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Abstract— Orthogonal frequency division multiplexing
(OFDM) is a technique that will prevail in the next generation
wireless communication. Channel estimation is one of the key
challenges in OFDM, since high-resolution channel estimation
can significantly improve the equalization at the receiver and
consequently enhance the communication performances. In this
paper, we propose a system with an asymmetric DAC/ADC
pair and formulate OFDM channel estimation as a compressive
sensing problem. By skillfully designing pilots and taking
advantages of the sparsity of the channel impulse response, the
proposed system realizes high resolution channel estimation at
a low cost. The pilot design, the use of a high-speed DAC and
a regular-speed ADC, and the estimation algorithm tailored for
channel estimation distinguish the proposed approach from the
existing estimation approaches. We theoretically show that in
the proposed system, a N -resolution channel can be faithfully
obtained with an ADC speed at M = O(S2 log(N/S)), where
N is also the DAC speed and S is the channel impulse response
sparsity. Since S is small and increasing the DAC speed to
N > M is relatively cheap, we obtain a high-resolution channel
at a low cost. We also present a novel estimator that is both
faster and more accurate than the typical ℓ1 minimization. In
the numerical experiments, we simulated various numbers of
multipaths and different SNRs and let the transmitter DAC
run at 16 times the speed of the receiver ADC for estimating
channels at the 16x resolution. While there is no similar
approaches (for asymmetric DAC/ADC pairs) to compare with,
we derive the Cramér-Rao lower bound.

I. INTRODUCTION

In a typical wireless scenario, the transmitted signal arrives

at the receiver via various paths of different lengths. This

leads to inter symbol interference (ISI) and posts a major

difficulty to information decoding, for example, in orthogonal

frequency division multiplexing (OFDM). OFDM has been

widely applied in wireless communication systems because

it transmits at a high rate, achieves high bandwidth efficiency,

and is relatively robust to multipath fading and delay [1].

OFDM applications can be found in digital audio broadcasting

(DAB), HDTV-digital video broadcasting (DVB), wireless

LAN network, 3GPP Long Term Evolution (LTE), and IEEE

802.16 broadband wireless access system, etc. Current OFDM

based WLAN standards (such as IEEE802.11a/g) require a

coherent detection at the OFDM receiver. This requirement

needs an accurate multipath channel estimation of channel

state information (CSI), which comes with computation and

bandwidth overheads. There is rich literature on OFDM chan-

nel estimation. Below, we provide a brief overview.

There are two major classes of channel estimation schemes.

One does not use pilot symbols and is called decision-directed,

and the other uses pilot symbols [13]. The approaches in

the former class can be deployed where the sending pilot

signals is not applicable (e.g., passive listening in a military

context) [14], [15]. On the other hand, they require a large

amount of data to converge due to the receiver being “blind”.

The approaches in the latter class can take advantages of the

pilots in the transmitted data, which are the training sequences

known by both the transmitter and receiver, and therefore, they

achieve more accurate channel estimation and are faster. The

approach developed in this paper belongs to this class.

The design of a pilot-assisted approach includes both the

pilots and the estimation algorithm. The goal is to achieve

an optimal combination of spectrum efficiency and estimation

accuracy [16–20]. Among the existing OFDM channel esti-

mation approaches, some are based on the time-multiplexed

pilot, frequency-multiplexed pilot, and scattered pilot [21].

They achieve relatively higher estimation accuracy yet use

relatively more pilots. There have been attempts to reduce the

number of pilots such as J. Byun et al. [22], which sends out a

small number of pre-estimation pilots to estimate the number

of pilots needed in the main estimation. There is no guaranteed

overall reduction of pilots though. Another approach is the

adaptive channel estimation proposed in [23], which uses a

logic controller to choose among several available training

patterns. The controller choice is based on the cross-correlation

between the pilot symbols over two consecutive time instants,

as well as the deviation from the desired bit error rate (BER).

Compared with the traditional least-squares channel estimator,

this adaptive channel estimation has the advantages of a low

BER and high data rate.

Unlike the aforementioned approaches with pilot symbols

on regular lattices, the recent work of P. Fertl and G. Matz

[24] proposes irregular pilot arrangements and nonuniform

sampling techniques along with a conjugate-gradient based

channel estimator. Their proposed system features a low

computational complexity while maintaining a similar channel

estimation accuracy as the mean-squared-error-minimization

(MMSE) channel estimator.

We believe that as a sensing problem, OFDM channel
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estimation can benefit from compressive sensing (CS), which

acquires a sparse signal from fewer samples than what is

dictated by the Nyquist-Shannon sampling theorem (cf. a

survey of this topic in the setting of wireless communication

[27]). CS encodes a sparse signal by taking its “incoherent”

linear projections and subsequently decodes the signal using

sparse optimization such as ℓ1 minimization. To maximize

the benefits of CS for OFDM channel estimation, one shall

carefully design its encoding and decoding steps. They cor-

respond to the two focuses of this paper: the designs of the

pilots and the estimator, respectively. We shall note that CS

has been applied to channel estimation in [28–31], and some

preliminary results with little proof and analysis has been

published in [39].

Compared to the existing CS-based work [2–5], our ap-

proach is unique in various ways as follows. We use pilots with

uniform random phases and offer a novel theoretical guarantee

for faithful estimation. Its proof is based on first showing

a concentration-of-measure phenomenon for a certain sub-

sampled circulant matrix, subsequently showing its restricted

isometry property (RIP), and applying the existing RIP-based

results to establish the recovery guarantee. The result shows

that one can obtain high-resolution channel by just increasing

the transmitter DAC speed while keeping the receiver ADC

unchanged. In addition, a novel estimator is tailored for OFDM

channel response; instead of using the generic ℓ1 minimization,

we modify it to take advantages of the characteristics of chan-

nel response, by using iterative support detection (ISD) [6]

and a limited-support least-squares subproblem. The resulting

algorithm is very simple and performs noticeably better than

generic ℓ1 minimization. Furthermore, we derive a Cramér-

Rao lower bound of the mean square error, which is compared

to the actual performance of the estimator. We demonstrate

the efficiency and effectiveness of the proposed approach. We

hope that the results of this paper convince the reader with

the potential of the proposed approach as a low-cost and high-

performance channel estimator.

The rest of this paper is organized as follows. Section II

reviews the general OFDM system model. Section III relates

channel estimation to CS and presents the proposed pilot

design with its theoretical properties. In Section IV, introduces

our OFDM-tailored estimator, analyzes its complexity, and de-

rives a Cramér-Rao lower bound for performance comparison.

Section V presents the simulation results. Finally, Section VI

concludes this work and discusses some future work.

II. OFDM SYSTEM MODEL

A baseband OFDM system is shown in Figure 1. In

this system, the modulated signal in the frequency domain,

represented by X ∈ C
N , is inserted with pilot signal, and

then an N -point IDFT transforms the signal into the time

domain, denoted by x ∈ C
N , where a cyclic extension of time

length TG is added to avoid inter-symbol and inter-subcarrier

interferences. The resulting time series data are converted by a

digital-to-analog converter (DAC) with a clock speed of 1/TS

Hz into an analog signal for transmission. We assume that the

channel response comprises P propagation paths, which can
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Fig. 1. Baseband OFDM System

be modeled by a time-domain complex-baseband vector with

P taps:

hn =
P
∑

p=1

αpδ(n− τpTS), n = 1, . . . , N, (1)

where αp is a complex multipath component, δ stands for

the Dirac delta, and τp is the multipath delay (0 ≤ τpTS ≤
TG). Since TG is shorter than the OFDM symbol duration, the

nonzero channel response concentrates at the beginning, which

translate to h = [h1, h2, . . . , hÑ , 0, . . . , 0] ∈ C
N , i.e., only the

first Ñ components of h can possibly take nonzero values and

Ñ < N . Assuming that interferences are eliminated, what

arrives at the receiver is the convolution of the transmitted

signal and the channel response plus noise, denoted by z ∈ C
N

given by

z = x⊗ h+ ξ, (2)

where ⊗ denotes convolution and ξ denotes the AWGN

noise. Passing through the analog-to-digital converter (ADC),

zn, n ∈ [1, N ] is sampled as ym, m ∈ [1,M ], and the cyclic

prefix (CP) is removed. Traditional OFDM channel estimation

schemes assume M = N . If M < N , then y is a downsample

of z. An M -point DFT converts y to Y ∈ C
M , where the pilot

signal will be removed. The goal is to recover the channel

vector h from the measurements Y (or, equivalently y), given

the pilots X (or, equivalently x). Throughout the paper, we

use capital letters for frequency domain signals and lower case

letters for time domain signals.

III. COMPRESSIVE SENSING AND PILOT DESIGN

In this section, we present a novel CS based OFDM channel

estimation architecture. We first provide the motivation, as well

as the CS background. Next, we propose to design pilots with

uniform random phases and give the reasons behind. Along

with a theoretical guarantee, we present numerical evidence

showing that our design achieves an optimal encoding perfor-

mance. Finally, we compare our proposed approach with the

related existing results.

A. Motivation

CS allows sparse signals to be recovered from very few

measurements, which often translates to fewer samples and

shorter sensing times. Because the channel impulse response
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h is very sparse (especially in the outdoor case), we are

motivated to apply CS to recover a high-dimensional h from

a small number of samples. Since in channel estimation, the

sample number is determined by the receiver ADC speed

and the dimension of h by the transmitter DAC speed, we

propose to obtain a high-dimensional (thus high-resolution)

h by employing a pair of high-speed DAC and regular-

speed ADC. Here regular-speed means the speed for general

data transmission. In today’s market, the price for DAC is

much lower than that of ADC. Since the ADC runs at a

regular speed, we consider our high-speed-DAC approach an

inexpensive way to obtain high-resolution channel estimation.

B. CS Background

CS theories [7], [8], [25] state that an S-sparse signal1 h can

be stably recovered from linear measurements y = Φh + ξ,

where Φ is a certain matrix with M rows and N columns,

M < N , and ξ is noise, by minimizing the ℓ1-norm of h.

Classic CS often assumes that the sensing matrix Φ, after

scaling, satisfies the restricted isometry property (RIP)

(1− δS)‖h‖22 ≤ ‖Φh‖22 ≤ (1 + δS)‖h‖22 (3)

for all S-sparse h, where 0 < δS < 1 is the RIP parameter. The

works in [36], [37], and [43] also study the stable recovery of

h from noisy observations based on conditions on δS . The RIP

is satisfied with high probability by a large class of random

matrices such as thoses with entries independently sampled

from a subgaussian distribution.

However, the classic random sensing matrices are not ad-

missible in OFDM channel estimation because the channel

response h is not directly multiplied by a random matrix;

instead, as described in Section II, h is convoluted with x,

followed by noise contamination and uniform downsampling.

Because convolution is a circulant linear operator, we can

present this process by

y = PΩz = PΩ(Ch+ ξ) = (PΩC)h+ ξΩ, (4)

where C represents a full circulant (convolution) matrix de-

termined by x, PΩ denotes the uniform down-sampling from

points [1, N ] to its subset Ω = {1, 1 + N/M, . . . , N −
N/M + 1}, and ξΩ is noise. As is widely perceived, CS

favors fully random matrices, which enjoy RIPs and thus

admit stable recovery from fewest measurements (in terms

of order of magnitude), but both PΩ and C in our case are

not as “random”. These factors seemingly suggest that PΩC
would be unlikely to work well for CS. Nevertheless, carefully

designed circulant matrices can deliver the same optimal CS

performance.

C. Pilots with Random Phases

To design the sensing matrix C, we propose to generate

pilots X in either one of the following two ways: (i) the real

and imaginary parts of X(k) are sampled independently from

the standard Gaussian distribution, k = 1, . . . , N ; (ii) (same as

[30]) X(k), k = 1, . . . , N , have independent random phases

1In our case, S is equal to P , the number of non-zero taps in (1).

but a uniform amplitude. Note that since x is the inverse

discrete Fourier transform of X, the entries of the resulting

x of type (i) are i.i.d. standard Gaussian. Furthermore, X

of type (i) have independent random amplitudes, so type (ii)

is more restrictive than type (i). On the other hand, X of

both types have random phases. Let F denote the discrete

Fourier transform. From the convolution theorem x ⊗ h =
F−1 (F (x) · F (h)) and x = F−1(X), we have x ⊗ h =
F−1diag(X)Fh, so the measurements y can be written as

y = PΩF
−1diag(X)Fh+ ξΩ. (5)

Note that the proposed sampling is very different from

partial Fourier sampling PΩF or PΩF
−1 widely used in

compressive imaging (e.g., MRI). The latter requires a random

Ω to avoid aliasing artifacts in the recovered image. In contrast,

the proposed scheme permits arbitrary types of Ω including the

one corresponding to uniform downsampling, which naturally

occurs when the ADC runs at a speed lower than the DAC.

Therefore, the proposed scheme is easy to implement in the

OFDM system. In the next two subsections, we show the

encoding efficiency of this scheme both theoretically and

numerically. To keep our exposition general, the discussions in

this section do not assume that the S nonzero entries of h only

occur in its first Ñ < N positions. This property of OFDM

channels shall be exploited in the next section to improve both

the theoretical and numerical performances.

D. CS by Random Convolution

We first review the existing CS results of random convolu-

tion. In [28], Toeplitz2 measurement matrices are constructed

with i.i.d. random row 1 (the same as type (i)) but with only

±1 or {−1, 0, 1}; their downsampling effectively takes the first

M rows; and the number of measurements needed for stable

ℓ1 recovery is shown as M ≥ O(S3 · logN/S). [29] uses

a “partial” Toeplitz matrix, with i.i.d. Bernoulli or Gaussian

row 1, for sparse channel estimation where the downsampling

effectively also takes the first M rows. Their scheme requires

M ≥ O(S2 · logN) for stable ℓ1 recovery. In [30], random

convolution of type (ii) with either random downsampling or

random demodulation is proposed and studied. It is shown that

the resulting measurement matrix is incoherent with any given

sparse basis with a high probability and ℓ1 recovery is stable

given M ≥ O(S · logN + log3 N). Our proposed type (ii)

is motivated by [30]. Recent results in [38] show that several

random circulant matrices satisfy the RIP in expectation given

M ≥ O(max{S3/2 log3/2 N,S log2 S log2 N}) with arbitrary

downsampling. The rest of this subsection focuses on proving

the recovery guarantees for the proposed type-(i) sensing

scheme. In short, we shall establish stable recovery under the

condition M ≥ O(S2 log(N/S)), that is, when the channel

is sparse, there can be up to a log difference between the

recovered channel resolution and the receiver ADC speed. We

note that one might hope to improve S2 to S, like in the same

of i.i.d. Gaussian sensing matrices, but it will require a novel

approach.

2which is slightly more general than circulant.
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Let the type-(i) CS sensing matrix be denoted by

A := (M−1/2)PΩC ∈ C
M×N , (6)

where M−1/2 is just a factor for the normalization purpose,

PΩ is a downsampling operator that keeps the entries in an

arbitrary index set Ω of cardinality M and discards the rest,

and

C :=











x1 x2 · · · xN

xN x1 · · · xN−1

. . .

x2 xN · · · x1











is a circulant matrix with complex standard Gaussian random

x = [x1;x2; · · · ;xN ].

The proof sketch is the following. The main step is a con-

centration (isometry) result: for an arbitrary S-sparse vector h
with ‖h‖2 = 1, ‖Ah‖22 is concentrated around its mean, which

equals 1. The unit-norm of h gives the unit mean; they are not

essential. The remaining steps follow the arguments in [40],

with minor changes to some formulas and numbers: roughly

speaking, we fix an arbitrary index set T with |T | = S, pick an

ǫ-net Q ⊂ HT = {h ∈ C
N : supp(h) = T, ‖h‖2 = 1}— and

use the above concentration result for a single h to establish the

isometry for ‖Ah‖ uniformly over h ∈ Q ⊂ HT ; then, based

on the ǫ-net trick and a union bound, the isometry is extended

from Q to all h ∈ HT uniformly; and finally, the union bound

is applied again to extend the isometry property from HT with

a fixed T to the set of all S-sparse vectors. This establishes

the RIP of A, more accurately, with high probability given

M ≥ O(S2 log(N/S)). Quoting existing RIP-based recovery

results, we then obtain stable recovery guarantees for all S-

sparse vectors h.

The major work to prove the concentration result is based

on reducing ‖Ah‖22 to Z =
∑N

i=1 ai(Y
2
i − 1) and applying

the following result from [42] that relates the concentration of

Z to the parameters ai.

Lemma 1 (Sec. 4.1 of [42]): Assume that Yi ∼ N (0, 1)
for i = 1, 2, . . . , N i.i.d. and a = [a1, . . . , aN ] ≥ 0. Let Z :=
∑N

i=1 ai(Y
2
i −1). The following inequalities hold for any t >

0:

P(Z ≥ 2‖a‖2
√
t+ 2‖a‖∞t) ≤ e−t, (7)

P(Z ≤ −2‖a‖2
√
t) ≤ e−t. (8)

Therefore, we shall express ‖Ah‖22 as Z and bound ‖a‖2 and

‖a‖∞.

1) A Concentration Result of Random Circulant Matrices:

Let h be such that ‖h‖2 = 1 and ‖h‖0 = |supp(h)| = S. (We

shall remove the unit-norm assumption later.) We break the

development into a few steps:

1) Step 1. Based on the symmetry of convolution, we can

rewrite

Ah = (M−1/2)PCh = (M−1/2)PBc̃, i.e., Ch = Bc̃

where c̃ = [xN ;xN−1; . . . ;x1] and

B =











hN hN−1 · · · h1

h1 hN · · · h2

. . .

hN−1 hN−2 · · · hN











.

2) Step 2. Let UΣV ∗ be the full-size singular value decom-

position (SVD) of matrix PB, and assume diag(Σ) =
[σ1, σ2, . . . , σN ]. Introduce c̄ = V ∗c̃. Since V is unitary,

c̄ is complex standard Guassian as well. For simplicity,

we assume the real-valued c̄ ∼ N (0, IN ), which causes

a loss of factor of 2 but does not change the results

below in any essential way. Hence,

‖Ah‖22 = M−1‖PBc̃‖22
= M−1‖UΣV ∗c̃‖22
= M−1‖Σc̄‖22

= M−1
N
∑

i=1

σ2
i c̄

2
i . (9)

To apply Lemma 1, we let Yi := c̄i and ai := M−1σ2
i .

We shall bound ‖a‖∞ = M−1(supi |σi|)2 and ‖a‖2.

3) Step 3. Since ‖h‖2 = 1, we have ‖a‖1 =
M−1

∑N
i=1 σ

2
i = M−1‖PB‖2F = ‖h‖22 = 1.

4) Step 4. Since every row or column of B has a unit 2-

norm and at most S nonzero entries, the row or column

has a maximal 1-norm of
√
S. Hence, we have ‖B‖1 =

‖B‖∞ ≤
√
S and supi σi = ‖PB‖2 ≤ ‖P‖2‖B‖2 ≤

1 ·
√

‖B‖1‖B‖∞ ≤
√
S. Therefore,

‖a‖∞ ≤ S/M (10)

‖a‖2 ≤
√

‖a‖1‖a‖∞ ≤
√

S/M (11)

and applying Lemma 1 to

Z =
N
∑

i=1

ai(Y
2
i − 1)

= M−1
N
∑

i=1

σ2
i c̄− 1

= ‖Ah‖22 − 1 (12)

gives

P

(

‖Ah‖22 − 1 ≥ 2

√

tS

M
+

2tS

M

)

≤ e−t, (13)

P

(

‖Ah‖22 − 1 ≤ −2
√

tS

M

)

≤ e−t. (14)

Let ǫ := 2
√

tS/M + 2tS/M and obtain t =
(ǫ+1−

√
2ǫ+1)M

2S . Combining (13) and (14) and noting

P
(
∣

∣‖Ah‖22 − 1
∣

∣ ≥ ǫ
)

‖h‖2=1,‖h‖0=S

= P
(
∣

∣‖Ah‖22 − ‖h‖22
∣

∣ ≥ ǫ‖h‖22
)

‖h‖0=S
(15)
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we get concentration inequality

P
(∣

∣‖Ah‖22 − ‖h‖22
∣

∣ ≥ ǫ‖h‖22
)

‖h‖0=S

≤ 2 exp

(

−M

S
c0(ǫ)

)

, (16)

where c0(ǫ) =
ǫ+1−

√
2ǫ+1

2 .
Theorem 1: A matrix A generated by (6) satisfies the

concentration inequality (16) for any S-sparse vector h.

2) From Concentration to RIP: Inequality (16) lets us

follow the arguments of [40] and obtain the following two

results.

Lemma 2: For any given index set T with |T | = S < M
and 0 < δ < 1, a matrix A generated by (6) satisfies the

inequality

(1−δ)‖h‖22 ≤ ‖Ah‖22 ≤ (1+δ)‖h‖22 : ∀ h ∈ C
n, supp(h) = T,

(17)

holds with probability at least

1− 2

(

12

δ

)S

e−
M
S
c0(δ/2).

From (17) to the RIP inequality (3), we shall applying the

union bound with the multiple

(

N
S

)

≤ (eN/S)S . Hence, (3)

fails to hold with probability at most

2

(

eN

S

)S (
12

δ

)S

e−
M
S
c0(δ/2)

= exp

(

−M

S
c0(

δ

2
) + S[log(

eN

S
) + log(

12

δ
)] + log(2)

)

. (18)

If we choose c1 > 0 and let M ≥ S2 log(N/S)/c1,

then S log(N/S) ≤ M
S c1 and the right-hand side of (18)

≤ M
S

{

−c0(δ/2) + c1[1 + log−1(N/S) · (1 + log(12/δ))]
}

+
log(2). Hence, for each δ we can choose c1 small enough to

ensure {· · · } < −c0(δ/2)/2. Therefore, we get the following:

Theorem 2: Let matrix A be generated by (6). If M ≥
O
(

S2 log(N/S)
)

, then A satisfies the RIP with a prescribed

0 < δS < 1 with probability at least 1− e−O(M/S), where the

constants in O(·) depend only on δ.

From Theorem 2 and the fact [43] that δ2S < 0.4931 is a

sufficient condition for ℓ1-minimization to recover all S-sparse

vectors universally and recover all nearly S-sparse vectors sta-

bly, we can conclude that universal stably recovery condition

for matrix A generated by (6) is M ≥ O
(

S2 log(N/S)
)

.

E. Intuitive Explanations

Let us explain intuitively why (5) is an effective encoding

scheme for a sparse vector h. The key of successful CS

encoding is that no matter where the nonzeros in h are,

each measurement must contain a roughly equal amount of

information from each nonzero in h; in other words, the

information in h must spread out in the measurements, and

the spreading must not depend on where the information is

localized in h. It is commonly known that as long as h is

sparse, Fh is non-sparse (the uncertainty principle) and thus its

information is spread over all its components. The challenges

are to avoid F−1diag(X)Fh from de-spreading Fh. The

Fig. 2. Logic Block Diagram of the proposed CS-OFDM
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random phases of X by design are of critical importance. They

“scramble” the components of Fh and break the “delicate

relations” among these components in a way that, contrary

to F−1Fh = h being sparse, F−1diag(X)Fh is not sparse

at all. One can see this by recalling that the phases of Fh
encode the location of the information in h. When h is sparse,

its information is highly localized. Randomly “scrambling”

the phases causes the information to spread over. Due to a

phenomenon called concentration of measures, the information

in h spreads over the components Ch in a way that, with

high probability, the sizes of all S-sparse h are uniformly

preserved (scaled by a factor M/|Ω|) by PΩCh with Ω of

a size essentially linear in S2 and log(N/S). Preserving size

means preserving pair-wise distances, so those downsampled

measurements perform stable embedding, which subsequently

allows ℓ1 minimization to obtain a stable recovery of h.

F. Numerical Evidence of Effective Random Convolution

CS performance is measured by the number of measure-

ments required for stable recovery. To compare the proposed

sensing schemes with the well-established Gaussian random

sensing, we conduct numerical simulations and show its results

in Figure 3. We compare three types of CS encoding matrices:

the i.i.d. Gaussian random complex matrix, and the two

circulant random complex matrices corresponding to types (i)

and type (ii) above. In addition, the standard ℓ1 minimization

is compared to our proposed algorithm CS-OFDM, which is

detailed in the next section. The simulations results show that

the random convolutions of both types perform just as well

as the Gaussian random sensing matrix, and our algorithm

CS-OFDM further improves the performance by half of a

magnitude.

• 
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G. Relationship to Existing CS-based Channel Estimation

Our work is closely related to [29] and [31]. In [29], i.i.d.

Bernoulli or Gaussian vector is used as training sequence,

and downsample is carried out by taking only the first M
rows, while channel estimation is obtained as a solution to the

Dantzig selector. In [31], MIMO channels are estimated by

activating all sources simultaneously. The receivers measure

the cumulative response, which consists of random convolu-

tions between multiple pairs of source signals and channel

responses. Their goal is to reduce the channel estimation time.

ℓ1 minimization is used to recover the channel response.

Our current work is limited to estimating a single h-vector.

Although our work is based on similar random convolution

techniques, we have proposed to use a pair of high-speed DAC

transmitter and regular-speed ADC receiver for the novel goal

of high-resolution channel estimation. Furthermore, we derive

theoretical guarantees and apply a novel algorithm tailored for

the OFDM channel, which is described in details in Section

IV below.

IV. OFDM CHANNEL ESTIMATOR

In this section, we first formulate the problem for the

OFDM channel estimator. Then, we present the numerical

algorithm, as well as its complexity analysis. Finally, an

estimated performance lower bound is given to evaluate the

proposed algorithm.

A. Problem Formulation

As a result of rapid decaying of wireless channels, P — the

number of significant multipath components — is small, so the

channel response h is highly sparse. Recall that the nonzero

components of h only appear in the first Ñ components3. We

shall recover a sparse high-resolution signal h with a constraint

from the measurements y at a lower resolution of M . We

define | · | as the amplitude of a complex number, ‖h‖0 as

the total number of nonzeros of |h|, and ‖h‖1 =
∑

i |hi|. The

corresponding model is

min
h∈CN

‖h‖0, (19)

s.t.

{

y = φh,

hi = 0, ∀i > Ñ,

where φ denotes PΩC = PΩF
−1diag(X)F in (5). Generally

speaking, problem (19) is NP-hard and is impossible to solve

even for moderate N . A common alternative is its ℓ1 relaxation

model with the same constraints.

min
h∈CN

‖h‖1, (20)

s.t.

{

y = φh,

hi = 0, ∀i > Ñ,

which is convex and has polynomial time algorithms. If y
has no noise, both (19) and (20) can recover h exactly given

3Ñ is know. Compared with N , the ratio is 1/5 in the WiFi system (3.2µs
for data and 0.8µs for cyclic prefix). Even for 0.8µs, the number of multipath
is still relatively small especially in the outdoor environment. Therefore, the
channel taps are still sparse.

enough measurements, but (20) requires more measurements

than (19).

B. Algorithm

Instead of using a generic algorithm for (20), we design

an algorithm specially to exploit the OFDM system features,

including the special structure of h and noisy measurements y.

At the same time, we maintain algorithm simplicity to achieve

low complexity and match with easy hardware implementa-

tion.

First of all, we can simply combine two constraints into one

by letting the variables be h̃ = [h1, h2, . . . , hÑ ] and dropping

the rest components of h. Let φ̃ be the matrix formed by the

first Ñ columns of φ. Hence, the only constraints are φ̃h̃ = y.

Since the solution sparsity P remains to be much smaller than

Ñ , the sparse optimization is still needed. The RIP result in

the last section tells us the number of required measurements

is O(S2 log(Ñ/S)), where S = P for OFDM, instead of

O(S2 log(N/S)). Since N > Ñ , with the same number of

measurements (receiver ADC speed) one can estimate the

channel with a large Ñ and thus an even larger N . Moveover,

from the computational point of view, it reduces the size

and complexity of our problem and thus makes the algorithm

faster.

We also develop our algorithm CS-OFDM for the purpose of

handling noisy measurements. The iterative support detection

(ISD) scheme proposed in [6] has a very good performance

for solving (20) even with noisy measurements. Our algorithm

uses the ISD, as well as a final denoising step. In the main

loop, it estimates a support set I from the current reconstruc-

tion and reconstructs a new candidate solution by solving

the minimization problem min{∑i∈Ic |h̃i| : φ̃h̃ = y}, and

it iterates these two steps for a small number of iterations.

The idea of iteratively updating the index set I helps catch

missing spikes and erase fake spikes. This is an ℓ1-based

method but outperforms the standard ℓ1 minimization. Because

the measurements have noise, the reconstruction is never exact.

Our algorithm uses a final denoising step, which solves least-

squares over the final support T , to eliminate tiny spikes likely

due to noise. The pseudocode of the proposed algorithm is

listed in Algorithm 1.

In Algorithm 1, at each iteration j, (21) solves a weighted

ℓ1 problem, and the solution hj is used for support detection

to generate a new Ij+1. After the main loop is done, a support

T is estimated above a threshold, which is selected based on

empirical experiences. If the support detection is executed

successfully, T would be the set of all channel multipath

delay. Finally, h̃ is constructed by solving a small least-squares

problem, and h̃i, ∀i 6∈ T , fall to zero.

C. Complexity Analysis

This algorithm is efficient since every step is simple and the

total number of iterations needed is small. The subproblem is

a standard weighted ℓ1 minimization problem, which can be

solved by various ℓ1 solvers. As φ is a convolution operator,

we choose YALL1 [11] since (i) it allows us to customize the

operators involving φ̃ and its adjoint to take advantages of the
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Algorithm 1 CS-OFDM

Input: φ, y;

Initalize:

φ̃ ← the first Ñ columns of φ.

I0 ← ∅
j ← 0
and w0

i ← 1, ∀i ∈ {1, 2, . . . , Ñ}
while the stopping condition is not met, do

Subproblem:

h̃← argmin
∑

i 6∈Ij

|h̃i|, (21)

s.t. φ̃h̃ = y.

Support detection:

Ij+1 ← {i : |h̃i| ≥ 2−j‖h̃‖∞}, where ‖h̃‖∞ =
maxi{|h̃i|}.
Weights update:

wj+1
i ← 0, ∀i ∈ Ij+1; wj+1

i ← 1, otherwise.

j ← j + 1
end while

Support-restricted least-squares:

T ← {i : |h̃i| > threshold}; solve

h̃T ← argmin
h̃
‖φ̃T h̃− y‖22, (22)

and h̃T c ← 0.

Return h̃ and h = (h̃, 0, . . . , 0).

FFT, making it easier to implement the algorithm on hardware,

(ii) YALL1 is asymptotically geometrically convergent and

efficient even when the measurements are noisy. With our

customization, all YALL1 operations are either FFTs or one

dimensional vector operations, so the overall complexity is

O(N logN). Moreover, for support detection, we run YALL1

with a more forgiving stopping tolerance and always restart

it from the last step solution. Furthermore, YALL1 converges

faster as the index Ij gets closer to the true support. The

total number of YALL1 calls is also small since the detect

support threshold decays exponentially and bounded below by

a positive number. Numerical experience shows that the total

number of YALL1 calls never exceeds P , which is the number

of taps.

The computational cost of the final least-squares step is

negligible because the associated matrix φ̃T has its number

of columns approximately equal to P , namely, the associated

matrix for least-squares has size M × P . Generally speaking,

the complexity for this least-squares is O(MP + P 3). Since

P and M are much smaller than N , the complexity of the

entire algorithm is dominated by that of YALL1, which is

O(PN logN).

D. Cramér-Rao Lower Bound

The Cramér-Rao Lower Bound (CRLB) is an indicator of

the performance of any unbiased estimator, which has been
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Fig. 4. Example of Reconstructed Multipath Delay Profile.

used in many applications [12]. In this subsection, we derive a

CRLB under the assumption that the tap locations (the support

of h) are known. We are not aware of ways to drop the support

assumption. Since our estimator does not know the support,

the support aware CRLB derived is pessimistic. It has a value

lower than the CRLB with an unknown support. Nevertheless,

the pessimistic CRLB does serve the comparison purpose.

The CRLB for each entry of h is CRLB(hi) = [I−1(h)]ii,
where I(h) is the Fisher information matrix, written as I(h) =

−E
{

∂
∂h log f(y|h)

[

∂
∂h log f(y|h)

]∗}
, where E denotes ex-

pectation and f(y|h) is the conditional PDF of y given h.

With known T = supp(h), the channel estimation model

can be written as

y = φThT + ξ, (23)

where φ = PΩC, φT denotes is the sub-matrix of φ with

columns corresponding to the indices in T , and ξ is the AWGN

noise with distribution N(0, σ2IM×M ). Following equation

(23), we can derive the conditional PDF of y given hT :

f(y|hT ) =
1

(2πσ2)M/2
exp

{

− 1

2σ2
‖y − φThT ‖2

}

. (24)

It is a standard exercise to obtain the overall CRLB:

CRLB(hT ) =
P
∑

i=1

CRLB[(hT )i] = σ2trace[(φ∗
TφT )

−1]. (25)

The above CRLB is compared to the actual performance in

the numerical study in the next section.

V. NUMERICAL SIMULATIONS

In this section, we present numerical simulations to illustrate

the performance of the proposed CS-OFDM algorithm for

high-resolution OFDM channel estimation. Our evaluations are

based on the mean square error (MSE) of channel estimation

and the rate of successful multipath delay detections with

respect to different channel profiles and signal-to-noise ratios

(SNRs).
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A. Simulation Settings

We consider an OFDM system with 1k-point IDFT (N =
1024) at the transmitter and 64-point DFT (M = 64) at the

receiver. This gives a compression ratio of 16. The number of

silent sub-carrier that acts as guard band is 256 among 1024
sub-carriers. The channel is estimated based on 768 pilot tones

with uniformly random phases and a unit amplitude (recall

that the unit amplitude does not change estimation results

but makes our algorithm faster), with measurement SNRs

ranging from 10dB to 30dB. We assume the usage of cyclic

prefix and that the impulse response of the channel is shorter

than cyclic prefix, i.e., there is no inter-symbol interference.

For all simulations, we vary the total number of multipath

from 5 to 15. We do not consider the compensation of in

phase/quadrature phase (I/Q) imbalance and carrier frequency

offset (CFO), and leave them for future work.

B. MSE Performance

Figure 4 is a snapshot of one channel estimation simulation.

It shows that the proposed pilot arrangement and CS-OFDM

successfully detect an OFDM channel with 7 multipath and

SNR=30dB. Our method not only exactly estimates the mul-

tipath delays but also correctly estimates the values of the

corresponding multipath components.

Figure 5 depicts the MSE performance on OFDM channels

with the numbers of multipath varying from 5 to 15 and SNR

levels from 10dB to 30dB. As the number of multipath grows,

the MSE increases. When there are only a moderate number

of multipath on the OFDM channel, the MSE is very low. In

addition, the increase of SNR also reduces the MSE for about

10 times per 20dB.

Figure 6 shows the reconstructed SNRs versus the number

of multipath at different input SNRs. We can see that CS-

OFDM achieves a gain in SNR. For example, when the input

SNR is 10dB, we obtain a reconstructed SNR higher than

20dB for 5 multipath. As the number of multipath increases,

the SNR gain decreases. However, even when the number of

multipath is 10, we still have a 5dB gain, e.g., the reconstructed

SNR is 15dB when the input signal SNR is 10dB. The similar
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SNR gain appears for input SNR= 20dB and SNR= 30dB

cases. Over the set of SNRs and multipath numbers in our

tested, there is an average gain of 6dB from the input SNR to

the recovered SNR.

C. CRLB Performance

Figure 7 depicts the estimated channel variance versus the

support-known CRLB, corresponding to different SNRs and

multipath numbers. Since the algorithm does not know the

support while the CRLB does, we believe that the small gaps

indicate a strong performance of the algorithm.

D. Multipath Delay Detection Performance

Figures 8 and 9 depict the probability of correct detection

(POD) and the false alarm rate (FAR) of multipath delays cor-

responding to different SNRs and multipath numbers. When

the SNR is above 10dB, simulation shows 100% POD for no

more than 12 multipath. For the large number of multipath 15,

the probability of correct multipath delay detection is higher

than 95% for SNR≥ 10dB. Even when SNR is as low as 10dB,

as long as the number of multipath does not exceed 10, we

'•,,i,._ 
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still have a POD of greater than 95%. The FAR performance

shows the consistant results: as the SNR decreases and the

number of multipath increases, the performance decreases. For

SNR≥ 10dB and the number of multipath ≤ 10, we obtain

nearly zero FAR.

VI. CONCLUSIONS

Efficient OFDM channel estimation will drive OFDM to

carry the future of wireless networking. A great opportunity for

high-efficiency OFDM channel estimation is lent by the sparse

nature of channel response. Riding on the recent development

of CS, we propose a design of probing pilots with random

phases, which preserves the information of channel response

during the convolution and down-sampling processes, and a

sparse recovery algorithm, which returns the channel response

in high SNR. These benefits translate to the high resolution of

channel estimation, as well as shorter probing times. In this

paper, the presentation is limited to an idealized OFDM model

and simulated experiments. In the future, we will fuse them

into more realistic OFDM frameworks. The results presented

here hint a high efficiency improvement for OFDM in practice.
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