, we have to 

compute all the N coefficients even though we are going to discard N-K of them. 

 

Compressed sensing can overcome these drawbacks by directly getting compressed signal, it 

directly acquires K samples rather than getting N samples and then discarding N-K samples. 

Compressed sensing is a linear measurement process that processes M < N samples which are 

obtained by multiplying X and measurement matrix Θ (M X N) [13]. Here you can write Y as  Y =  ΦX =  ΦΨα =   Θα                                                         (2) 

Here y =Θα, Θ is M × N matrix. 

Stable measurement matrix can be designed in CS such that it converts any signal X into K- 

sparse signal and does not damage any information from signal X and also we have to find the 

Receive Decompress 
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Figure 2.2 Matrix representation [13] 

reconstruction algorithm that can recover signal x or similar to signal X from K-sparse signal. 

 

 

 

 

 

 

 

 

 

2.2 Outlining Measurement matrix 
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In compressed sensing, our first task is to design a linear measurement matrix Θ such that we can 

encode signal X (N × 1 matrix) to the measurement Y (M × 1 matrix) without losing any 

information of X and we should be able to recover all the information back from Y. To recover   

N × 1 measurement from the M × 1 (M < N) measurement is ill-poised problem because we have 

less number of equation than the number of unknown variables. Compressed sensing is all about 

sparse signals so if our signal is K-sparse(K < M) then measurement Y is a multiplication of K 

nonzero columns of Θ and α, if we know all the location of the K nonzero entries then M × K 

system of linear equation can be formed to get all the nonzero entries[13]. The most important 

condition to get the data back, for any other signal V which has the same K nonzero entries is, 

  1 − 𝜖 ≤ ‖ΘV‖2‖V‖2  ≤ 1 + 𝜖    (3)  

There is one another way to ensure compressed sensing and that incoherence which states that, 

linear measurement matrix Θ must be incoherent with the signal in Ψ basis or you can say that Θ cannot sparsely represent signal in Ψ basis. So our task is to design a matrix Θ such that y = Θα, 

satisfy the RIP property. In compressed sensing we can take Θ as a random measurement matrix 

and elements of this matrix will be independent and identically distributed (IID) then the output 

vector with M × 1 measurements will be the linear representation of N × 1 measurement of 

signal X. So the two main properties to recover the data is Θ is incoherent with basis Ψ = I of 

delta spikes with high probability, and other is M × N independent and identically dependent 

matrix ΘI = Θ must satisfy RIP if M > cK log NK   where c is a small constant. So now we can take 

any random matrix with ±1 entries and zero mean as  Θ and it will satisfy RIP and universal 

properties. 
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2.3 Reconstruction algorithms: 

In compressed sensing, once we mapped all the information of K-sparse signal X to the 

compressed M × 1 measurement of Y, we have to find a way to reconstruct N × 1 signal X or 

similar to signal X from the y measurements. We have M measurements which is less than N, so 

for any α' there can be infinite solutions of Θα' = Y. For example, for any vector r there can be Θα 

= Y and also Θ (α + v) = Y. So our aim for reconstruction is to find α similar to the original signal. 

We can define ℓp norm of vector α as(‖α‖𝑝)𝑝 =  ∑ |α|𝑝𝑁𝑖=1 , in this equation if we give p as 0 then 

we will get norm as 0 [13]. 

ℓ2 minimization approach: Let’s consider the ℓ2 norm which is a classical approach for solving 

inverse problems, inverse vector X or similar to X can be 

                 X̂ = argmin ‖X′‖2 such that  ΘX′ = Y                                (4) 

 

But unfortunately the vector which we get using ℓ2 norm is non sparse with lots of ringing so we 

cannot use this algorithm for compressed sensing [13]. 

ℓ0 minimization approach:  Another way to find the solution of inverse sparse vector is ℓ0 norm, 

which helps us to find number of non-zero elements in the inverse vector. 

  X̂ = argmin ‖X′‖0 such that  ΘX′ = Y                                (5) 

 

But unfortunately when we try to find a solution using equation 5, ℓ0 norm problem is NP hard 
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problem and numerically unstable. 

 ℓ1 minimization approach: In compressed sensing ℓ1 norm can reconstruct K-sparse signals and 

can predict the sparse signals with high likelihood using only M = cK log NK measurements, X̂ = argmin ‖X′‖1 such that  ΘX′ = Y                                (6) 

This this is known as basis pursuit and the complexity of this problem is O (N3) [13]. 

2.4 Analog to information Converter:   

Advances in Digital Signal Processing (DSP) has numerous applications in the field of wireless 

communication, multimedia, biomedical and in radar detection systems. Digital Signal Processing 

converts any signal to digital domain for the processing part and we do this analog to digital 

conversion to get rid of complex design consideration of analog handling like noise figure, feed 

through and linearity and that is where the analog to digital converter(ADC) comes in to picture. 

ADC does sampling by following Nyquist theorem, which states that ADC has to take samples at 

the rate of twice of the signal bandwidth to avoid the loss of any information. However there are 

physical limitations of ADC, in many applications like radar detection system or wireless 

communication which uses signals in the range of gigahertz (GHz), using an ADC for such a signal 

will require very high sampling rate(greater than 3GHz) and resolution of more than 16 bits that 

enormously surpasses current abilities. Taking into account the current scenario it could be 

decades before ADCs of such capacities come into existence. In many cases, interested signals 

having some additional structure like sparse or compressible in specific domain (Fourier or 

Wavelet), and sparse signals on an average has very few information contained in; most of the 

RF application often has very large bandwidth but very less “information rate” [7]. Sampling of 
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this sparse signal at Nyquist rate neglects extra information, so uniform sampling is not an 

exceptionally productive technique for information extraction. Over the last one decade, another 

hypothesis of compressed sensing (CS) has developed to empower signal sampling past Nyquist 

limitations for the specific class of signals. 

The principle thought of CS is to reconstruct the signals from the very few measurements than 

the required by the conventional theorem for the specific set of signals. Using the CS hypothesis 

we can design an Analog to Information Converter (A2I) which can be used to sample the signal 

and also we can recover the signal using reconstruction algorithm subsequently reducing 

numerous issues of traditional ADCs [9]. In addition to that, it sends the almost similar 

information at the sub-Nyquist rate. The block diagram of the Analog to information converter 

(AIC) is shown below: 

   

  

Fig. 2.3(a) Measurement matrix 𝜣 converts analog signal to the digital measurements at Sub-

Nyquist rate [7]. 

 

 

                           

Fig. 2.3(b) Algorithm reproduces the signal which is similar to X (t) from the information 

stored in Y measurements [7]. 

 

AIC Θ 

 

Analog  

Signal 
X (t) 

           Y 

measurements 

Reconstruction  

    Algorithm 

 

Digital 

Measurements         X*(t) 
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Up until now, the basis of compressed sensing is discussed and the basic architecture block 

diagram of Compressed Sensing Analog Front end Design (CS-AFE) is shown below. 

 

 

  

 

 

 

 

Fig. 2.4 Architecture of AIC [7]. 

In the next section we will discuss the previous architecture design presented for the Analog to 

information converter. 

2.5 Random Demodulator: 

In 2007, a research team from the rice university presented the first analog front end design for 

the compressed sensing and named it Random Demodulator (RD). RD uses Pseudo Random Bit 

Sequence (PBRS) to generate random sequence which can be used as a measurement matrix and 

after that it multiplies input signal which must be sparse or compressible with the random 

sequence generated by PBRS. RD uses Maximal-Length Linear Feedback Shift Register (MLFSR) as 

a PBRS, it generates sequence of 2n – 1 bits for n number of shift registers. It randomly generates 

X (t) 

Θ 
Pseudo Random 

Bit Sequence 

 

Analog filter 

Clock 

Y 

Samples 

 

Sampling 
X (t) × Θ 
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± 1 with zero average. Semi dynamic flip-flop (SDFF) is used in the shift register [9]. RD was 

designed in 130nm CMOS technology and their design was working properly up to 2 GHz. 

The block diagram of the Random demodulator is shown below: 

 

Fig. 2.5 Hardware block diagram of RD [9]. 

In RD for multiplication of PRBS and input signal, modified gilbert mixer is being used. The original 

gilbert mixer is redesigned to improve its frequency response and minimize the nonlinearity. For 

analog filtering an integrator is being used as a low pass filter, and differential input differential 

output amplifier is used for RC- Integrator [8]. It has finite time constant due to low gain of the 

amplifier and that can be decided from values of R and C. Integrated output from the integrator 

is sampled using low rate ADC and samples are directed to the back end to reconstruct it and get 

the original or a signal similar to the original Using RD, sampling of data is being done data at 

1/8th the rate of the Nyquist rate [8]. 

 

 2.6 RMPI: 
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RMPI stands for RANDOM MODULATION PRE INTEGRATION, is an analog front end architecture 

designed by a research team of California institute of technology in 2009. It is designed to 

overcome the drawbacks of the random demodulator. Block diagram of RMPI is shown below 

 

 

 

 

 

 

 

 

 

 

 Fig. 2.6 Architecture block diagram of RMPI [3] 

RMPI also uses the concept of random demodulator, it uses different parallel channels instead of 

modulating entire signal in one channel. First all inputs will go to Low Noise Amplifier (LNA) to 

amplify the input and reduce the noise figure. Output of the LNA will go to different parallel 

channels, here each channel gets the same input [3]. Trans-conductance amplifier is connected 

in the beginning of the every channel to reduce the crosstalk between different channels where 

output of low noise amplifier is altered in to current signal and sent to mixer for modulation. In 

∫ Y1 (t) 

5 GHz 

50 MHz 

∫ Y2 (t) 

∫ Y8 (t) 

-1,1,1,-1 

1,-1,1,-1 

-1,-1, 1,-1 
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each channel input signal is modulated with different PBRS sequence and then sent to integrator, 

once integration is done integrated signal will be sent to do ADC. Sampling will be done at sub 

Nyquist rate using ADC [2]. 

 In RMPI 4GHz is used as modulating frequency, so input signal can be of any frequency up to 2 

GHz with dynamic range of more than 54 dB [2]. RMPI is capable of doing under sampling at 12.5 

time’s lower rate than Nyquist rate. [4] RMPI uses 128 bits repeated sequence as a measurement 

matrix which is modulated with input signal using a passive mixer. Class A Op-amp based TIA RC 

integrator is used for integration.  Each ADC in RMPI does under sampling at the 40 MSPS and 

overall sampling rate is 320 MSPS (4 GHz/12.5), due to parallel channeling structure, interleaved 

ADC comes in to the picture because at one point of time only one ADC does sampling and all 

other ADCs will be off [6]. 

 



16 

 

Chapter 3 

Random Demodulator in TSMC 180nm CMOS Technology 

 

In this thesis, we have proposed a new circuit design of AIC, which uses random demodulator in 

the TSMC 180nm CMOS technology. The circuit is designed and stimulated in Cadence Virtuoso 

Schematic version 6.1.5. In this design of AIC, we use Gold Code generator as a pseudo random 

sequence for the modulation of the input signal.. The Gold Code generator is designed to do 

modulation at 5 GHz. 

 

3.1 Gold Code Generator 

Gold code generator is a pseudo random sequence generator, which uses two Pseudo Random 

Bit Sequence (PBRS) to generate one gold code sequence. Gold Code is utilized broadly in Code 

Division Multiple Access (CDMA) and also in Global Positioning System (GPS). PBRS is an 

orthogonal, finite length binary sequence.  Ideally each sequence generated by PBRS should be 

orthogonal to the every time shifted version of that sequence. PBRS is used to spread the input 

signal over the 5 GHz spectrum and each input signal can be unequally modulated using different 

PBRS.  The main logic block of the gold code is comprised of Linear Feedback Shift Register (LFSR) 

and Ex-OR gate.  

 

3.1.1 Types of Linear Feedback Shift Register 

There are two types of LFSR. 
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1. Galois implementation 

2. Fibonacci implementation 

 

Galois implementation: 

The Galois implementation is also known as m-type LFSR in which the flowing of data is done from 

left to right and feedback is done from the right side to left side and polynomial order of shift 

register increments from left to right starting from X0  [11]. Figure 3.1 displays block diagram of 

the galois implementation. 

 

 

Fig. 3.1 LFSR using Galois Implementation [11] 

Here in Galois Implementation output of one shift register is going as an input of next shift register 

at every positive edge of the clock and at the taps, where output of shift register is going as an 

input to the Ex-Or gate with the output bit before going in to the input of next shift register. 

 PBRS equation generated by galois implementation is  

                                            F(X) =  X5 + X1 + 1                                            (1) 

 

Fibonacci implementation: 

 The Fibonacci implementation is most commonly used type of LFSR, It is also known as Simple 
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type or out of line LFSR. In this implementation data flowing is done from left to right and 

feedback path is reverse of that, right to left. The bit positions that have an impact on next input 

bit are called taps [11]. The furthest right bit is called output bit and polynomial order of the shift 

register increments from right to left. Figure 3.2 displays the block diagram of the Fibonacci 

implementation. 

 

 

Figure 3.2 LFSR using Fibonacci Implementation [11] 

In Fibonacci implementation output of each shift register is an input to the next shift register and 

new bit is generated by Ex-ORing of all taps with output bit and it goes to the input to the left 

most shift register. Total number of bits generated by LFSR before repeating the same sequence 

are 2l – 1, where l is number of shift registers. The equation of the sequence generated by the 

figure shown above is  

                                                 F(X) =  X5 + X2 + 1                                                         (2) 

The objective of communication system can be achieved by making the LFSR to follow the following 

special correlation properties: 

1. Auto Correlation 

2. Cross Correlation 

Auto Correlation: 
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Auto correlation, also known as a serial correlation is mathematical representation of how well 

time Signal f (t) can differentiate between itself and a lagged version of itself [11]. For a finite and 

discrete signal auto correlation can be define as a following equation:   rx𝐱 =  ∑ x (n)x (n − T)Ln=0                                               (3) 

Here L is a length of a sequence and T is a time delay. From the equation we can say that if auto 

correlation is positive then it is hard to distinguish the original sequence from the time shifted 

version. If auto correlation is negative then it means that signal can be easily distinguished from 

its time shifted version and if auto correlation is zero it states that time shifted version is 

orthogonal to the original signal [11]. 

Cross Correlation: 

Cross Correlation is a measure of at what extent two signals are correlated to each other [11]. 

Suppose two signals are x (t) and y (t), then Cross Correlation is defined by following equation  rx𝐲 =  ∑ x (n) y (n − T)Ln=0                                             (4) 

 In the following table, cross correlation between two m- sequence and two gold code sequence 

are given for different l values. The results shows that Cross Correlation between two gold code 

sequence are less than regular m-sequences, to reduce the co-channel interference between two 

channels we want Cross Correlation to be as small as possible. 
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Table 3.1 Cross Correlation between m-sequence and Gold Code 

 

 

 

 

 

 

 

 

 

  

 

 

3.1.2 Implementation of Gold Code in Cadence Virtuoso: 

Two main components in the gold code are Ex-OR gate and Shift Register. Firstly in this section 

new architecture of the Ex-OR gate is presented which has very less delay compared to the 

conventional Ex-OR gate and in next section we will discuss the architecture of the shift register. 

First we will start with differential switch that we need later to build Ex-OR gate. The architecture 

of differential switch is discussed below. 

         

Number of 

Flip flops in 

LFSR 

 

m = 2l – 1 

Number of bits in 

m-sequence 

 

 

  Cross correlation 

Of m-sequences  

 

Cross correlation 

Of Gold code 

 

3 7 0.71 0.71 

4 15 0.60 0.60 

5 31 0.35 0.29 

6 63 0.36 0.27 

7 127 0.32 0.13 

8 255 0.37 0.13 

10 1023 0.37 0.06 

12 4095 0.34 0.03 
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3.1.2.1 Differential Switch: 

 The schematic diagram of the differential switch is shown below in the figure 3.3. It consists 4 

NMOS transistors, the main idea behind this design is to avoid use of PMOS transistors because 

of longer switching time. In the schematic of the differential switch, there are 2 inputs which are 

In and In_b, Vc and Vc_b are the control line and Op and Op_b are the output of the differential 

switch. The Symbol of the differential switch is shown below in the figure 3.4, direction of the 

arrow shows the current direction. In differential switch when you give (Vc, Vc_b) as (0, 1), it will 

make M1 and M4 transistor turn on and In will be connected to Op and In_b will be connected to 

Op_b. If you give (Vc, Vc_b) as (1, 0), M2 and M3 transistor will be turned on and In will be 

connected to Op_b and In_b will be connected to Op. 

 

Table 3.2 Operation of Differential Switch 

Control line Op Op_b 

(Vc, Vc_b) = (0, 1) In In_b 

(Vc, Vc_b) = (1, 0) In_b In 

 

In figure 3.5 waveform of the differential switch at 1 GHz is shown and average propagation 

delay at 1 GHz is 8.5639 ps. Figure 3.6 displays waveform of the differential switch at 5 GHz and 

delay for that is 7.984 ps. 
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Fig. 3.3 Schematic of differential switch 

 

Fig. 3.4 Symbol of differential switch 

 

 

Vc

Vc_b

In In_b

Op Op_b

M1 M2 M3 M4

Vc

Vc_b

In In_b

Op Op_b
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Fig. 3.5 waveform of differential switch at 1 Ghz 

 

Fig. 3.6 waveform of differential switch at 5 Ghz 
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3.1.2.2 Ex-OR gate using Differential Switch: 

In order to build an Ex-or gate we will use two differential switch and two resistors. Figure 3.6 

shows the architecure of the 2 input Ex-OR gate, where (A, A_b) and (B, B_b) are inputs of the Ex-

OR gate and (C,C_b) are the differential output of the Ex-OR gate. A and B are given as a control 

line input and voltage supplies are given as an input, when both inputs of the Ex-OR gate are 

same, Vdd! will get connected C_b and C will get connected to the Vss!.  If both inputs are 

different then C will get high logic and C_b will be low logic. 

 

 

Fig. 3.7 2-input Ex-OR gate using Differential Switch 

In_b

Vc

Vc_b

In

Op

Op_b

In_b

Vc

Vc_b

In

Op

Op_b
Vdd!

Vss!

A_b A B_b B

0.5K
0.5K

C

C_b
Differential 

Switch
Differential 

Switch



25 

 

 

 

Fig. 3.8 waveform of 2-input Ex-OR gate at 5 Ghz 

 

Fig. 3.9 waveform of 2-input Ex-OR gate at 1 Ghz  
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Table 3.3 Operation of Ex-OR 

 

Figures 3.8 and 3.9 present the output waveforms of the Ex-OR gate for 1 GHz and 5 GHz as well. 

You can see that the performance in terms of delay of the Ex-OR is far better than conventional 

Ex-OR gate using CMOS. Average propagation delay of the Ex-OR gate at 1 GHz is 14.843 ps, and 

for 5 GHz is 15.27 ps. Table 3.3 shows the truth table of the Ex-OR gate to verify the waveforms. 

This design approach can be applied to multiple inputs Ex-OR gates. 

3.1.2.3 CML latch: 

To build shift register In the Gold Code generator we use special kind of conventional CML latch. 

Every shift register contains two CML latch; the first one operates on the positive edge of the 

clock and the second one operates on the negative edge of the clock. This shift register operates 

efficiently at high frequency.  We use only NMOS transistors to make CML latch operate fast. 

A B Differential 

Switch1 

Differential 

Switch1 

C C_b 

0 0 OFF OFF 0 1 

0 1 OFF ON 1 0 

1 0 ON OFF 1 0 

1 1 ON ON 0 1 
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Fig. 3.10 Schematic design of CML latch 
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Schematic design of the CML latch is shown in the above figure, two main operations for CML 

latch are tracking and storing data. The tracking operation uses NMOS transistor M1 and M2.  

They are used to sense and track the information variation from the input and transistor M3 and 

M4 are used to store the data. Operation of the CML latch depends on the Vclk and Vclk_b. If Vclk 

is high then CML latch operates in the tracking mode; otherwise, it operates in the storing mode. 

When Vclk is high, it allows Iss current to flow to the tracking circuit and allows ON to track the 

IN.  When Vclk is low then the other differential pair enables storing the logic state and output. 

When we first implement the above CML latch in TSMC 180 nm technology, it operates in clock 

frequency below 3 GHz. There are several speed limitations of this design of CML latch. A main 

limitation of this latch is, both tracking pair and storing pair of CML latch use the same tail current, 

and biasing operations of tracking and storing pairs are highly related therefore the tail current 

must be large enough to maintain the linearity of tracking and storing pairs. A new modified 

design of the CML is presented in figure 3.11.  You can observe that the tracking differential pair 

and the storing differential pair uses two different transistors for tail current so the issue of 

previous design as mentioned is resolved. When latch is switching from tracking mode to storing 

mode, tail current must recharge the capacitance of the M1 and M2 otherwise it will draw current 

from the output node ON and OP. To avoid this problem the transistor M7 is connected with M5, 

the tail current is then passed through both transistors and when it changes from one state to 

another state, it helps in reducing the current spikes.  Both transistors M3 and M4 are always 

turned on therefore we won’t have any current spikes. However, the new design consumes more 
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power than the previous design but it can operate at higher frequency, i.e., 5 GHz to generate 

the Gold code sequence. 

 

Fig. 3.11 Modified schematic design of CML latch 
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Other modification to the latch design is addition of a reset function, as shown in figure 3.11. 

When reset is high, M12 connects ON to the Vdd! and M13 connects OP to the Vss!.  So it makes 

ON “High” and OP “Low”. We add reset function in latch when we use it in the Gold code 

generator.  We have designed D flip-flop using two CML latchs connected together.  The clock of 

the first CML latch is connected to the clock_b of the second CML latch and the clock_b of the 

first CML latch is connected to the clock of the second CML latch. Figure 3.12 presents the block 

diagram of the D flip-flop. 

 

 

 

Fig. 3.12 D flip-flop using two CML latch 
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3.13 Output of D flip-flop at 5 GHz 
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3.14 Output of D flip-flop at 1 GHz 

The waveforms of D flip-flop are presented. Fig. 3.12 shows waveform at 5 GHz and 3.13 shows 

waveform at 1 GHz.  As shown in the waveform, the average propagation delay of D flip-flop is 

53 ps at 5 GHz.  As discussed earlier, two main components of gold code generator are D flip-flop 

and Ex-OR.  Both D flip-flop and Ex-OR gate operates at 5 GHz.  The gold code generator is then 

designed to operate at 5 GHz to modulate input signal at 5 GHz. Fig 3.14 shows the schematic 

design of the Gold code generator, which use two LFSR, LFSR-1 and LFSR-2.  Both LFSR’s contain 

5 D flip-flop. LFSR-1 is denoted as (5, 3) and LFSR-2 is denoted as (5, 4). 

 

Fig. 3.14 Gold code architecture 
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Fig 3.16 Schematic design of Gold Code in Cadence Virtuoso 
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3.17 Gold code output at 5 GHz 



35 

 

 

 

Figure 3.15 represents the schematic of the Gold code generator built using CML latch and 2 input 

Ex-OR gate.  The block diagram is shown in figure 3.14. The output waveform generated at 5 GHz 

using the Gold code generator is shown in figure 3.16.  It is generated using cadence Virtuoso in 

TSMC 180 nm technology. To verify the Gold code function of the cadence design we develope a 

VHDL Gold code generator and test bench. We run VHDL code of Gold code generator in Xilinx 

and compared the output of it with the cadence design output.  Both Gold codes generate same 

patterns.  The VHDL code and test bench are given in Appendix. 

3.2 1-bit Multiplier 

The 1-bit multiplier multiplies input signal with sequence generated by the Gold code generator. 

The Gold code generator generates a bit sequence, which contains ones and zeros.  We consider 

bit ‘0’ as ‘-1’ and bit ‘1’ as ‘+1’.  So, we modulate the input signal with the bit sequence.  And, the 

multiplier operates at the same speed as the Gold code generator, i.e., 5 GHz.  We multiply input 

signal with 5 GHz bit sequence so we are able to take input signal of frequency up to 2.5 GHz.  

The multiplier will pass the original signal to the output if the Gold code sequence bit is ‘1’ and it 

will invert or reverse the polarity of the input signal to the input if the sequence bit is ’0’.  Diodes 

and FET mixers are passive mixers.  They have good linearity and less noise but consume high 

power and generate low voltage gain.  The mixer (1-b multiplier) which we have used is presented 

in figure 3.17.  Only NMOS transistors have been used to make the mixer circuit operate 

efficiently at high frequency. 
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Fig 3.18 Schematic design of 1-bit Multiplier 

As you can see from the design, multiplier needs differential input for both gold code generator 

and main input signal as well. In the figure 3.17 P and N are the input where we connect output 

of the Gold code generator.  IN and IP are the main Input signal and ON and OP are the differential 

output of the multiplier. Table 3.4 shows the mixer operations.  When P is high, IN is connected 

to OP and IP is connected to ON.   When P is low, IN is connected to ON and IP is connected to 

OP. 

Table 3.4 Mixer Operation 

Gold code sequence ON OP 

(P,N) = (1,0) IP IN 

(P,N) = (0,1) IN IP 

P

N

IN

IP

ON

OP

M1

M2

M3

M4
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Fig 3.19 Output of 1-bit Multiplier at 2.5 GHz 

 

Fig 3.20 Output of 1-bit Multiplier at 5 GHz 
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Figure 3.19 and 3.20 shows the output waveform of multiplier in at 2.5 GHz and 5 GHz                         

respectively. 

3.3 Integrator  

Once we have modulated output from the mixer, it will go to the low pass filter to avoid the high 

frequency tones. We use Integrator which will work as a low pass filter. In this thesis we have 

built two different design of an Integrator. One is in Cadence, in which we used system verilog 

(Verilog-A) to design an integrator. I have attached the code of the integrator in the Appendix. 

Second design we have used for integrator is in Simulink (Matlab). We use discrete time 

integrator from the simulink block as an integrator, where we select reset option as an external 

so that we can do reset according to the system requirement. In compressed sensing we have to 

design Integrator such that we can reset it after every specific time. Output of the integrator will 

go as an input to the ADC, more explanation about the integrator is given in chapter 4.  

3.4 Low Sampling ADC 

The output of integrator is fed to the low sampling ADC where the integrated signal is sampled 

at a low sampling frequency as compared to the Nyquist frequency. Our aim for this ADC is to 

verify the compressive sensing front-end design.  We create a software model of 10-bit ADC in 

system Verilog (Verilog-A), which is included in Appendix.  We can change parameters of ADC by 

just changing the variables in the code. Figure 3.21 shows the symbol of the ADC. Figure 3.22 

shows waveform of the ADC, in which the input signal dynamic range is from -0.25V to 0.25V and 

the 10-bit ADC output sample value is from 0 to 1023. We have also designed one ADC in 
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Matlab, code is available in Appendix. The main idea of compressed sensing is to make 

ADC work at very low rare compared to Nyquist rate. 

 

 

 

 

3.21 Symbol of ADC 
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3.22 Output of 10-bit ADC 
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Chapter 4 

Compressive Sensing Front-End (CSFE) Performance Evaluation 

 

4.1 Ideal CSFE in Matlab:   

Many have presented random demodulator designs but most of them perform at frequency less 

than 2 GHz.  Our aim for this research is to design a random demodulator in compressive sensing 

and make it work at a higher frequency.  Herein, we first created an ideal Random Demodulator 

design in Matlab.  In this design we use Gold Code to modulate input signals. The ideal CSFE 

Matlab design is shown in the figure 4.1 where waveforms at every stage is also displayed.  In 

figure 4.1 a Gold code sequence of 127 bits is used as a repetitive bit sequence.  A White Gaussian 

noise is added with an input signal at 5dB.  The input is then multiplied with the repeated bit 

sequence by the 1-bit multiplier.  If the Gold code bit is ‘1’ then input is directly passed to the 

output and if the Gold code bit is ‘-1’ then the 180 degree phase shift of input is passed to the 

output.  Once multiplication is done, the output of multiplier is sent to the sample and hold 

circuit. We use discrete time integrator to function as sample and hold.  It first samples the signal 

at the Gold code frequency and then feed the output to the integrator. Integrator functions as a 

low pass filter.  Integrator is reset after every certain time which depends on the under sampling 

rate of ADC.  The output of integrator is then digitized by an under-sampling  ADC. 
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4.1 Ideal CSFE in Simulink (Matlab) 
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4.2 Orthogonal Matching Pursuit (OMP) algorithm for reconstruction 

OMP is a greedy algorithm which is used for sparse signal reconstruction after compressive 

sensing front-end.  We use OMP to rebuild the original signal from the under sampled data in 

CSFE.  Assume our measurement matrix is  Φ of a size 𝑀 × 𝑁(𝑀 < 𝑁), and Y is a vector (size M) 

that is multiplication of input signal X (size N) and the measurement matrix Φ.  Our aim using 

OMP is to get coefficient vector X or similar to X so that Φ × X equals or approximately equals 

to Y.  The OMP algorithm is presented in Algorithm 1 [16]. OMP has good approximation 

performance.  Hypothetical examination of OMP to date has been analyzed basically on two 

fronts. The first involves coherent parameter 𝛍 ∶=  𝒎𝒂𝒙𝒊𝒋|⟨ Φ𝑖,  Φ𝑗⟩,  Φ𝑖 is column I of the 

matrix Φ.  So whenever column I has the unit norm and parameter 𝛍 <  𝟏𝟐𝑲−𝟏,   it has been 

shown that OMP is able to recover K- sparse signal X from the Y measurements [16]. The second 

thing involves the notion of probability. Let’s assume that 𝑋 ∈  𝑅𝑁 with‖𝑋‖0    ≔ 𝒔𝒖𝒑𝒑(𝑿) ≤ 𝑲 

and Φ  is randomly distributed and independent of X with 𝑀 = 𝑂(𝐾 log (𝑁)) rows, then X can 

be recovered using OMP with very high probability. 

Algorithm 1: Orthogonal Matching Pursuit [16]_______________________________________ 

 

Input: Φ, Y, atopping criterion 

Initialize: 𝑟0 = 𝒀,   𝑿𝟎 = 𝟎,   𝛬0 =  Ø,   𝒍 = 𝟎 

While not converged do 

Match: 𝒉𝒍 =  Φ𝑇𝒓𝒍 
Identify: 𝛬𝑙+1 =  𝛬𝑙  ∪ {𝒂𝒓𝒈𝒎𝒂𝒙𝒋| 𝒉𝒍(𝒋)}        {if multiple maxima exists, choose only one} 
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Update: 𝑥𝑙+1 =   𝒂𝒓𝒈𝒎𝒊𝒏𝒛:𝒔𝒖𝒑𝒑(𝒛) ⊆ 𝛬𝑙+1 ‖𝒀 −  Φz‖𝟐 

              𝒓𝒍+𝟏 = 𝒚 −  Φ𝑥𝑙+1 

               𝑙 = 𝑙 + 1 

End while 

Output:  𝑿 =  𝒙𝒍  =  𝒂𝒓𝒈𝒎𝒊𝒏𝒛:𝒔𝒖𝒑𝒑(𝒛) ⊆ 𝛬𝑙+1 ‖𝒀 −  Φz‖𝟐. 

______________________________________________________________________________ 

4.3 Proposed CSFE using Cadence and Matlab: 

Compressed sensing front-end has four mian primary blocks.  They are pseudo bit random 

sequence generator, multiplier, Integrator and ADC. As discussed earlier we have designed 

Pseudo random sequence generator (which is Gold Code in our case) and Multiplier in cadence 

using TSMC 180nm technology.   Their Cadence designs were presented in chapter 3.  Other 

primary blocks are implemented in Simulink.  We integrate Cadence and Simulink for this work.  

To get the under sample data, we first give input signal to the multiplier. The input signal is a sine 

wave with White Gaussian noise added.  We have tried many cases of different input signal 

strengths with different noise power to verify the sensitivity of the proposed design.  Figure 4.2 

shows the Gold code generator and 1-bit multiplier.  The Gold code generator contains two 7 

stages linear feedback shift registers, which generates 127 (27 − 1) bits of Gold code sequence. 

It repeats the same cycle for every 127 bits. 
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Fig. 4.2 Gold Code generator with Multiplier in Cadence 
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4.3 CSFE using Cadence and Simulink blocks 

Figure 4.3 displays the final design of CSFE where the first block is the output of the cadence 

design. Other blocks are integrator and ADC in Simulink.  The output of figure 4.3 is under sample 

data for signal reconstruction using Orthogonal Matching Pursuit (OMP). The measurement 

matrix Φ is built according to the Gold code. One example of how to construct measurement 

matrix is given below. Assume the Gold code sequence length is 7 bits which are: [1 -1 -1 1 1 -1 -

1] and the under sampling rate is 1/3 then measurement matrix Φ is: 

 

Here, the measurement matrix size is 3 × 9.  Here size of the measurement matrix is decided 

according to the under sampling rate.    If the measurement matrix size is M × N then the under 
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sampling rate is M/N.  In our first experiment the measurement size is 150 × 750.  The under 

sampling rate is 5.  

4.4 Sensitivity curve for 4 GHz sampling rate: 

The proposed CSFE design and OMP successfully function at 4 GHz sampling rate.   The sensitivity 

curve at 4GHz is shown in figure 4.4.  The X-axes is SNR of input signal and Y-axes is probability of 

signal detection after OMP.  For very case of SNR (from -5 to +5 dB) we randomly generate 10 

signal frequency cases. The probability of signal detection is 100% at SNR from +1 to +5 dB, 90% 

at SNR of 0 dB, 70% at SNR from -1 to -4 dB, and 60% at SNR of -4 dB.  The receiver sensitivity is 

0 dB. 

 

4.4 Sensitivity curve for 4 GHz 
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Chapter 5 

Conclusion and Future work 

 

5.1 Conclusion 

In this research, we have investigated the new field of compressed sensing and proposed a front-

end design for CS. We have proposed architecture design of CSFE, component designs using 

Cadence virtuoso in CMOS 180nm technology and Cadence using Verilog-A.  We also built a CSFE 

design in Simulink to verify the performance of the proposed design. We have proposed Gold 

code generator in cadence, which can run up to 5 GHz.   The Gold code generator is used as a 

pseudo random sequence generator.  The length of the gold code sequence is also an important 

factor in the compressed sensing.  The proposed design did not work for the 31 bits repetitive 

sequence but it worked perfectly fine for the 127 bits of repetitive sequence.  A CMOS transistor 

design of multiplier has been presented in cadence.  Ideal designs of integrator and ADC are 

presented in both Cadence Verilog-A and Simulink. We use OMP algorithm to reconstruct the 

under sample data. The new proposed design is able to reconstruct Nyquist data at 5 times under 

sampling rate of the Nyquist rate.  The proposed design operates at 4 GHz and the ADC operates 

at an under sampling frequency of 800MHz, five times lower than the Nyquist rate. We have also 

evaluated the performance of CSFE and OMP for different input signal SNR.  The receiver 

sensitivity is 0 dB. 
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5.2 Future work: 

Future work includes: 

 Designing new schematic level design of integrator and ADC with low power consumption 

and high speed. 

 Designing a higher speed Gold code generator, which can run at frequency higher than 

5GHz.    

 Testing robustness of the CSFE design by adopting CMOS process variation and Monte 

Carlo analysis. 
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Appendix   

VHDL code of the Gold Code generator: 

 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
entity gd2 is 
generic(n:integer:=5) ; 
    Port ( clk : in  STD_LOGIC; 
           reset : in  STD_LOGIC; 
           g1 : inout  STD_LOGIC; 
           g2 : inout  STD_LOGIC; 
           p1 : out  STD_LOGIC); 
end gd2; 
architecture Behavioral of gd2 is 
signal x1:std_logic_vector(0 to n-1); 
signal x2:std_logic_vector(0 to n-1); 
begin 
P3:process(clk,reset) 
begin 
if(reset='1') then 
x1<=(others=>'1'); 
G1<='0'; 
elsif(clk'event and clk='1') then 
for m in 0 to 31 loop 
  for i in 0 to n-2 loop 
  x1 (i+1) <= x1(i); 
x1(0) <= x1(2) xor x1(4); 
  G1<=x1(4); 
  end loop; 
end loop; 
end if ; 
end process P3 ; 
------------------  polynomial  G2 ---------------------- 
P2:process(reset,clk) 
begin 
if(reset='1') then 
x2<=(others=>'1'); 
G2<='0'; 
elsif(clk'event and clk='1') then 
for w in 0 to 31 loop 
for j in 0 to n-2 loop 
x2(j+1)<=x2(j); 
end loop; 
x2(0) <= ((x2(1) xor (x2(4)))); 
G2<=x2(4) ; 
end loop; 
end if ; 
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end process P2 ; 
------------------ G1 xor G2 ------------- 
p1 <= G1 xor G2; 
end Behavioral; 
 
 

Verilog-A code for 10-bit ADC: 

 
`include "discipline.h" 
`include "constants.h" 
`define NUM_ADC_BITS 10 
module adc_8bit (vin, clk, data); 
input vin, clk; 
electrical vin, clk; 
output [`NUM_ADC_BITS-1:0] data; 
electrical [`NUM_ADC_BITS-1:0] data; 
parameter real vmax = 0.25; 
parameter real vmin = -0.25; 
parameter real one = 1.8; 
parameter real zero = 0; 
parameter real vth = 0; 
parameter real slack = 0.5p from (0:inf); 
parameter real trise = 1.0p from (0:inf); 
parameter real tfall = 1.0p from (0:inf); 
parameter real tconv = 0.5p from [0:inf); 
parameter integer traceflag = 1; 
real sample, vref, lsb, voffset; 
real vd[0:`NUM_ADC_BITS-1]; 
integer ii, binvalue; 
analog begin 
@(initial_step or initial_step("dc", "ac", "tran", "xf")) begin 
vref = (vmax - vmin) / 2.0; 
lsb = (vmax - vmin) / (1 << `NUM_ADC_BITS) ; 
voffset = vmin; 
if (traceflag) 
$display("%M ADC range ( %g v ) / %d bits = lsb %g volts.\n", 
vmax - vmin, `NUM_ADC_BITS, lsb ); 
generate i ( `NUM_ADC_BITS-1, 0) begin 
vd[i] = 0 ; 
end 
end 
@(cross ( V(clk)-vth, 1, slack, clk.potential.abstol)) begin 
binvalue = 0; 
sample = V(vin) - voffset; 
for ( ii = `NUM_ADC_BITS -1 ; ii>=0 ; ii = ii -1 ) begin 
vd[ii] = 0; 
if (sample > vref ) begin 
vd[ii] = one; 
sample = sample - vref;  
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binvalue = binvalue + ( 1 << ii ); 
end 
else begin 
vd[ii] = zero; 
end 
sample = sample * 2.0; 
end 
if (traceflag) 
$strobe("%M at %g sec. digital out: %d vin: %g (d2a: %g)\n", 
$abstime, binvalue, V(vin), (binvalue*lsb)+voffset); 
end 
generate i ( `NUM_ADC_BITS-1, 0) begin 
V(data[i]) <+ transition ( vd[i] , tconv, trise, tfall ); 
end 
end 
endmodule 
`undef NUM_ADC_BITS 
 
Verilog-A Code for an Integrator: 

 
`include "discipline.h" 
`include "constants.h" 
 
// $Date: 1997/08/28 05:49:00 $ 
// $Revision: 1.1 $ 
// 
// 
// Based on the OVI Verilog-A Language Reference Manual, version 1.0 
1996 
// 
// 
  
 
 
//-------------------- 
// integrator 
// 
// -  integrator 
// 
// sigin: (val,flow) 
// sigout: (val,flow) 
// 
// INSTANCE parameters 
//    sigout0 = initial sigout value (val) 
//    gain    = [] 
// 
// MODEL parameters 
//    {none} 
// 
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module integrator(sigin, sigout); 
input sigin; 
output sigout; 
electrical sigin, sigout; 
parameter real sigout0 = 0; 
parameter real gain = 1; 
 
   analog 
    V(sigout) <+ gain*idt(V(sigin), 0) + sigout0; 
 
endmodule 
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