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Abstract—Compressive sensing of signals drawn from a Gaus-
sian mixture model (GMM) admits closed-form minimum mean
squared error (MMSE) reconstruction from incomplete linear
measurements. An accurate GMM signal model is usually not
available a priori, because it is difficult to obtain training signals
that match the statistics of the signals being sensed. We propose
to solve that problem by learning the signal model in situ,
based directly on the compressive measurements of the signals,
without resorting to other signals to train a model. A key feature
of our method is that the signals being sensed are treated as
random variables and are integrated out in the likelihood. We
derive a maximum marginal likelihood estimator (MMLE), that
maximizes the likelihood of the GMM of the underlying signals
given only their linear compressive measurements. We extend
the MMLE to a GMM with dominantly low-rank covariance
matrices, to gain computational speedup. We report extensive
experimental results on image inpainting, compressive sensing of
high-speed video, and compressive hyperspectral imaging (the
latter two based on real compressive cameras). The results
demonstrate that the proposed methods outperform state-of-the-
art methods by significant margins.

Index Terms—Compressive sensing, Gaussian mixture model
(GMM), mixture of factor analyzers (MFA), maximum marginal
likelihood estimator (MMLE), inpainting, high-speed video, hy-
perspectral imaging

I. INTRODUCTION

Compressive sensing (CS) [1, 2, 3, 4, 5, 6, 7, 8], which

aims to recover signals from incomplete linear measurements,

is based on the hypothesis that the signals in question have

compressible representations. Consider, for example, a finite

discrete signal x ∈ R
n, to which a sensing operator Φ ∈

R
m×n (m ≪ n) is applied to obtain a low-dimensional

measurement vector y = Φx ∈ R
m. Let the columns of F

constitute a basis of Rn. Then one can write x = Fβ , where

β ∈ R
n is a coefficient vector. The coefficients β, and hence

the signal x, can be reconstructed from y, if most components

of β are negligible and ΦF satisfies certain conditions [4].

Two types of compressive representations have been used

in CS: universal representations and customized representa-

tions. A universal representation is compressible for a wide

range of signals. Many off-the-shelf bases provide universal

compressing ability; for example, natural signals are typically

compressible in discrete cosine or wavelet bases. Most CS
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algorithms developed to date are based on universal bases, and

the versatility of the bases ensures compressibility regardless

of the details of particular signals.

In contrast, a customized representation focuses on a partic-

ular collection of signals and takes into account the specifics of

these signals. Customized representations can usually provide

greater compressibility and allow a signal to be reconstructed

from fewer measurements. It is shown in [9, 10] that sig-

nificantly less measurements are required for recovering the

signals from a Gaussian mixture model (GMM) by using the

GMM to represent the signals than by using a universal rep-

resentation, assuming the covariance matrix of each Gaussian

has few dominant eigenvalues. Here the dominant eigenvectors

provide a compressive representation closely related to the

concept of structured sparsity [11, 12], and the representation

is customized to the signals from the GMM.

To be specific, a signal x ∈ R
n drawn from a Gaussian

distribution N (x|µ,D) can be represented as x = Fβ, where

F ∈ R
n×n contains the eigenvectors of D and β is the

coefficient vector. While traditional CS does not specify the

relative importances of basis vectors, the n eigenvectors in F

have their relative importances prescribed by the associated

eigenvalues, and the set of dominant eigenvalues determines

the support of β. It has been shown in [11], the estimate of β

from linear measurements y is the solution to the following

weighted ℓ2-norm regularized regression

β̂ = β + argmin
β

{
‖y −ΦFβ‖22 + σ2β′A−1β

}
(1)

where σ2 is the variance of the measurement noise, A is a

diagonal matrix containing the eigenvalues of D, and β is

a constant vector accounting for the contribution from µ. As

seen from (1), the support of β̂ is determined by the dominant

eigenvalues. It can be shown that the resulting signal estimate

x̂ = Fβ̂ is consistent with the mean-based reconstruction

formula given below in (6).

Further, Renna et al. [13] have shown that, most natural

images and videos can be well represented by a GMM with

(dominantly) low-rank covariance matrices, and that any signal

drawn from such a GMM can be perfectly reconstructed from

r noise-free measurements if each covariance matrix of the

GMM has at most r dominant eigenvalues. This is a much

less stringent reconstruction condition than that prescribed by

standard restricted-isometry-property (RIP) bounds [1, 4, 5].

This theoretical result is valid under the standard assumption

on Φ, i.e., the elements of Φ are drawn i.i.d. from a zero-mean

Gaussian distribution. It has also been shown in [13, 14] that
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an optimally designed projection matrix Φ can further improve

the reconstruction performance.

The current GMM-based CS theories in [9, 10, 12, 13] are

based on the assumption that the underlying GMM is exactly

known. In practice, the GMM has to be estimated [15, 16]

and the quality of the estimate depends heavily on the training

signals. While the training signals should ideally have identical

statistical properties as the signals being recovered, one can

only find ones that have similar statistics in practice. In some

applications, it is relatively easy to find good training signals;

in others, however, finding good training signals is a great

challenge. To solve this problem, [10, 11] proposed to use

the partially recovered signals to re-train the GMM, expecting

that the re-trained model will be a better representation of

the underlying signals. Given a collection of measurement

vectors {yi = Φixi + ǫi}
N
i=1 (ǫi is white Gaussian noise

with zero mean and variance σ2), a set of K Gaussian signal

models, N ( · |µk,Dk) (with mean µk and covariance matrix

Dk), k = 1, · · · ,K, are iteratively re-trained in [11] using an

algorithm called Max-Max. The algorithm alternates between

the following two steps:

MAP: For i = 1, · · · , N , compute from yi the

maximum a posteriori (MAP) estimate, (ẑi, x̂i) =
argmin(k,xi) N (yi|Φixi, σ

2I)N (xi|µk,Dk),
where µk and Dk are computed from the previous

ML step.

ML: For k = 1, · · · ,K, use the subset of recovered signals

from the MAP step, {x̂i : ẑi = k}Ni=1, as training

signals to re-estimate the k-th Gaussian’s parameters

(µk,Dk).

The Max-Max algorithm was reexamined in [11] under the

name “piecewise linear estimator (PLE),” and related to ex-

pectation maximization and block-sparse dictionary learning.

The GMM is supposedly a statistical representation of

{xi}
N
i=1, the true signals being recovered. Employing esti-

mates of the true signals to self-train the model is a clever

way to solve the problem of finding good training signals.

The quality of the self-trained model, however, hinges on

the accuracy of the estimated signals {x̂i}
N
i=1. The model is

guaranteed to improve only if the estimated signals are optimal

and the estimation errors are properly accounted for when

using the estimated signals to re-train the GMM.

The Max-Max algorithm has several drawbacks: (i) its

objective function is defined locally within each iteration,

lacking a global objective across the iterations; (ii) the MAP

estimation assumes each signal is exclusively associated with a

single Gaussian component; for a non-Gaussian signal, which

is necessarily associated with at least two Gaussians, the

estimate is not globally optimal; (iii) the covariance matrices

{Dk}
K
k=1 re-estimated in the ML step lack the terms that

account for the errors of the estimated signals {x̂i}
N
k=1.

In this paper, we present an alternative approach by refor-

mulating the self-training problem as one of maximizing the

marginal likelihood of the GMM given only the measurement

vectors {yi}
N
i=1, with the true signals {xi}

N
i=1 treated as latent

random vectors and marginalized out of the likelihood.

The new approach employs the marginal likelihood as a

global optimization objective and uses the conditional expec-

tations of true signals as their estimates, i.e., x̂i = Exi|yi
(xi),

i = 1, · · · , N . Our estimates are globally optimal in the

sense of minimum mean squared error (MMSE), i.e., x̂i =
argminθ Exi|yi

‖θ − xi‖
2
2. Moreover, when re-training the

GMM, we correct the covariance matrices by incorporat-

ing the information from the posterior covariance matrices

Exi|yi
(xi − x̂i)(xi − x̂i)

′, where ′ denotes matrix transpose.

All these features are automatically provided by pursuing

rigorous expectation maximization (EM) of the marginal like-

lihood. As a byproduct, we also obtain an analytic posterior

distribution for each unknown signal, as shown in (12).

When the signal dimensionality is large, manipulation of

the GMM’s covariance matrices is computationally expensive,

and estimating them from highly-incomplete measurements is

difficult. This motivates us to put a near-low-rank structure on

the covariance matrices, i.e., for k = 1, · · · ,K, we construct

Dk = FkF
′
k + ηI, where Fk ∈ R

n×rk with rk ≪ n, I is an

identity matrix, and 0 < η ≪ 1 ensures that the covariance

matrices are close to low-rank and yet invertible. With the

near-low-rank constraints, one manipulates Fk instead of Dk,

which is much more efficient since Fk has significantly less

columns. Such a GMM is equivalent to a mixture of (low-

dimensional) factor analyzers (MFA) [17, 18, 19]. Compres-

sive sensing of a MFA has been studied in [9], where the model

is estimated from training signals. In this paper, we iteratively

self-train the model using the estimates of the signals being

recovered, extending EM to an MFA.

In summary, we propose rigorous EM to learn a model of

the unknown signals, using noisy linear measurements of the

signals. No training signals are required. With the underlying

signal model represented by a GMM with full or near-low-rank

covariance matrices, the learning is accomplished by iterative

self-training, using MMSE estimates of the signals to re-train

the model and correcting the covariance matrices in each

iteration. The algorithms maximize the marginal likelihood

of a GMM conditional solely on the measurements, with the

unknown signals marginalized out as latent random vectors.

The two algorithms are respectively referred to as maximum

marginal likelihood estimator of a Gaussian mixture model

(MMLE-GMM) and maximum marginal likelihood estimator of

a mixture of factor analyzers (MMLE-MFA). At the end of the

algorithms, the self-trained GMM or MFA yields a posterior

distribution for each signal and the posterior mean provides a

closed-form reconstruction.

The proposed algorithms are applied to image inpainting,

compressive sensing of high-speed video, and compressive

hyperspectral imaging, where a 2-D image, a 3-D video, or a 3-

D hyperspectral image is partitioned into a collection of equal-

sized local patches which are vectorized to constitute {xi}
N
i=1.

The measurements of a hyperspectral imagery are acquired by

the coded aperture snapshot spectral imager (CASSI) [20, 21],

while those of a video is acquired by the coded aperture com-

pressive temporal imager (CACTI) [22, 23, 24, 25, 26]. In both

cases, the measurement take the form of {yi = Φixi+ǫi}
N
i=1,

where Φi is a local sensing operator applied to the i-th patch

and ǫi is noise. We present experimental results based on

simulated measurements and real measurements acquired by

actual hardware, and compare the performances of MMLE-
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GMM and MMLE-MFA to those of state-of-the-art algorithms.

The remainder of the paper is organized as follows. We

discuss signal recovery with a given GMM in Section II,

and present the maximum marginal likelihood estimator for a

GMM in Section III, and for an MFA in Section IV. Extensive

experimental results are presented in Section V based on

simulated measurements and real measurements acquired by

actual hardware. Section VI concludes the paper.

II. STATISTICAL SIGNAL RECOVERY WITH A GIVEN GMM

Let x be an arbitrary random signal drawn from a given

mixture of K Gaussian distributions,

p(x) =
∑K

z=1p(x|z)p(z), (2)

where p(x|z) = N (x|µz,Dz) is a Gaussian distribution

with mean µz and covariance matrix Dz (which is assumed

invertible), z ∈ {1, · · · ,K} is a discrete random variable

governed by p(z) = πz .

Our goal is to recover x from y = Φx + ǫ, where ǫ is

measurement noise and Φ is a sensing operator. Assuming ǫ

is zero-mean white Gaussian, i.e., ǫ ∼ N ( · |0,Λ) with Λ a

diagonal matrix, we have p(y|x) = N (y|Φx,Λ). Given z,

one has

p(y,x|z) = p(y|x)p(x|z) = N (y|Φx,Λ)N (x|µz,Dz). (3)

After expanding the rightmost side, collecting similar terms

and rearranging the results, one obtains

p(x,y|z)

= N

([
y

x

] ∣∣∣∣∣

[
Φµz

µz

]
,

[
Λ−1 −Λ−1Φ

−Φ′Λ−1 Φ′Λ−1Φ+D−1
z

]−1
)
.

Using the standard formulae for a multivariate Gaussian distri-

bution, one can write from the above equation the conditional

and marginal,

p(x|y, z) = N (x|ηz(y,Θ),Cz(y,Θ)),
p(y|z) = N (y|Φµz,Rz(Θ)), (4)

where

ηz(y,Θ) = µz +
(
Φ′Λ−1Φ+D−1

z

)−1
Φ′Λ−1(y −Φµz),

Cz(y,Θ) =
(
Φ′Λ−1Φ+D−1

z

)−1
.

Rz(Θ) =
[
Λ−1−Λ−1Φ

(
Φ′Λ−1Φ+D−1

z

)−1
Φ′Λ−1

]−1

,

and Θ
Def.
= {Λ} ∪ {πk,µk,Dk}

K
k=1 is the set of parameters

of p(x) and p(y|x). Note we have written ηz and Cz as

functions of (y,Θ), and Rz as a function of Θ, to indicate

the respective dependencies.

It follows from (4) that

p(z,x,y|Θ)
= p(z)p(x|y, z)p(y|z)
= πz N (x|ηz(y,Θ),Cz(y,Θ))N (y|Φµz,Rz(Θ)), (5)

After using the matrix inversion lemma to expand the invers-

es in the expressions of (η,C,R) and performing algebraic

simplification, we can rewrite

ηz(y,Θ) = µz +DzΦ
′(Λ+ΦDzΦ

′)−1(y −Φµz), (6)

Cz(y,Θ) = Dz −DzΦ
′(Λ+ΦDzΦ

′)−1ΦDz, (7)

Rz(Θ) = Λ+ΦDzΦ
′. (8)

It follows from (5) that the marginal distribution of y is

p(y|Θ) =
∑K

z=1πz N (y|Φµz,Rz(Θ)), (9)

and the posterior distribution of (z,x) given y,

p(z,x|y,Θ) = p(z|y)p(x|y, z)
= ρz(y,Θ)N (x|ηz(y,Θ),Cz(y,Θ)),(10)

where, ρz(y,Θ) =
πz N (y;Φµz,Rz(Θ))

∑K
l=1 πl N (y;Φµl,Rl(Θ))

. (11)

By (10), the posterior distribution of x is given by

p(x|y,Θ) =
∑K

z=1ρz(y,Θ)N (x|ηz(y,Θ),Cz(y,Θ)), (12)

which is a GMM with measurement-dependent mixing pro-

portions, means, and covariance matrices.

A. Optimal Signal Estimation in the General Case

Let x̂(y,Θ) be an estimate of x from the measurements y,

given that x is a priori governed by the GMM in (2), param-

eterized by Θ. Since p(x|y,Θ) is a complete characterization

of the information that y carries about x, the best one can

achieve is to minimize the expected error between x̂(y,Θ)
and any x drawn from p(x|y,Θ). Considering all instances

of y drawn from p(y|Θ), one can use the mean squared error

(MSE) to measure the quality of the estimates as

MSE(Θ) =

∫
p(y|Θ)

∫
‖(x− x̂(y,Θ))‖22 p(x|y,Θ)dxdy.

Since p(y|Θ) ≥ 0, one can minimize the MSE by minimizing

the inner integral for each instance of y separately. The

minimum MSE (MMSE) estimate, obtained from any given

y, is given by the posterior mean

x̂MMSE(y,Θ) = Ex|y,Θ(x)

=
∑K

k=1ρk(y,Θ)

∫
xN (x|ηk(y,Θ),Ck(y,Θ))dx

=
∑K

k=1ρk(y,Θ)ηk(y,Θ).

(13)

where Ex|y,Θ(x) =
∫
xp(x|y,Θ)dx. The minimum mean

squared error is found to be

MMSE(Θ)

=

K∑

j=1

∫
ρj


tr(Cj) +

∥∥∥∥∥ηj −
K∑

k=1

ρkηk

∥∥∥∥∥

2

 p(y|Θ)dy,

=

K∑

j=1

πjtr(Cj)

+

K∑

j=1

∫
πj

∥∥∥∥∥ηj −
K∑

k=1

ρkηk

∥∥∥∥∥

2

N (y;Φµj ,Rj) dy,

where we omit the dependencies of {ρj ,ηj} on (y,Θ) and

the dependencies of {Cj ,Rj} on Θ; this simplified notation
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applies to other variables in subsequent sections, when doing

so causes no confusion. In the single-Gaussian case in which

K = 1, the second term in the right-most side vanishes and

one has MMSE(Θ) = tr(C1).

B. Optimal Signal Estimation when the Gaussians are Sepa-

rable A Posteriori

For any given y, when ρẑ ≈ 1 and ρk ≈ 0 for any k 6= ẑ, the

posterior p(x|y) is dominated by a single Gaussian component

and thus the MMSE estimate can be approximated as

x̂MMSE(y,Θ) ≈ ηẑ(y,Θ). (14)

The formula in (14) was used by the Max-Max algorith-

m [10, 11] and related work [15] to reconstruct x from

y, using maximum a posteriori (MAP) to find the best

index ẑ (see Section III-B for details). As an alternative,

one can also use marginal MAP to determine the best z,

ẑ = argmaxz p(z|y,Θ) = argmaxk
∫
p(z,x|y,Θ)dx, as has

been pursued in [27] for the problem of blind deconvolution.

While the integral is difficult to perform in [27], it is com-

puted in closed-form in our GMM case, with the expression∫
p(z,x|y,Θ)dx = ρz(y,Θ) provided in (11).

This special case happens when the marginal Gaussian

components in (9) are separable, i.e., the Gaussians (counting

their major probability mass) are situated far away to each

other as compared with the sizes of the masses. This option

was forced in [10, 11, 15, 27], motivated in part by simplifying

computational complexity.

III. LEARNING THE GMM FROM THE MEASUREMENTS

As discussed in Section I, the signal model in (2) is often not

available due to the difficulty of finding training signals drawn

from the same GMM as the sensed ones. In this section, we

present a method for training a GMM of the unknown signals

X = {xi ∈ R
n}Ni=1, using their noisy linear measurements

Y = {yi = Φixi+ǫi}
N
i=1. We assume the sensing matrices to

be signal-dependent to account for generality (i.e., Φi depends

on the signal index i). Differently from the conventional

compressive sensing which considers only one signal at a time,

we here consider a set of signals at the same time. This is

necessary since we are estimating a GMM which characterizes

the collective statistical properties of multiple signals (not a

single signal). It is important to note that the GMM is trained

on noisy linear measurements of the signals, rather than on

the signals directly. Once the GMM is estimated, the signals

are reconstructed using equation (13). Practical examples of

{xi}, {Φi}, and {yi} are provided in Section V.

The proposed method is based on maximum marginal

likelihood (MML) estimation of the GMM parameters Θ based

on Y , with X marginalized out as latent variables. The MML

estimate is found by solving the optimization problem,

ΘMML = max
Θ

N∑

i=1

ln

K∑

zi=1

∫
p(zi,xi,yi|Θ)dxi (15)

where p(zi,xi,yi|Θ) is given in (5). We solve the problem us-

ing expectation maximization [28], which produces a sequence

of successively improved estimates, {Θ(t)}t≥1, by alternating

between the two steps (with an initialization Θ(0)):

• E-step: Find the posterior distribution

p(zi,xi|yi,Θ
(t−1)), ∀ i, and obtain the expected

complete log-likelihood,

ℓ(Θ|Θ(t−1)) =
∑N

i=1Ezi,xi|yi
,Θ(t−1) {ln p(zi,xi,yi|Θ)} .

• M-step: Find the improved estimate Θ(t) by maxi-

mizing the expected complete log-likelihood, Θ(t) =
argmaxΘ ℓ(Θ|Θ(t−1)).

A. Technical Details

We obtain the expression of ℓ(Θ|Θ(t−1)) by using (5) and

(10) to calculate the expectation Ezi,xi|yi
,Θ(t−1)(·),

ℓ(Θ|Θ(t−1)) =

N∑

i=1

E {lnπzi N (yi|Φixi,Λ)N (xi|µzi ,Dzi)} ,

= constant +

N∑

i=1

K∑

k=1

ρ
(t−1)
ik lnπk

−
1

2

N∑

i=1

K∑

k=1

ρ
(t−1)
ik (yi −Φiη

(t−1)
ik )′Λ−1(yi −Φiη

(t−1)
ik )

−
1

2

N∑

i=1

K∑

k=1

ρ
(t−1)
ik tr(Λ−1ΦiC

(t−1)
ik Φ′

i)−
N

2
ln det(Λ)

−
1

2

N∑

i=1

K∑

k=1

ρ
(t−1)
ik (η

(t−1)
ik − µk)

′D−1
k (η

(t−1)
ik − µk)

−
1

2

N∑

i=1

K∑

k=1

ρ
(t−1)
ik

[
tr(D−1

k C
(t−1)
ik ) + ln det(Dk)

]
, (16)

where we have used the shorthands, ρ
(t−1)
ik = ρk(yi,Θ

(t−1)),

η
(t−1)
ik = ηk(yi,Θ

(t−1)), C
(t−1)
ik = Ck(yi,Θ

(t−1)), to sim-

plify notation.

Setting to zero the gradients of ℓ(Θ|Θ(t−1)) with respect to

Λ, πk, µk, Dk, k = 1, · · · ,K, and taking into account the

constraint that
∑K

k=1 πk = 1, we obtain a set of equations, the

solution to which gives the optimal updates, k = 1, · · · ,K,

π
(t)
k =

∑N
i=1 ρ

(t−1)
ik∑K

k=1

∑N
i=1 ρ

(t−1)
ik

, (17)

µ
(t)
k =

∑N
i=1 ρ

(t−1)
ik η

(t−1)
ik∑N

i=1 ρ
(t−1)
ik

, (18)

D
(t)
k =

∑N
i=1ρ

(t−1)
ik

[
(η

(t−1)
ik −µ

(t)
k )(η

(t−1)
ik −µ

(t)
k )′+C

(t−1)
ik

]

∑N
i=1 ρ

(t−1)
ik

, (19)

Λ(t)=
1

N

N∑

i=1

K∑

k=1

ρ
(t−1)
ik diag

(
(yi−Φiη

(t−1)
ik )(yi−Φiη

(t−1)
ik )′

+ ΦiC
(t−1)
ik Φ′

i

)
, (20)

where diag(·) is a diagonal matrix consisting of the diagonal

elements of the matrix argument.

Iterative computation of (17)-(19) constitutes the complete

MMLE-GMM algorithm. The algorithm guarantees to mono-

tonically increase
∑N

i=1 ln
∑K

k=1 π
(t)
k N (yi|Φµ

(t)
k ,Rk(Θ

(t))),
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the marginal log-likelihood function until convergence, by the

general result of expectation maximization [28]. The update

of Λ is optional, since Λ can often be obtained by calibrating

the measurement noise, as is true in our experiments.

B. Comparison to the Max-Max Algorithm of [10, 11]

The Max-Max algorithm in [10, 11], which assumes uni-

form mixing proportions (i.e., πk ≡ 1
K

), are based on the

following update equations:

1) (MAP) For i = 1, · · · , N , compute

(x̂
(t−1)
i , ẑ

(t−1)
i )=argmax

x,z
ln p(z,x|yi,µ

(t−1)
z ,D(t−1)

z ), (21)

where x̂
(t−1)
i gives the estimate for xi in iteration t−1.

2) (ML) The Gaussian parameters are updated as

µ
(t)
k =

1∣∣∣C(t−1)
k

∣∣∣

∑

i∈C
(t−1)
k

x̂
(t−1)
i , (22)

D
(t)
k =

1∣∣∣C(t−1)
k

∣∣∣

∑

i∈C
(t−1)
k

(x̂
(t−1)
i −µ

(t)
k )(x̂

(t−1)
i −µ

(t)
k )′, (23)

where C
(t−1)
k = {i : ẑ

(t−1)
i = k}, k = 1, · · · ,K.

Recalling from (10) that

p(z,x|y,Θ) = ρz(y,Θ)N (x|ηz(y,Θ),Cz(y,Θ)),

the MAP estimate of xi in (21) can be expressed as

x̂
(t−1)
i = η

ẑ
(t−1)
i

(yi,Θ
(t−1)).

As shown in (14), this estimate is optimal only when the

posterior p(xi|yi,Θ
(t−1)) is dominated by a single Gaussian

component indexed by ẑ
(t−1)
i . Note that Max-Max uses MAP

to locate the best Gaussian, while one can also use marginal

MAP to find it, as discussed in Section II-B.

Two major differences between the Max-Max algorithm and

the MMLE-GMM algorithm presented in Section III-A are

described below.

1) MMLE-GMM assigns each signal xi softly to all

Gaussian components, while Max-Max hard assigns xi

to a single best-approximating Gaussian component.

This difference leads to the different signal estimates

and GMM updates. In particular, for signal estimation,

MMLE-GMM achieves global MMSE in (13) by taking

into account all Gaussian components, while Max-Max

only achieves local MMSE in (21) within the best-

approximating Gaussian component. When updating the

GMM, MMLE-GMM updates each Gaussian compo-

nent in (18-19) using all estimated signals, while Max-

Max updates each component in (22-23) using only the

signals hard assigned to the component.

2) Given that xi is assigned to Gaussian component k,

MMLE-GMM respects xi as a Gaussian random vector,

incorporating its covariances matrix Cik into the GMM

update in (19), while Max-Max approximates xi as a

point mass concentrated on the MAP estimate, ignoring

its covariances matrix in the update performed in (23).

In summary, MMLE-GMM is an exact EM algorithm for

MML estimation and it monotonically increases the marginal

likelihood until the likelihood converges to a maxima, whereas

Max-Max replaces the expectation in the E-step with MAP

estimation and it is an approximate EM algorithm that has no

guarantee for convergence or optimality. The exact EM has

the same asymptotic time complexity as the approximate EM;

however, the exact EM is practically a little slower since it

has to compute the posterior covariance matrices in (7).

Essentially, the approximation of the Max-Max algorithm

requires that p(zi,xi|yi,Θ
(t)) concentrates on the MAP esti-

mate along the entire path Θ(0),Θ(1),Θ(2), · · · , which happens

when the following two conditions hold: (i) for i = 1, · · · , N ,

the probability mass of p(zi,xi|yi,Θ
∗) concentrates on the

MAP estimate, where Θ∗ is the optimal GMM; (ii) the

initialization Θ(0) is close to Θ∗. When condition (i) holds,

the accuracy of the Max-Max will be dictated by how close

the initialization is to Θ∗. Therefore, initialization is very

important for the Max-Max algorithm; we will demonstrate

this in Section V.

IV. INCORPORATING THE LOW-RANK CONSTRAINTS

As mentioned in Section I, directly manipulating the covari-

ance matrices {Dk} in (2) is expensive when n is very large.

To reduce the associated computational cost, we consider

constrained forms for these matrices, Dk = FkF
′
k+γI, where

Fk ∈ R
n×rk with rk ≪ n, k = 1, · · · ,K, and 0 < γ ≪ 1.

Since γ is small, Dk is dominated by a low-rank matrix. Under

these constraints, the GMM in (2) specializes to

p(x) =

K∑

z=1

πz N (x|µz,FzF
′
z + γI), (24)

which can be equivalently written as a mixture of factor

analyzers (MFA) [17, 18, 19],

p(x) =

K∑

z=1

πz

∫
N (x|µz + Fzβ, γI)N (β|0, I)dβ (25)

where Fz is known as the factor loading matrix of the z-

th factor analyzer and β represents the factor scores of x

(or coefficients of x in Fz). Recalling from the discussion

below (2) that p(y|x) = N (y|Φx,Λ), we can write the joint

distribution as

p(z,β,x,y|Θ)
= πz N (y|Φx,Λ)N (x|µz + Fzβ, γI)N (β|0, I),

=πzN






y

x

β




∣∣∣∣∣∣∣∣



Φµz

µz

0


,




Λ−1, −Λ−1Φ, 0

−Φ′Λ−1, Φ′Λ−1Φ+ I
γ , −

Fz
γ

0, −
F′

z
γ
, I+

F′
zFz
γ




−1
,

= πz N

([
x

β

] ∣∣∣∣
[
ηz

ξz

]
,

[
Cz Ωz

Ω′
z Qz

])
N (yi|Φµk,Rz), (26)
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where the parameters in the last line satisfy the equations

[
Cz Ωz

Ω′
z Qz

]
=


 Φ′Λ−1Φ+ I

γ , −Fz
γ

−
F′

z
γ
, I+

F′
zFz
γ



−1

, (27)

[
ηz

ξz

]
=

[
µz

0

]
−

[
Cz Ωz

Ω′
z Qz

] [
−Φ′Λ−1

0

]
(y −Φµ), (28)

Rz=

(
Λ−1−

[
−Λ−1Φ, 0

] [Cz Ωz

Ω′
z Qz

] [
−Φ′Λ−1

0

])−1

, (29)

which are solved to give the parameters,

Rz =Λ+ γΦΦ′ +ΦFzF
′
zΦ

′, (30)

Cz =(γI+FzF
′
z)− (γI+FzF

′
z)Φ

′R−1
z Φ(γI+FzF

′
z), (31)

Qz = I− F′
zΦ

′R−1
z ΦFz, (32)

Ωz =Fz − (γI+FzF
′
z)Φ

′R−1
z ΦFz. (33)

ηz =µz + (γI+FzF
′
z)Φ

′R−1
z (yi −Φµz), (34)

ξz =F′
zΦ

′R−1
z (yi −Φµz). (35)

Note that (Rz,Cz,Qz,Ωz) are functions of Θ and (ηz, ξz)
are functions of (y,Θ). These dependencies are dropped in

the above expressions to conserve space.

It follows from (26) that the marginal distribution of y is

p(y|Θ) =
∑K

z=1πz N (y|Φµz,Rz), (36)

and the posterior distribution of (z,β,x) given y,

p(z,β,x|y,Θ) = ρz N

([
x

β

] ∣∣∣∣
[
ηz

ξz

]
,

[
Cz Ωz

Ωz Qz

])
, (37)

where, ρz =
πz N (y;Φµz,Rz)∑K
l=1 πl N (y;Φµl,Rl)

. (38)

A. Learning the Constrained GMM from Measurements

Assuming the same setting as in Section III, we learn

the parameters Θ = {Λ} ∪ {πk,µk,Fk}
K
k=1 from Y , by

maximizing the marginal log-likelihood, i.e.,

ΘMML=max
Θ

N∑

i=1

ln

K∑

zi=1

∫∫
p(zi,βi,xi,yi|Θ)dxidβi, (39)

where p(zi,xi,yi|Θ) is as given in (26). The optimization

is solved by expectation maximization (EM), based on the

following update equations (t ≥ 1, starting from initial Θ(0)):

π
(t−1)
k =

∑N
i=1 ρ

(t−1)
ik∑N

i=1

∑K
k=1 ρ

(t−1)
ik

, (40)

[
µ

(t−1)
k ,F

(t−1)
k

]
=

(
N∑

i=1

ρ
(t−1)
ik

[
η
(t−1)
ik ,Ω

(t−1)
ik

])

×

(
N∑

i=1

ρ
(t−1)
ik

[
1 (ξ

(t−1)
ik )′

(ξ
(t−1)
ik )′ ξ

(t−1)
ik (ξ

(t−1)
ik )′+Q

(t−1)
ik

])−1

, (41)

Λ(t) =
1

N

N∑

i=1

K∑

k=1

ρ
(t−1)
ik diag

(
(yi−Φiη

(t−1)
ik )(yi−Φiη

(t−1)
ik )′

+ ΦiC
(t−1)
ik Φ′

i

)
, (42)

where (η
(t−1)
ik ,Ω

(t−1)
ik , ξ

(t−1)
ik ,Q

(t−1)
ik ,C

(t−1)
ik ) are given in

(31)-(35) and ρ
(t−1)
ik is given in (38), with the superscript (t)

indicating the iteration number and the subscript i indexing

the measurements in Y (recall that these variables depend on

yi and/or Φi and thus on the index i).
Iterative computation of (40)-(42) constitutes the MMLE-

MFA algorithm. The update equations can be derived using

similar techniques as provided in Section III-A and the details

are omitted here. The update of Λ is optional for the same

reasons as stated right above Section III-B.

B. Computational Complexity

Due to the near-low-rank constraints, the posterior param-

eters in (30)-(35) can be computed efficiently. In particular,

defining Ψik = ΦiF k and ∆i = Λ + γΦiΦ
′
i, we use the

matrix lemma to efficiently compute the inverse R−1
ik = (∆i+

ΨikΨ
′
ik)

−1 = ∆−1
i −∆−1

i Ψik(I+Ψ′
ik∆

−1Ψik)
−1Ψ′

ik∆
−1
i .

A major part of the computational cost lies in the calculation

of R−1
ik , as shown in (31)-(35) . If we do not consider the low-

rank condition, the computational complexity of the matrix

inversion is O(m3/3+m2) using Cholesky factorization [29].

By contrast, when we consider the low-rank condition, the

main cost becomes the matrix inversion (I+Ψ′
ik∆

−1
i Ψik)

−1,

whose computational complexity is O(r3max/3 + r2max), with

rmax = max{r1, · · · , rK} ≪ m. In many real CS system-

s, including the CASSI and CACTI cameras considered in

our experiments, ΦiΦ
′
i is diagonal [21, 22], which makes

∆i = Λ+ΦiΦ
′
i a diagonal matrix (recall that Λ is diagonal

by definition). Moreover, ∆i is independent of the Gaussian

component index k. Therefore the computational cost ∆−1
i is

negligible.

In our experiments presented in Section V, the results on

CPU time comparison validate the computational efficiency

due to the low-rank constraints incorporated in the maximum

marginal likelihood estimation.

V. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed methods,

MMLE-GMM and MMLE-MFA, on image inpainting, com-

pressive sensing (CS) of high-speed video [22], and com-

pressive hyperspectral imaging [20, 21]. In all cases, a local

sensing operator is applied at each spatial pixel location to

collect certain types of information of the pixel. The infor-

mation being collected is application dependent. In particular,

each pixel is measured for its grayscale level in inpainting

(the grayscale is either directly observed or not observed at

all), for its temporal motion in high-speed videoing, and for

its spectral constitution in hyperspectral imaging. The local

sensing mode ensures that the Gramian of the sensing vectors

for each spatial patch, say ΦiΦ
′
i, is diagonal, and thus the fast

computation method in Section IV-B can be applied.

The evaluation is performed in comparison with other state-

of-the-art methods, including KSVD-OMP [30],1 a GMM

learned from Training Patches (GMM-TP) [12], Max-Max

[11],2 Two-step Iterative Shrinkage/Thresholding (TwIST)

1The source code of KSVD-OMP is available at:
http://www.cs.technion.ac.il/∼ronrubin/software.html

2The source code of Max-Max is provided by the authors of [11]
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Fig. 1. The PSNRs in decibels (dB) for various methods in the image
inpainting problem. The photo shows the true image.

[31],3 and generalized alternating projection (GAP) [32].4 The

performance of each method is measured by the visual quality

or the peak signal-to-noise ratio (PSNR) of the reconstructions.

For MMLE-GMM, MMLE-MFA, and GMM-TP, the covari-

ance matrix Λ for measurement noise ǫ is assumed to be a

scaled identity matrix Λ = σ2I, with σ = 10−4 given and

fixed (not updated). For MMLE-MFA, the variance parameter

of p(x|β) is assumed to be β = 10−8, to indicate that

each Gaussian in p(x) is well approximated by a low-rank

factor model. In all experiments, we run a few iterations of

MMLE-GMM to get the full covariance matrices {Dk}
K
k=1

and determine the rank rk for MMLE-MFA as the number of

dominant eigenvalues of Dk. Note that the ranks of {Dk}
K
k=1

converge much faster than the matrices themselves. The num-

ber of dictionary elements in KSVD is set to the best among

{64, 128, 256, 512}, i.e., we try these numbers one by one

and report the best result. The TwIST minimizes the total-

variation (TV). The GAP minimizes the weighted ℓ2,1 norm

of transform coefficients, using Daubechies 4 wavelets as the

spatial transform for images and video, DCT (discrete cosine

transform) as the temporal transform for video, and DCT as

the spatio-spectral transform for hyperspectral imagery.

A. Image Inpainting

We consider the 256 × 256 image shown in Figure 1.

Assuming a portion of pixels are missing (due to damage, for

example), the problem is to recover the missing pixels from

the observed ones. We solve this problem using patch-based

methods only, for which the image is partitioned into a set of

overlapping 8×8 patches by sliding a 8×8 window, one pixel

at a time, horizontally and vertically. Each patch is vectorized

to yield a signal xi, whose measurement is simulated as

yi = Φixi, where Φi is a diagonal matrix with diagonal

elements randomly drawn from {0, 1}, with the probability of

drawing 0 defined by the rate of missingness as shown in the

horizontal axis of Figure 1.

An effective technique, called “synthetic basis,” was pro-

posed in [11] to initialize Max-Max. The technique generates

synthetic data to best represent the image in question, and

3The source code of TwIST is available at
http://www.lx.it.pt/∼bioucas/TwIST/TwIST.htm

4The source code of GAP is provided by the authors of [32]

Fig. 2. Example frames of the training video used to learn the GMM for
GMM-TP, which is used to initialize Max-Max, MMLE-GMM, MMLE-MFA.
The same training video is used to learn the dictionary for KSVD-OMP.

the data were used to train an initial GMM for the patches.

With this initialization, Max-Max has demonstrated excellent

performances in many image processing problems including

inpainting. We adopt this technique to initialize Max-Max,

MMLE-GMM, and MMLE-MFA.

We follow [11] to set the number of GMM components

to 19 for all GMM-based methods. Following [9], we learn

the dictionary for KSVD-OMP and the GMM of p(x) for

GMM-TP by using a training dataset constituted by 500

natural images randomly selected from the Berkeley Seg-

mentation Dataset (http://www.eecs.berkeley.edu/Research/

Projects/CS/vision/grouping/resources.html).

Figure 1 shows the PSNR, as a function of the fraction of

missing pixels, for various reconstruction methods. It is seen

that Max-Max and MMLE-GMM give the best performance,

with nearly indistinguishable difference. Recall that MMLE-

GMM is an exact EM algorithm while Max-Max is an approx-

imate EM algorithm that relies heavily on good initializations.

The excellent results of Max-Max demonstrate that, for image

processing problems, the “synthetic basis” method can provide

a good initialization for Max-Max such that the method can

converge to the optimal solution.

B. Compressive Sensing of High-Speed Video

We demonstrate the efficacy of the proposed methods in

compressive sensing of high-speed video, employing the coded

aperture compressive temporal imaging (CACTI) system [22]

to collect measurements. Each signal, say xi, is the vectoriza-

tion of T consecutive δ × δ spatial frames, obtained by first

vectorizing each frame into a column and then stacking the

resulting T columns on top of each other. The measurement

vector, that CACTI collects of xi, takes the form yi = Φixi,

where Φi = [Φi,1, · · · ,Φi,T ] and Φi,t is a diagonal matrix

with its diagonals containing the spatial masks (see below for

definition) applied to the t-th frame.

We present two experiments, the first using simulated mea-

surements, and the second using actual hardware to collect

real measurements.

1) Experiment on simulated measurements: The true video

contains the scenes of a basketball game. We consider 32

frames, each of the size 256 × 256. Each video frame is

encoded with a shifted binary mask, with the mask simulated

by a random binary matrix with elements drawn from the

Bernoulli distribution with parameter 0.5. Every eight coded

frames are collapsed into one frame of measurements by
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Fig. 6. The robustness of Max-Max, MMLE-GMM, and MMLE-MFA to
K, demonstrated on reconstruction of a randomly selected block in the NBA
video. The block contains 3721 patches.

summing each pixel’s coded grayscale values over the frames,

achieving a compression ratio of 1/8. For the methods KSVD-

OMP and GMM-TP, we partition each coded measurement

frame into a collection of fully overlapping 4 × 4 patches,

reconstructing a 4 × 4 × 8 spatiotemporal signal from each

patch.

For Max-Max, MMLE-GMM and MMLE-MFA, we parti-

tion each 256× 256 measurement frame into a set of 64× 64
blocks, and each block is treated as if it were a (small) regular

frame and is processed independently of other blocks. Since

each block is only 64×64, a small number GMM components

are sufficient to capture its statistics, as shown in Figure 6. We

find that the PSNR results are robust to K (the differences in

PSNR are within 1 dB) as long as 2 ≤ K ≤ 10. Considering

the computational cost, the number of GMM components in

Max-Max, MMLE-GMM, and MMLE-MFA is a random draw

from {2, 3, 4, 5} for reconstruction of each block.5

We use the patches of a traffic video as training data to

learn a GMM for GMM-TP and use it as the initialization

for MMLE-GMM, MMLE-MFA and Max-Max. The example

frames of this training video are shown in Figure 2. We use the

same training video to learn the dictionary for KSVD-OMP.

Figure 3 shows the PSNR’s achieved by each method for the

5More sophisticated ways of choosing K include Dirichlet processes
[9], BIC/AIC [33] and the references therein. The focus of this paper is
on demonstrating the basic idea of GMM-based compressive sensing. A
comprehensive study of choosing K will be pursued in our future work.

32 video frames. The average PSNR’s over the 32 frames are

also shown in the brackets in the figure’s legend. It is seen

that MMLE-GMM and MMLE-MFA improve about 3.6dB

and 1.5dB, respectively, over GMM-TP. By contrast, Max-

Max performs 2dB worse than GMM-TP, although it uses

exactly the same initialization. That GAP and TwIST perform

worse than MMLE-GMM and MMLE-MFA demonstrates the

advantages of customized dictionaries over universal bases.

2) Experiment on measurements from real hardware: We

consider real CS measurements of fast moving letters, acquired

by the CACTI system [22]. Letters are placed on the blades

of a chopper wheel, that rotates at an angular velocity of 15

blades per second. The results shown here are based on 6

measurement frames that capture the fast motion of “D” during

0.15 seconds. The codes change at a rate that is 14 times as

fast as the capture rate, and therefore one can reconstruct 14
video frames from a single measurement frame.

Since it has been shown in [23] that GMM-TP outperforms

TwIST and GAP on this dataset, we here only compare

MMLE-MFA and MMLE-GMM against GMM-TP, KSVD-

OMP, and Max-Max, using the same configurations as in the

experiment on simulated measurements.

Recall that training patches are in general required to learn

the dictionary for KSVD-OMP and train the GMM of p(x)
for GMM-TP, and the trained GMM are used to initialize

MMLE-MFA, MMLE-GMM and Max-Max. We investigate

the influence of different training patches on the performances

of the methods.

We consider two different sets of training video. The first

set includes the videos of a chopper wheel rotating at several

orientations, positions, and velocities. These training videos

were captured by a regular camcorder at frame-rates that are

different from the desired high-speed frame-rate. The second

training set includes the videos of traffic scenes as illustrated in

Figure 2. The first training set is deemed relevant to the video

to be reconstructed, while the second is deemed irrelevant.

The high-speed frames reconstructed by the five competing

methods are shown in Figure 4 for the case of relevant training

video and in Figure 5 for the case of irrelevant training video.

Since the true high-speed video is not available, the PSNR’s

cannot be computed and therefore the reconstructed video

frames are evaluated by inspecting their visual quality.

As seen from Figure 4, when relevant videos are used to

train p(x), the frames reconstructed by GMM-TP, MMLE-

GMM, and MMLE-MFA have the best quality, showing a clear

chopper wheel and a sharp “D”, while the frames recovered

by Max-Max and KSVD-OMP are of lower quality with a

significantly blurred “D”. While the three best methods all

have some ghosting effects, the effect seems relatively modest

for MMLE-GMM.

A comparison between Figure 4 and Figure 5 shows that,

when using irrelevant training videos, MMLE-GMM and

MMLE-MFA can still perform satisfactorily, while GMM-TP

and KSVD-OMP perform significantly worse than when using

relevant training videos. These results demonstrate the advan-

tages of the proposed marginal maximum likelihood estimators

(MMLE), which learn a GMM or MFA for X = {xi}
N
i=1 using

the noisy measurements Y = {Φixi + ǫi}
N
i=1. Although the
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Fig. 4. Performance comparison on chopper wheel video reconstruction, when relevant training videos are used to learn the GMM for GMM-based methods
and learn the dictionary for KSVD-OMP. Displayed from the left to the right are: the raw measurement acquired by the CACTI hardware, the frames recovered
by GMM-TP (top) and MMLE-GMM (bottom), the frames recovered by KSVD-OMP (top) and MMLE-MFA (bottom), the frames recovered by Max-Max
(top).
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Fig. 5. Performance comparison on chopper wheel video reconstruction, when irrelevant training videos are used to learn the GMM for GMM-based methods
and learn the dictionary for KSVD-OMP. Displayed from the left to the right are: hardware-acquired raw measurement, the frames recovered by GMM-TP
(top) and MMLE-GMM (bottom), the frames recovered by KSVD-OMP (top) and MMLE-MFA (bottom), the frames recovered by Max-Max (top).

MMLE’s can be initialized with a pre-trained model, this is

not mandatory, since the learning is based on self-training and

requires no training signals.

It is noted that Max-Max is also based on self-training.

However, as discussed in Section III-B, Max-Max is an

approximate EM algorithm that replaces the expectation in

the E-step with MAP approximations. These approximations

can make the algorithm deviate from optimality and lead

to serious performance degradation. In the case when the

posterior p(zi,xi|yi,Θ
∗), where Θ∗ is the optimal GMM,

is highly peaked at the MAP estimate for any i, and the

initialization Θ(0) is close to Θ∗, Max-Max could achieve

excellent performance when using “synthetic basis” to obtain a

good initialization, as has been observed in image inpainting

in Section V-A and in other image-processing problems in

[11]. Unfortunately, videos are more complicated than images

because of the dynamics of the scenes they represent, which

makes it more challenging to find a good initialization in the

case of video reconstruction. The “synthetic basis” proposed in

[11] can only be computed for images and are not applicable

to videos. The relevant training videos we have used to train

Θ(0) are captured at frame-rates different from the desired

high-speed frame-rate, and the discrepancy makes Θ(0) a crude

initialization unsatisfactory to Max-Max. The fact that a crude

initialization is good enough for MMLE-GMM and MMLE-

MFA indicates that the proposed methods are less sensitive to

initialization.
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TABLE I
PSNR (DB) RESULTS BY THE FOUR METHODS FOR COMPRESSIVE

HYPERSPECTRAL IMAGING OF THE BIRDS.

GAP Max-Max MMLE-GMM MMLE-MFA

24.16 21.48 27.26 25.53

C. Compressive Sensing of Hyperspectral Imagery

A compressive hyperspectral imager aims to reconstruct the

reflectance from an object as a function of wavelength and

spatial location, by measuring the coded reflectances integrated

over the wavelength. In this application, each desired signal

(say xi) is the vectorization of the δ × δ spatial frames at

T consecutive wavelengths, obtained by first vectorizing each

frame into a column and then stacking the resulting T columns

on top of each other. The measurement vector of xi takes

the form yi = Φixi, where Φi = [Φi,1, · · · ,Φi,T ] and Φi,t

is a diagonal matrix with its diagonals containing the spatial

masks (see below for definition) applied to the frame at the

t-th wavelength.

Compared with images and videos, hyperspectral imagery

poses a challenge for GMM-based compressive sensing, be-

cause it is often difficult to find hyperspectral training images

that have the same characteristics as those used to acquire

the measurements. Thus, KSVD-OMP and GMM-TP, which

require training images, often cannot be used in this prob-

lem. Assuming no training images are available, we use the

minimum-norm estimates,

x̂i = argmin
x

{
‖x‖22 : Φix = y

}
= Φ′

i(ΦiΦ
′
i)

−1yi,

i = 1, · · · , N , to train an initial GMM for MMLE-GMM,

MMLE-MFA, and Max-Max.

1) Experiment on simulated measurements: We consider

hyperspectral imaging of birds, whose photograph is shown in

Figure 7(a). The “true” hyperspectral image is simulated as the

reconstruction, obtained by TwIST, from 12 CS measurements

acquired with the coded aperture snapshot spectral imaging

(CASSI) camera [20, 21]. The image dataset consists of 30

spatial images, each of the size 384×512. Each spatial image

corresponds to a different wavelength in the range between

450 nm and 680 nm,6 referred to as a “spectral channel.” Each

spectral channel is encoded with a gray-scale mask, which is

simulated by a random matrix with elements drawn from a

uniform distribution in [0, 1]. A compressed measurement of

the size 384×512 is obtained by integrating the coded voxels

over the 30 spectral channels.

The experimental setup is similar to that used in video

reconstruction. For MMLE-GMM, MMLE-MFA and Max-

Max, we first divide the 384 × 512 spatial domain into a set

of 64× 64 blocks, and each block is divided into a collection

of fully overlapping 4 × 4 patches. Each block of voxels are

recovered independently of other blocks. For each block, the

number of GMM components in Max-Max, MMLE-GMM and

MMLE-MFA is a random draw from {2, 3, 4, 5}.

6The 30 wavelengths (nm) are: 450, 458, 465, 473, 481.5, 489.5, 498, 507,
516, 524.5, 532.5, 540.5, 548.5, 556.5, 564.5, 572.5, 580.5, 588.5, 596, 603.5,
611, 618.5, 625.8, 633.5, 641, 648.5, 656, 663.5, 671, 678.5.

Table I shows the PSNR, averaged over the 30 spectral

channels, of the hyperspectral images reconstructed by each

method. It is observed that MMLE-GMM and MMLE-MFA

perform the best among the four methods being compared,

with MMLE-GMM obtaining a 3.10dB and a 5.78db perfor-

mance gain over GAP and Max-Max respectively.

Figure 7 shows the spectral patterns of the reconstructed

images, with each plot computed over a dashed rectangle

shown in the photo. The parenthesized numbers in the legends

indicate the mean-square-errors (MSE) of the spectral curves

predicted by different methods. It is observed that MMLE-

MFA achieves the lowest error, followed by MMLE-GMM.

These results are consistent with the PSNR results shown in

Table I.
2) Experiment on hardware-acquired measurements: We

consider hyperspectral imagery reconstruction from the re-

al measurements acquired in [34] using the CASSI system

[20, 21]. The system uses a single spatial light modulator

(SLM) to spatially and spectrally encode the voxel volume of

the object, with the coding elements taking values in [0, 255].
A collection of button-shaped candies (M&M’s), shown in

Figure 8(a), is imaged at 30 spectral channels (wavelengths),7

which are integrated by the hardware to yield a 768 × 512
measurement. The measurement data are described in greater

detail in [34]. The goal is to reconstruct the 30 channels from

the measurement data. All methods use the same settings as

in the experiment on simulated measurements.

Figure 8 plots the spectral patterns of the images recon-

structed by different methods. Each curve is an average over

the pixels in a dashed rectangle (associated with a particular

color) shown in Figure 8(a). Following [20], we use an

Ocean Optics USB2000 spectrometer to generate the reference

spectrum in the figure (shown as black dots); the spectrometer

measures the spectrum at selected spatial locations, for com-

parison with the CS-recovered results. The reference spectrum

is used as an approximation of the ground truth, based on

which the mean squared errors of each predicted curve is

computed. The errors, shown as parenthesized numbers in the

legend of Figure 8, show that MMLE-GMM gives the most

accurate prediction and MMLE-MFA follows as the second

best. The relative larger errors, as compared to those in Figure

7, may be attributed to the approximate “ground truth” and

inaccurate calibration of the hardware. Note that the results in

Figure 7 are based on simulated measurements and thus we

know the exact ground truth.

D. CPU Time Comparison

We conduct numerical experiments to evaluate the CPU

times of GMM-TP, KSVD-OMP, Max-Max8, MMLE-GMM,

and MMLE-MFA. The results are based on running non-

optimized Matlab codes on the same PC, which has an Intel i5-

2500 3.30GHz CPU and 16GB RAM. We run the experiments

7The 30 wavelengths (nm) are: 450, 458, 465, 473, 481.5, 489.5, 498, 507,
524.5, 532.5, 540.5, 548.5, 556.5, 564.5, 572.5, 580.5, 596, 603.5, 611, 618.5,
625.8, 633.5, 641, 648.5, 656, 663.5 671 and 678.5.

8 For a fair comparison of the computational efficiency, we implemented
Max-Max ourselves in this experiment to ensure that the basic matrix
operations such as factorization and inversion are coded the same way for
Max-Max, MMLE-GMM, and MMLE-MFA.
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Fig. 7. Performance comparison on the birds’ hyperspectral imagery reconstruction. (a) A photograph of the four birds being imaged, where a region (dashed
rectangle) is chosen on each bird to represent the associated color considered in (c)-(f); (b) the simulated compressed measurement; (c)-(f) the predicted
spectral patterns in the four selected regions, along with the ground truth, with the mean square error (MSE) of each method shown as a parenthesized number
in the legend. The MSE’s averaged over the four regions are 0.09 (MMLE-MFA), 0.12 (MMLE-GMM), 0.16 ( GAP), and 0.26 (Max-Max).
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Fig. 8. Performance comparison on the M&M’s hyperspectral imagery reconstruction. (a) A photograph of the M&M’s being imaged, where a region (dashed
rectangle) represents each color considered in (c)-(e); (b) the raw measurement acquired by the CASSI hardware; (c)-(e) the predicted spectral patterns in the
three selected regions, along with the ground truth, with the mean square error (MSE) of each method shown as a parenthesized number in the legend. The
MSE’s averaged over the four regions are 0.85 (MMLE-GMM), 1.12 (MMLE-MFA), 1.27 (TwIST), 1.43 (GAP), and 1.94 (Max-Max).
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Fig. 9. (a) The CPU time and (b) the PSNR, as a function of signal dimensionality, for all methods on the reconstruction of a randomly selected block of the
NBA data. The signal dimensionality shown in the horizontal axes is 4×4×T , with the temporal window size T taking values in {8, 12, 16, 20, 24, 28, 32, 36}.
The block contains 3721 patches. For MMLE-GMM, MMLE-MFA, and Max-Max, the time of one iteration of each respective algorithm is shown in (a). All
three methods use two Gaussian components. For MMLE-MFA, the rank of each covariance matrix is set to 4. The GMM-TP uses 20 Gaussian components
and reconstructs each patch by computing (12) in parallel over z = 1, . . . ,K. For KSVD-OMP, the number of dictionary is chosen as 128. The same training
data as mentioned in Section V.B are used in GMM-TP and KSVD-OMP. For GMM-TP and KSVD-OMP, the time of signal reconstruction (excluding the
time of the training procedure) is reported in (a).

five times and report the average CPU times, under various

settings of the dimensions of the signals.

The results for video reconstruction are reported in Figure 9,

considering the time for one block of voxels. As expected, the

computational costs of all methods increase as the dimension

of the signals becomes larger. However, the slopes of the

timing curves for KSVD-OMP and MMLE-MFA are much

smaller than those of the other three methods. It is concluded

from the figure that KSVD-OMP and GMM-TP are the top

two fastest methods, followed by MMLE-MFA and then by

Max-Max, and MMLE-GMM is the slowest method. It is

noted that MMEL-GMM, MMLE-MFA, and Max-Max are

iterative methods within the EM framework. In terms of

signal reconstruction accuracy, however, MMLE-GMM is the

best method while KSVD-OMP and GMM-TP are the worst

methods.

Among the iterative methods (within the EM framework),

MMLE-MFA is the fastest method because of its explicit

low-rank assumption as mentioned in Section IV-B. However,

it is nontrivial to find the optimal rank for each Gaussian

component in general. This issue will be further addressed in

the next experiment. For Max-Max, a careful comparison of

the update equations shows that Max-Max and MMLE-GMM

have the same asymptotic time complexity. Nevertheless, it

appears that Max-Max needs less different CPU time than

MMLE-GMM in the results shown here (see Figure 9). The

difference, however, reflects only the difference in coding

details (MMLE need compute (5) while Max-Max need not),

not the difference in theoretical time complexity.

We further evaluate the computational efficiency of MMLE-

MFA, in terms of the per-iteration CPU time as a function of

the maximum number of factors used in MMLE-MFA, i.e.,
rmax = max{r1, · · · , rK}. The results are shown in Figure

10. It is seen from the figure that the computational cost

goes up as rmax increases. However, the results, in terms of

the reconstruction quality evaluated by PSNR, have no clear

pattern. The plausible reasons for this phenomenon include: (i)

{r1, · · · , rK} are not well inferred from the data; (ii) MMLE-
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Fig. 10. The CPU time per iteration and the PSNR of MMLE-MFA, as a
function of the maximum number of factors, on the reconstruction of one
block of the bird hyper-spectral imagery. The block contains 3721 patches,
each having 480 voxels. As a comparison, Max-Max uses 26.61 seconds
and MMLE-GMM uses 36.66 seconds, and the PSNR values for these two
methods are 24.97 dB and 27.40, respectively. All three methods use two
Gaussian components.

MFA suffers from serious local convergence.

VI. CONCLUSIONS

Model-based compressive sensing (CS) requires knowing

the model of the target signals being measured. The signal

model is usually learned from training signals, and the mis-

match between the training signals and the target signals can

lead to degradation of the reconstruction quality. We address

this problem by learning the signal model in situ from the

measurements of the signals in question, without resorting to

other signals for training the model.

We have proposed two maximum marginal likelihood es-

timators (MMLE), respectively referred to as MMLE-GMM

and MMLE-MFA, for learning statistical signal models from

linear measurements of the signals. The MMLE-GMM, which

learns a Gaussian mixture model, overcomes the two funda-

mental drawbacks of the Max-Max algorithm in [10, 11], by

using the global MMSE signal estimates to retrain the GMM

and correcting the resulting covariance matrices by adding
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back an error term neglected previously. The MMLE-MFA,

which learns a mixture of factor analyzers, extends MMLE-

GMM to the case when the Gaussian covariance matrices

have near-low-rank representations. The low-rank constraint

leads to significant computational savings, outweighing the

concomitant performance degradation. The marginal ML esti-

mators use expectation maximization to achieve rigorous self-

training, and enjoys guaranteed convergence and optimality.

The performance gain over the Max-Max, as well as sev-

eral other state-of-the-art methods, are demonstrated in an

extensive set of experiments, on various problems including

image inpainting, CS of high-speed video, and compressive

hyperspectral imaging. The experimental results are based on

both simulated data and real data acquired by actual hardware.

Future work includes Bayesian approaches for regularizing

ill-conditioned covariances and determining the number of

Gaussian components as well as the number of factors in each

component (in MMLE-MFA).
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