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Abstract. This paper outlines a new framework for compressive sensing: convolution with a
random waveform followed by random time domain subsampling. We show that sensing by random
convolution is a universally efficient data acquisition strategy in that an n-dimensional signal which
is S sparse in any fixed representation can be recovered from m & S log n measurements. We discuss
two imaging scenarios — radar and Fourier optics — where convolution with a random pulse allows
us to seemingly super-resolve fine-scale features, allowing us to recover high-resolution signals from
low-resolution measurements.

1. Introduction. The new field of compressive sensing (CS) has given us a
fresh look at data acquisition, one of the fundamental tasks in signal processing. The
message of this theory can be summarized succinctly [7, 8, 10, 15, 32]: the number of
measurements we need to reconstruct a signal depends on its sparsity rather than
its bandwidth. These measurements, however, are different than the samples that
traditional analog-to-digital converters take. Instead of simple point evaluations, we
model the acquisition of a signal x0 as a series of inner products against different
waveforms φ1, . . . , φm:

yk = 〈φk, x0〉, k = 1, . . . ,m. (1.1)

Recovering x0 from the yk is then a linear inverse problem. If we assume that x0

and the φk are members of some n-dimensional space (the space of n-pixel images, for
example), (1.1) becomes a system of m× n linear equations, y = Φx0. In general, we
will need more measurements than unknowns, m ≥ n, to recover x0 from y. But if the
signal of interest x0 is sparse in a known basis, and the φk are chosen appropriately,
then results from CS have shown us that recovering x0 is possible even when there
are far fewer measurements than unknowns, m� n.

The notion of sparsity is critical to compressive sensing — it is the essential
measure of signal complexity, and plays roughly the same role in CS that bandwidth
plays in the classical Shannon-Nyquist theory. When we say a signal is sparse it
always in the context of an orthogonal signal representation. With Ψ as an n × n
orthogonal representation matrix (the columns of Ψ are the basis vectors), we say
x0 is S-sparse in Ψ if we can decompose x0 as x0 = Ψα0, where α0 has at most S
non-zero components. In most applications, our signals of interest are not perfectly
sparse; a more appropriate model is that they can be accurately approximated using
a small number of terms. That is, there is a transform vector α0,S with only S terms
such that ‖α0,S − α0‖2 is small. This will be true if the transform coefficients decay
like a power law — such signals are called compressible.

Sparsity is what makes it possible to recover a signal from undersampled data.
Several methods for recovering sparse x0 from a limited number of measurements have
been proposed [12,16,29]. Here we will focus on recovery via `1 minimization. Given
the measurements y = Φx0, we solve the convex optimization program

min
α
‖α‖`1 subject to ΦΨα = y. (1.2)
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In words, the above searches for the set of transform coefficients α such that the
measurements of the corresponding signal Ψα agree with y. The `1 norm is being
used to gauge the sparsity of candidate signals.

The number of measurements (rows in Φ) we need to take for (1.2) to succeed
depends on the nature of the waveforms φk. To date, results in CS fall into one of
two types of measurement scenarios. Randomness plays a major role in each of them.

1. Random waveforms. In this scenario, the shape of the measurement wave-
forms is random. The ensemble Φ is generated by drawing each element
independently from a subgaussian [6, 10, 15, 24] distribution. The canonical
examples are generating each entry Φi,j of the measurement ensemble as in-
dependent Gaussian random variables with zero mean and unit variance, or
as independent Bernoulli ±1 random variables.
The essential result is that if x0 is S-sparse in any Ψ and we make1

m & S · log n (1.3)

random waveform measurements, solving (1.2) will recover x0 exactly.
2. Random sampling from an incoherent orthobasis. In this scenario, we select

the measurement waveforms φk from rows of an orthogonal matrix Φ′ [7]. By
convention, we normalize the rows to have energy ‖φk‖22 = n, making them
the same size (at least on average) as in the random waveform case above.
The m rows of Φ′ are selected uniformly at random from among all subsets
of rows of size m. The principal example of this type of sensing is observing
randomly selected entries of a spectrally sparse signal [8]. In this case, the
φk are elements of the standard basis (and Φ′ = nI), and the representation
Ψ is a discrete Fourier matrix.
When we randomly sample from a fixed orthosystem Φ′, the number of sam-
ples required to reconstruct x0 depends on the relationship between Φ′ and
Ψ. One way to quantify this relationship is by using the mutual coherence:

µ(Φ′,Ψ) = max
φk∈Rows(Φ′)
ψj∈Columns(Ψ)

|〈φk, ψj〉|. (1.4)

When µ = 1, Φ′ and Ψ are as different as possible; each element of Ψ is flat
in the Φ′ domain. If x0 is S sparse in the Ψ domain, and we take

m & µ2 · S · log n (1.5)

measurements, then (1.2) will succeed in recovering x0 exactly. Notice that
to have the same result (1.3) as the random waveform case, µ will have to be
on the order of 1; we call such Φ′ and Ψ incoherent.

There are three criteria which we can use to compare strategies for compressive
sampling.
Universality. A measurement strategy is universal if it is agnostic towards the

choice of signal representation. This is the case when sensing with random
waveforms. When Φ is a Gaussian ensemble this is clear, as it will remain
Gaussian under any orthogonal transform Ψ. It is less clear but still true [6]

1Here and below we will use the notation X & Y to mean that there exists a known constant

C such that X ≥ CẎ . For random waveforms, we actually have the the more refined bound of
m & S log(n/S). But since we are usually interested in the case S � n, (1.3) is essentially the same.
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that the strategy remains universal when the entries of Φ are independent
and subgaussian.
Random sampling from a fixed system Φ′ is definitely not universal, as µ(Φ′,Ψ)
cannot be on the order of 1 for every Ψ. We cannot, for example, sample in
a basis which is very similar to Ψ (µ ≈

√
n) and expect to see much of the

signal.
Numerical structure. Algorithms for recovering the signal will invariably in-

volve repeated applications of ΦΨ and the adjoint Ψ∗Φ∗. Having an efficient
method for computing these applications is thus of primary importance. In
general, applying an m×n matrix to an n-vector requires O(mn) operations;
far too many if n and m are only moderately large (in the millions, say).
It is often the case that a Ψ which sparsifies the signals of interest comes
equipped with a fast transform (the wavelet transform for piecewise smooth
signals, for example, or the fast Fourier transform for signals which are spec-
trally sparse). We will ask the same of our measurement system Φ.
The complete lack of structure in measurement ensembles consisting of ran-
dom waveforms makes a fast algorithm for applying Φ out of the question.
There are, however, a few examples of orthobases which are incoherent with
sparsity bases of interest and can be applied efficiently. Fourier systems are
perfectly incoherent with the identity basis (for signals which are sparse in
time), and noiselets [13] are incoherent with wavelet representations and enjoy
a fast transform with the same complexity as the fast Fourier transform.

Physically realizable. In the end, we have to be able to build sensors which
take the linear measurements in (1.1). There are architectures for CS where
we have complete control over the types of measurements we make; a well-
known example of this is the “single pixel camera” of [17]. However, it is
often the case that we are exploiting a physical principle to make indirect
observations of an object of interest. There may be opportunities for injecting
randomness into the acquisition process, but the end result will not be taking
inner products against independent waveforms.

In this paper, we introduce a framework for compressive sensing which meets all
three of these criteria. The measurement process consists of convolving the signal
of interest with a random pulse and then randomly subsampling. This procedure is
random enough to be universally incoherent with any fixed representation system,
but structured enough to allow fast computations (via the FFT). Convolution with a
pulse of our choosing is also a physically relevant sensing architecture. In Section 2
we discuss two applications in particular: radar imaging and coherent imaging using
Fourier optics.

1.1. Random Convolution. Our measurement process has two steps. We cir-
cularly convolve the signal x0 ∈ Rn with a “pulse” h ∈ Rn, then subsample. The
pulse is random, global, and broadband in that its energy is distributed uniformly
across the discrete spectrum.

In terms of linear algebra, we can write the convolution of x0 and h as Hx, where

H = n−1/2F ∗ΣF,

with F as the discrete Fourier matrix

Ft,ω = e−j2π(t−1)(ω−1)/n, 1 ≤ t, ω ≤ n,
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and Σ as a diagonal matrix whose non-zero entries are the Fourier transform of h.
We generate h at random by taking

Σ =


σ1 0 · · ·
0 σ2 · · ·
...

. . .
σn

 ,
a diagonal matrix whose entries are unit magnitude complex numbers with random
phases. We generate the σω as follows2:

ω = 1 : σ1 ∼ ±1 with equal probability,

2 ≤ ω < n/2 + 1 : σω = ejθω , where θω ∼ Uniform([0, 2π]),
ω = n/2 + 1 : σn/2+1 ∼ ±1 with equal probability

n/2 + 2 ≤ ω ≤ n : σω = σ∗n−ω+2, the conjugate of σn−ω+2.

The action of H on a signal x can be broken down into a discrete Fourier transform,
followed by a randomization of the phase (with constraints that keep the entries of H
real), followed by an inverse discrete Fourier transform.

The construction ensures that H will be orthogonal,

H∗H = n−1F ∗Σ∗FF ∗ΣF = nI,

since FF ∗ = F ∗F = nI and Σ∗Σ = I. Thus we can interpret convolution with h as
a transformation into a random orthobasis.

1.2. Subsampling. Once we have convolved x0 with the random pulse, we
“compress” the measurements by subsampling. We consider two different methods
for doing this. In the first, we simply observe entries of Hx0 at a small number of
randomly chosen locations. In the second, we break Hx0 into blocks, and summarize
each block with a single randomly modulated sum.

1.2.1. Sampling at random locations. In this scheme, we simply keep some
of the entries of Hx0 and throw the rest away. If we think of Hx0 as a set of
Nyquist samples for a bandlimited function, this scheme can be realized by with
an analog-to-digital converter (ADC) that takes non-uniformly spaced samples at an
average rate which is appreciably slower than Nyquist. Convolving with the pulse h
combines a little bit of information about all the samples in x0 into each sample of
Hx0, information which we can untangle using (1.2).

There are two mathematical models for sampling at random locations, and they
are more or less equivalent. The first is to set a size m, and select a subset of locations
Ω ⊂ {1, . . . , n} uniformly at random from all

(
n
m

)
subsets of size m. The second is to

generate an iid sequence of Bernoulli random variables ι1, . . . , ιn, each of which takes
a value of 1 with probability m/n, and sample at locations t where ιt = 1. In this
case, the size of the sample set Ω will not be exactly m. Nevertheless, it can be shown
(see [8] for details) that if we can establish successful recovery with probability 1− δ
for the Bernoulli model, we will have recovery with probability 1− 2δ in the uniform
model. Since the Bernoulli model is easier to analyze, we will use it throughout the
rest of the paper.

In either case, the measurement matrix can be written as Φ = RΩH, where RΩ

is the restriction operator to the set Ω.

2For simplicity, we assume throughout that n is even; very little changes for the case of odd n.
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1.2.2. Randomly pre-modulated summation. An alternative to simply throw-
ing away most of the samples of Hx0 is to break them into blocks of size n/m, and
summarize each block with a single number. To keep things simple, we will assume
that m evenly divides n. With Bk = {(k − 1)n/m + 1, . . . , kn/m}, k = 1, . . . ,m
denoting the index set for block k, we take a measurement by multiplying the entries
of Hx0 in Bk by a sequence of random signs and summing. The corresponding row
of Φ is then

φk =
√
m

n

∑
t∈Bk

εtht, (1.6)

where ht is the tth row of H. The {εp}np=1 are independent and take a values of
±1 with equal probability, and the factor

√
m/n is a renormalization that makes the

norms of the φk similar to the norm of the ht. We can write the measurement matrix
as Φ = PΘH, where Θ is a diagonal matrix whose non-zero entries are the {εp}, and
P sums the result over each block Bk.

In hardware, randomly pre-modulated summation (RPMS) can be implemented
by multiplying the incoming signal by a high-rate (Nyquist or above) chipping se-
quence, effectively changing the polarity across short time intervals. This is followed
by an integrator (to compute the analog of the sum in (1.6)) and an ADC taking
equally spaced samples at a rate much smaller than Nyquist. This acquisition strat-
egy is analyzed (without the convolution with h) in [33], where it is shown to be
effective for capturing spectrally sparse signals. In Section 2.2, we will also see how
RPMS can be used in certain imaging applications.

The recovery bounds we derive for random convolution followed by RPMS will
essentially be the same (to within a single log factor) as in the random subsampling
scheme. But RPMS has one important advantage: it “sees” more of the signal than
random subsampling without any amplification. Suppose that the energy in Hx0 is
spread out more or less evenly across all locations — this is, after all, one of the
purposes of the random convolution. If the energy (`2 norm squared) in the entire
signal is 1, then the energy in each sample will be about 1/n, and the energy in
each block will be about n/m. If we simply take m samples, the total energy in the
measurements will be around m/n. If we take a random sum as in (1.6) (without the
renormalization factor) over a block Bk of size n/m, the expected squared magnitude
of this single measurement will be the same as the energy of Hx0 in Bk, and the total
energy of all the measurements will be (in expectation) the same as the energy in
Hx0. So RPMS is an architecture for subsampling which will on average retain all of
the signal energy.

It is important to understand that the summation in (1.6) must be randomly
modulated. Imagine if we were to leave out the {εt} and simply sum Hx0 over
each Bk. This would be equivalent to putting Hx0 through a boxcar filter then
subsampling uniformly. Since boxcar filtering Hx0 is also a convolution, it commutes
with H, so this strategy would be equivalent to first convolving x0 with the boxcar
filter, then convolving with h, then subsampling uniformly. But now it is clear how
the convolution with the boxcar hurts us: it filters out the high frequency information
in x0, which cannot be recovered no matter what we do next.

We will see that while coherent summation will destroy a sizable fraction of this
signal, randomly pre-modulated summation does not. This fact will be especially
important in the imaging architecture discussed in Section 2.2, where measurements
are taken by averaging over large pixels.
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1.3. Main Results. Both random subsampling [8] and RPMS [33] have been
shown to be effective for compressive sampling of spectrally sparse signals. In this
paper, we show that preceding either by a random convolution results in a universal
compressive sampling strategy.

Our first theoretical result shows that if we generate a random pulse as in Sec-
tion 1.1 and a random sampling pattern as in Section 1.2.1, then with high probability
we will be able to sense the vast majority of signals supported on a fixed set in the Ψ
domain.

Theorem 1.1. Let Ψ be an arbitrary orthonormal signal representation. Fix a
support set Γ of size |Γ| = S in the Ψ domain, and choose a sign sequence z on Γ
uniformly at random. Let α0 be a set of Ψ domain coefficients supported on Γ with
signs z, and take x0 = Ψα0 as the signal to be acquired. Create a random convolution
matrix H as described in Section 1.1, and choose a set of sample locations Ω of size
|Ω| = m uniformly at random with

m ≥ C0 · S · log(n/δ) (1.7)

and also m ≥ C1 log3(n/δ), where C0 and C1 are known constants. Set Φ = RΩH.
Then given the set of samples on Ω of the convolution Hx0, y = Φx0, the program
(1.2) will recover α0 (and hence x0) exactly with probability exceeding 1− δ.

Roughly speaking, Theorem 1.1 works because if we generate a convolution matrix
H at random, with high probability it will be incoherent with any fixed orthonormal
matrix Ψ. Actually using the coherence defined in (1.4) directly would give a slightly
weaker bound (log2(n/δ) instead of log(n/δ) in (1.7)); our results will rely on a more
refined notion of coherence which is outline in Section 3.1.

Our second result shows that we can achieve similar acquisition efficiency using
the RPMS.

Theorem 1.2. Let Ψ,Γ, α0, x0, and H be as in Theorem 1.1. Create a random
pre-modulated summation matrix PΘ as described in Section 1.2.1 that outputs a
number of samples m with

m ≥ C0 · S · log2(n/δ) (1.8)

and also m ≥ C1 log4(n/δ), where C0 and C1 are known constants. Set Φ = PΘH.
Then given the measurements y = Φx0, the program (1.2) will recover α0 (and hence
x0) exactly with probability exceeding 1− δ. The form of the bound (1.8) is the same
as using RPMS (again, without the random convolution in front) to sense spectrally
sparse signals.

At first, it may seem counterintuitive that convolving with a random pulse and
subsampling would work equally well with any sparsity basis. After all, an application
of H = n−1/2F ∗ΣF will not change the magnitude of the Fourier transform, so signals
which are concentrated in frequency will remain concentrated and signals which are
spread out will stay spread out. For compressive sampling to work, we need Hx0

to be “spread out” in the time domain. We already know that signals which are
concentrated on a small set in the Fourier domain will be spread out in time [8]. The
randomness of Σ will make it highly probable that a signal which is concentrated in
time will not remain so after H is applied. Time localization requires very delicate
relationships between the phases of the Fourier coefficients, when we blast the phases
by applying Σ, these relationships will no longer exist. A simple example of this
phenomena is shown in Figure 1.1.
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(a) (b) (c)

Fig. 1.1. (a) A signal x0 consisting of a single Daubechies-8 wavelet. Taking samples at
random locations of this wavelet will not be an effective acquisition strategy, as very few will
be located in its support. (b) Magnitude of the Fourier transform Fx0. (c) Inverse Fourier
transform after the phase has been randomized. Although the magnitude of the Fourier
transform is the same as in (b), the signal is now evenly spread out in time.

1.4. Relationship to previous research. In [1], Ailon and Chazelle propose
the idea of a randomized Fourier transform followed by a random projection as a
“fast Johnson-Lindenstrauss transform” (FJLT). The transform is decomposed as
QFΣ, where Q is a sparse matrix with non-zero entries whose locations and values
are chosen at random locations. They show that this matrix QFΣ behaves like a
random waveform matrix in that with extremely high probability, it will not change
the norm of an arbitrary vector too much. However, this construction requires that
the number of non-zero entries in each row of Q is commensurate with the number of
rows m of Q. Although ideal for dimensionality reduction of small point sets, this type
of subsampling does not translate well to compressive sampling, as it would require
us to randomly combine on the order of m samples of Hx0 from arbitrary locations to
form a single measurement — taking m measurements would require on the order of
m2 samples. We show here that more structured projections, consisting either of one
randomly chosen sample per row or a random combination of consecutive samples,
are adequate for CS. This is in spite of the fact that our construction results in much
weaker concentration than the FJLT.

The idea that the sampling rate for a sparse (“spikey”) signal can be significantly
reduced by first convolving with a kernel that spreads it out is one of the central ideas
of sampling signal with finite rates of innovation [23,35]. Here, we show that a random
kernel works for any kind sparsity, and we use an entirely different reconstruction
framework.

In [34], numerical results are presented that demonstrate recovery of sparse signals
(using orthogonal matching pursuit instead of `1 minimization) from a small number
of samples of the output of a finite length “random filter”. In this paper, we approach
things from a more theoretical perspective, deriving bounds on the number of samples
need to guarantee sparse reconstruction.

In [4], random convolution is explored in a slightly different context than in this
paper. Here, the sensing matrix Φ consists of random selected rows (or modulated
sums) of a Toeplitz matrix; in [4], the sensing matrix is itself Toeplitz, corresponding
to convolution followed by a small number of consecutive samples. This difference
in structure will allow us to derive stronger bounds: (1.7) guarantees recovery from
S log n measurements, while the bound in [4] requires S2 log n.

2. Applications. The fact that random convolution is universal and allows fast
computations makes it extremely attractive as a theoretical sensing strategy. In this
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section, we briefly discuss two imaging scenarios (in a somewhat rarified stetting) in
which convolution with a random pulse can be implemented naturally.

We begin by noting that while Theorems 1.1 and 1.2 above deal explicitly with
circular convolution, what is typically implemented is linear convolution. One simple
way to translate our results to linear convolution would be to repeat the pulse h; then
the samples in the midsection of the linear convolution would be the same as samples
from the circular convolution.

2.1. Radar imaging. Reconstruction from samples of a signal convolved with
a known pulse is fundamental in radar imaging. Figure 2.1 illustrates how a scene is
measured in spotlight synthetic aperture radar (SAR) imaging (see [25] for a more in-
depth discussion). The radar, located at point p1, focusses its antenna on the region
of interest with reflectivity function I(x1, x2) whose center is at orientation θ relative
to p1, and sends out a pulse h(t). If the radar is far enough away from the region of
interest, this pulse will arrive at every point along one of the parallel lines at a certain
range r at approximately the same time. The net reflectivity from this range is then
the integral Rθ(r) of I(x1, x2) over the line at lr,θ,

Rθ(r) =
∫
lr,θ

I(x1, x2)dx1dx2,

and the return signal y(t) is thus the pulse convolved with Rθ

y(t) = h ∗Rθ,

where it is understood that we can convert Rθ from a function of range to a function
of time by dividing by the speed at which the pulse travels.

The question, then, is how many samples of y(t) are needed to reconstruct the
range profile Rθ. A classical reconstruction will require a number of samples propor-
tional to the bandwith of the pulse h; in fact, the sampling rate of the analog-to-digital
converter is one of the limiting factors in the performance of modern-day radar sys-
tems [26]. The results outlined in Section 1.3 suggest that if we have an appropriate
representation for the range profiles and we use a broadband random pulse, then the
number of samples needed to reconstruct an Rθ(r) using (1.2) scales linearly with the
complexity of these range profiles, and only logarithmically with the bandwidth of h.
We can gain the benefits of a high-bandwidth pulse without paying the cost of an
ADC operating at a comparably fast rate.

A preliminary investigation of using ideas from compressive sensing in radar imag-
ing can be found in [5]. There has also been some recent work on implementing
low-cost radars which use random waveforms [2, 3] and traditional image reconstruc-
tion techniques. Also, in [19], it is shown that compressive sensing can be used to
super-resolve point targets when the radar sends out an incoherent pulse.

2.2. Fourier optics. Convolution with a pulse of our choosing can also be im-
plemented optically. Figure 2.2 sketches a possible compressive sensing imaging archi-
tecture. The object is illuminated by a coherent light source; one might think of the
object of interest as a pattern on a transparency, and the image we want to acquire
as the light field exiting this transparency. The first lens takes an optical Fourier
transform of the image, the phase of the Fourier transform is then manipulated using
a spatial light modulator. The next lens inverts the Fourier transform, and then a
second spatial light modulator and a low-resolution detector array with “big pixels”
affect the RPMS subsampling scheme. In this particular situation, we will assume
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Fig. 2.1. Geometry for the “spotlight SAR” imaging problem. The return signal from a
pulse h(t) emitted from point p1 will be the range profile Rθ(r) (collection of line integrals
at an angle θ) convolved with h.

that our detectors can observe both the magnitude and the phase of the final light
field (modern heterodyne detectors have this capability).

Without the spatial light modulators, the resolution of this system scales with
the size of the detector array. The big-pixel detectors simply average the light field
over a relatively large area, and the result is a coarsely pixellated image. Adding the
spatial light modulators allows us to effectively super-resolve this coarse image. With
the SLMs in place, the detector is taking incoherent measurements in the spirit of
Theorem 1.2 above. The resolution (for sparse images and using the reconstruction
(1.2)) is now determined by the SLMs: the finer the grid over which we can effectively
manipulate the phases, the more effective pixels we will be able to reconstruct.

Figure 2.3 illustrates the potential of this architecture with a simple numerical
experiment3. A 256 × 256 synthetic image, was created by placing 40 ellipses —
with randomly chosen orientations, positions, and intensities — and adding a modest
amount of noise. Measuring this image with a 64×64 “low resolution” detector array
produces the image in Fig. 2.3(b), where we have simply averaged the image in part
(a) over 4×4 blocks. Figure 2.3(c) is the result when the low resolution measurements
are augmented with measurements from the architecture in Figure 2.2. With x0 as
the underlying image, we measure y = Φx0, where

Φ =
[

P
PΘH

]
.

From these measurements, the image is recovered using total variation minimization,
a variant of `1 minimization that tends to give better results on the types of images
being considered here. Given y, we solve

min
x

TV(x) subject to ‖Φx− y‖2 ≤ ε,

where ε is a relaxation parameter set at a level commensurate with the noise. The
result is shown in Figure 2.3(c). As we can see, the incoherent measurements have

3Matlab code that reproduces this experiment can be downloaded at
users.ece.gatech.edu/∼justin/randomconv/ .
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Fig. 2.2. Fourier optics imaging architecture implementing random convolution followed
by RPMS. The computation y = PΘHx0 is done entirely in analog; the lenses move the
image to the Fourier domain and back, and spatial light modulators (SLMs) in the Fourier
and image planes randomly change the phase.

(a) (b) (c)

Fig. 2.3. Fourier optics imaging experiment. (a) The “high-resolution” image we wish
to acquire. (b) The high-resolution image pixellated by averaging over 4 × 4 blocks. (c)
The image restored from the pixellated version in (b), plus a set of incoherent measurements
taken using the architecture from Figure 2.2. The incoherent measurements allow us to
effectively super-resolve the image in (b).

allowed us to super-resolve the image; the boundaries of the ellipses are far clearer
than in part (b).

The architecture is suitable for imaging with incoherent illumination as well, but
there is a twist. Instead of convolution with the random pulse h (the inverse Fourier
transform of the mask Σ), the lens-SLM-lens system convolves with |h|2. While |h|2
is still random, and so the spirit of the device remains the same, convolution with |h|2
is no longer a unitary operation, and thus falls slightly outside of the mathematical
framework we develop in this paper.

3. Theory.

3.1. Coherence bounds. First, we will establish a simple bound on the co-
herence parameter between a random convolution system and a given representation
system.

Lemma 3.1. Let Ψ be an arbitrary fixed orthogonal matrix, and create H at
random as above with H = n−1/2F ∗ΣF . Choose 0 < δ < 1. Then with probability
exceeding 1− δ, the coherence µ(H,Ψ) will obey

µ(H,Ψ) ≤ 2
√

log(2n2/δ). (3.1)
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Proof. The proof is a simple application of Hoeffding’s inequality (see Appendix A).
If ht is the tth row of H (measurement vector) and ψs is the sth column of Ψ (repre-
sentation vector), then

〈ht, ψs〉 =
n∑
ω=1

ej2π(t−1)(ω−1)/nσωψ̂s(ω),

where ψ̂s is the normalized discrete Fourier transform n−1/2Fψs. Since ht and ψs are
real-valued and the σω are conjugate symmetric, we can rewrite this sum as

〈ht, ψs〉 = σ1ψ̂s(1) + (−1)t−1σn/2+1ψ̂s(n/2 + 1) + 2
n/2∑
ω=2

Re
[
F ∗t,ωσωψ̂s(ω)

]
, (3.2)

where we have assumed without loss of generality that n is even; it will be obvious how
to extend to the case where n is odd. Now each of the σω in the sum above are inde-
pendent. Because the σω are uniformly distributed on the unit circle, Re[F ∗t,ωσωψ̂s(ω)]
has a distribution identical to εω|ψ̂s| cos(θ̂(ω)), where θ̂(ω) is the phase of ψ̂s(ω)F ∗t,ω
and {εω} is an independent random sign sequence. Thus,

n/2+1∑
ω=1

εωaω, with aω =


ψ̂s(1), ω = 1
2|ψ̂s| cos(θ̂(ω)), 2 ≤ ω ≤ n/2
ψ̂s(n/2 + 1), ω = n/2 + 1

has a distribution identical to 〈ht, ψs〉. Since

n/2+1∑
ω=1

a2
ω ≤ 2‖ψs‖22 = 2,

applying the bound (A.1) gives us

P

∣∣∣∣∣∣
n/2+1∑
ω=1

a2
ω

∣∣∣∣∣∣ > λ

 ≤ 2e−λ
2/4.

Taking λ = 2
√

log(2n2/δ) and applying the union bound over all n2 choices of (t, s)
establishes the lemma.

Appling Lemma 3.1 directly to the recovery result (1.5) guarantees recovery from

m & S · log2 n

randomly chosen samples, a log factor off of (1.7). We are able to get rid of this extra
log factor by using a more subtle property of the random measurement ensemble H.

Fix a subset Γ of the Ψ domain of size |Γ| = S, and let ΨΓ be the n× S matrix
consisting of the columns of Ψ indexed by Γ. In place of the coherence, our quantity
of interest will be

ν := ν(Γ) = max
k=1,...,n

‖rk‖2 (3.3)

11



with the rk as rows in the matrix HΨΓ; we will call ν(Γ) the cumulative coherence
Γ (this quantity was also used in [32]). We will show below that we can bound the
number of measurements needed to recover (with high probability) a signal on Γ by

m & ν2 · log n.

Since we always have the bound ν ≤ µ
√
S, the result (1.5) is still in effect. However,

Lemma 3.2 below will show that in the case where U = HΨ with H as a random
convolution matrix, we can do better, achieving ν .

√
S.

Lemma 3.2. Fix an orthobasis Ψ and a subset of the Ψ-domain Γ = {γ1, . . . , γS}
of size |Γ| = S Generate a random convolution matrix H at random as described in
Section 1.1 above, and let rk, k = 1, . . . , n be the rows of HΨΓ. Then with probability
exceeding 1− δ

ν(Γ) = max
k=1,...,n

‖rk‖2 ≤
√

8S, (3.4)

for S ≥ 16 log(2n/δ).
Proof. of Lemma 3.2. We can write rk as the following sum of random vectors

in CS :

rk =
n∑
ω=1

Fk,ωσ
∗
ωgω,

where gω ∈ CS is a column of Ψ̂∗Γ:

gω =


ψ̂γ1(ω)∗

ψ̂γ2(ω)∗

. . .
ˆψγS (ω)∗

 .

By conjugate symmetry, we can rewrite this as a sum of vectors in RS ,

rk = σ1g1 + σn/2+1(−1)k−1gn/2+1 + 2
n/2∑
ω=2

Re [Fk,ωσ∗ωgω]

(note that g1 and gn/2+1 will be real-valued). Because the σω are uniformly distributed
over the unit circle, the random vector Re[Fk,ωσ∗ωgω] has a distribution identical to
εω Re[Fk,ωσ∗ωgω], where εω is an independent Rademacher random variable. We set

Y =
n/2+1∑
ω=1

εωvω, where vω =


g1 ω = 1
2 Re [Fk,ωσ∗ωgω] 2 ≤ ω ≤ n/2
gn/2+1 ω = n/2 + 1

.

and will show that with high probability ‖Y ‖2 will be within a fixed constant of
√
S.

We can bound the mean of ‖Y ‖2 as follows:

E[‖Y ‖2]2 ≤ E[‖Y ‖22] =
n/2+1∑
ω=1

‖vω‖22 ≤ 2
n∑
ω=1

‖gω‖22 = 2S,

12



where the last inequality come from the facts that ‖vω‖22 ≤ 4‖gω‖22 and ‖gω‖22 =
‖gn−ω+2‖22 for ω = 2, . . . , n/2.

To show that ‖Y ‖ is concentrated about its mean, we use a concentration inequal-
ity on the norm of a sum of random vector, specifically (A.3) which is detailed in the
Appendix.

To apply this bound first note that for any vector ξ ∈ Rs

|〈ξ,Re[Fk,ωσ∗ωgω]〉|2 ≤ |〈ξ, gω〉|2.

Thus

sup
‖ξ‖2≤1

n/2+1∑
ω=1

|〈ξ, vω〉|2 ≤ 2 sup
‖ξ‖2≤1

n∑
ω=1

|〈ξ, gω〉|2

= 2 sup
‖ξ‖2≤1

ξTΨT
Γ ΨΓξ

= 2.

We now apply (A.3) to get

P
(
‖Y ‖2 ≥

√
2S + λ

)
≤ P (‖Y ‖2 ≥ E ‖Y ‖2 + λ) ≤ 2e−λ

2/32

and so for any C >
√

2,

P
(
‖rk‖2 ≥ C

√
S
)

= P
(
‖Y ‖2 ≥ C

√
S
)
≤ 2e−(C−√2)2S/32 ≤ δ/n

when S ≥ 32(C −
√

2)−2 log(2n/δ). Taking C = 2
√

2 and applying the union bound
over k = 1, . . . , n establishes the lemma.

3.2. Sparse Recovery. The following two results extends the main results of [7]
and [33] to take advantage of our more refined bound on the norm coherence M .
Theorems 3.3 and 3.4 are stated for general measurement systems U with U∗U =
nI, as they may be of independent interest. Theorems 1.1 and 1.2 are then simple
applications with U = HΨ and the bound (3.4) on ν(Γ).

Here and below we will use UΓ for the n× S matrix consisting of the columns of
U indexed by the set Γ.

Theorem 3.3. Let U be a n× n orthogonal matrix with U∗U = nI with mutual
coherence µ. Fix a subset Γ, let rk be the rows of UΓ, and set ν := maxk=1,...,n ‖rk‖2.
Choose a subset Ω of the measurement domain of size |Ω| = m and a sign sequence z
on Γ uniformly at random. Set Φ = RΩU , the matrix constructed from the rows of U
indexed by Ω. Suppose that

m ≥ C0 · ν2 · log(n/δ),

and also m ≥ C ′0 · µ2 log2(n/δ) where C0 and C ′0 are known constants. Then with
probability exceeding 1 − O(δ), every vector α0 supported on Γ with sign sequence z
can be recovered from y = Φα0 by solving (1.2).

Theorem 3.4. Let U, µ,Γ, ν, z be as in Theorem 3.3. Create an RPMS matrix
PΘ as in Section 1.2.2, and set Φ = PΘU . Suppose that

m ≥ C1 · ν2 · log2(n/δ),
13



and also m ≥ C ′1 · µ2 log3(n/δ) where C1 and C ′1 are known constants. Then with
probability exceeding 1 − O(δ), every vector α0 supported on Γ with sign sequence z
can be recovered from y = Φα0 by solving (1.2).

The proofs of Theorems 3.3 and 3.4 follow the same general outline put forth
in [7], with with one important modification (Lemmas 3.5 and 3.6 below). As detailed
in [8,18,31], sufficient conditions for the successful recovery of a vector α0 supported
on Γ with sign sequence z are that ΦΓ has full rank, where ΦΓ is the m × S matrix
consisting of the columns of Φ indexed by Γ, and that

|π(γ)| = |〈(Φ∗ΓΦΓ)−1Φ∗Γϕγ , z〉| < 1 for all γ ∈ Γc, (3.5)

where ϕγ is the column of Φ at index γ.
There are three essential steps in establishing (3.5):
1. Show that with probability exceeding 1 − δ, the random matrix Φ∗ΓΦΓ will

have a bounded inverse:

‖(Φ∗ΓΦΓ)−1‖ ≤ 2/m, (3.6)

where ‖·‖ is the standard operator norm. This has already been done for us in
both the random subsampling and the RPMS cases. For random subsampling,
it is essentially shown in [7, Th.1.2] that this is true when

m ≥ ν2 ·max(C1 logS,C2 log(3/δ)),

for given constants C1, C2. For RPMS, a straightforward generalization of [33,
Th. 7] establishes (3.6) for

m ≥ C3 · ν2 · log2(S/δ). (3.7)

2. Establish, again with probability exceeding 1−O(δ), that the norm of Φ∗Γϕγ
is on the order of ν

√
m. This is accomplished in Lemmas 3.5 and 3.6 below.

Combined with step 2, this means that the norm of (Φ∗ΓΦΓ)−1ϕγ is on the
order of ν/

√
m.

3. Given that ‖(Φ∗ΓΦΓ)−1ϕγ‖2 ∼ ν/
√
m, show that |π(γ)| < 1 for all γ ∈ Γc

with probability exceeding 1 − O(δ). Taking z as a random sign sequence,
this is a straightforward application of the Hoeffding inequality.

3.3. Proof of Theorem 3.3. As step 1 is already established, we start with
step 2. We will assume without loss of generality that m1/2 ≤ ν/µ, as the probability
of success monotonically increases as m increases. The following lemma shows that
‖Φ∗Γϕγ‖2 ∼ ν/

√
m for each γ ∈ Γc.

Lemma 3.5. Let Φ, µ,Γ, ν, and m be as in Theorem 3.3. Fix γ ∈ Γc, and consider
the random vector vγ = Φ∗Γϕγ = U∗ΓR

∗
Ωϕγ . Assume that

√
m ≤ ν2/µ. Then for any

a ≤ 2m1/4µ−1/2,

P
(
‖Φ∗Γϕγ‖2 ≥ ν

√
m+ aµ1/2m1/4ν

)
≤ 3e−Ca

2
,

where C is a known constant.
Proof. We show that the mean E ‖vγ‖2 is less than ν

√
m, and then apply the

Talagrand concentration inequality to show that ‖vγ‖2 is concentrated about its mean.
14



Using the Bernoulli sampling model, Φ∗Γϕγ can be written as a sum of independent
random variables,

Φ∗Γϕγ =
n∑
k=1

ιkUk,γr
k =

n∑
k=1

(ιk −m/n)Uk,γrk,

where rk is the kth row of UΓ = HΨΓ, and the second equality follows from the
orthogonality of the columns of UΓ. To bound the mean, we use

E[‖Φ∗Γϕγ‖2]2 ≤ E[|〈Φ∗Γϕγ ,Φ∗Γϕγ〉|2]

=
n∑

k1,k2=1

E[(ιk1 −m/n)(ιk2 −m/n)]Uk1,γUk2,γ〈rk1 , rk2〉

=
n∑
k=1

m

n

(
1− m

n

)
U2
k,γ‖rk‖22

≤ mν2

n

n∑
k=1

U2
k,γ

= mν2.

We will apply Talagrand (see (A.4) in the Appendix) using Yk = (Ik−m/n)Uk,γrk.
Note that for all f ∈ RS with ‖f‖2 ≤ 1,

|〈f, Yk〉| ≤ |Uk,γ | · |〈f, rk〉| ≤ µν,

and so we can use B = µν. For σ̄2, note that

E |〈f, Yk〉|2 =
m

n

(
1− m

n

)
· |Uk,γ |2 · |〈f, rk〉|

and so

σ̄2 = sup
f

n∑
k=1

E |〈f, Yk〉|2

=
m

n

(
1− m

n

)
µ2

n∑
k=1

|〈f, rk〉|2

≤ mµ2.

Plugging the bounds for E ‖Φ∗Γϕγ‖2, B, and σ̄2 into (A.4), we have

P
(
‖Φ∗Γϕγ‖2 > ν

√
m+ t

)
≤ 3 exp

(
− t

Kµν
log
(

1 +
µνt

mµ2 + µν2
√
m

))
.

Using our assumption that
√
m ≤ ν2/µ and the fact that log(1 + x) > 2x/3 when

0 ≤ x ≤ 1, this becomes

P
(
‖Φ∗Γϕγ‖2 > ν

√
m+ t

)
≤ 3 exp

(
− t2

3Kµ
√
mν2

)
for all 0 ≤ t ≤ 2ν

√
m. Thus

P
(
‖Φ∗Γϕγ‖2 > ν

√
m+ aµ1/2m1/4ν

)
≤ 3e−Ca

2
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for a ≤ 2m1/4µ−1/2, where C = 1/(3K).

To finish off the proof of the Theorem, let A be the event that (3.6) holds; step
1 tells us that P(Ac) ≤ δ. Let Bλ be the event that

max
γ∈Γc

‖(Φ∗ΓΦΓ)−1vγ‖2 ≤ λ.

By Lemma 3.5 and taking the union bound over all γ ∈ Γc, we have

P(Bcλ | A) ≤ 3ne−Ca
2
.

By the Hoeffding inequality,

P
(

sup
γ∈Γc

|π(γ)| > 1 | Bλ,A
)
≤ 2ne−1/2λ2

.

Our final probability of success can then be bounded by

P
(

max
γ∈Γc

|π(γ)| > 1
)
≤ P

(
max
γ∈Γc

|π(γ)| > 1 | Bλ,A
)

+ P (Bλ|A) + P(A)

≤ 2ne−1/2λ2
+ 3ne−Ca

2
+ δ. (3.8)

Choose λ = 2νm−1/2 + 2aµ1/2m−3/4ν. Then we can make the second term in
(3.8) less than δ by choosing a = C−1/2

√
log(3n/δ); for m ≥ 16C−2µ2 log2(3n/δ) we

will have a ≤ (1/2)m1/4µ−1/2. This choice of a also ensures that λ ≤ 3νm−1/2. For
the first term in (3.8) to be less than δ, we need λ2 ≤ (2 log(2n/δ))−1, which hold
when

m ≥ 18 · ν2 · log(2n/δ).

3.4. Proof of Theorem 3.4. As before, we control the norm of Φ∗Γφγ (now
with Φ = PΘU), and then use Hoeffding to establish (3.5) with high probability.
Lemma 3.6 says that ‖Φ∗Γϕγ‖2 ∼

√
mν
√

log n with high probability.
Lemma 3.6. Let Φ, µ,Γ, ν, and m be as in Theorem 3.4. Fix γ ∈ Γc. Then for

any δ > 0

P
(
‖Φ∗Γφγ‖2 > Cm1/2

√
log(n/δ)

(
ν + 4µ

√
log(2n2/δ)

))
= 2δ/n,

where C is a known constant.
Proof. To start, note that we can write Φ∗Γφγ as

Φ∗Γφγ =
m

n

m∑
k=1

∑
p1,p2∈Bk

εp1εp2Up2,γr
p1

=
m

n

m∑
k=1

∑
p1,p2∈Bk
p1 6=p2

εp1εp2Up2,γr
p1

since
m∑
k=1

∑
p∈Bk

Up,γr
p = 0,
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by the orthogonality of the columns of U . To decouple the sum above, we must first
make it symmetric:

Φ∗Γφγ =
m

2n

m∑
k=1

∑
p1,p2∈Bk
p1 6=p2

εp1εp2(Up2,γr
p1 + Up1,γr

p2).

Now, if we set

Z =

∥∥∥∥∥∥∥∥
m

2n

m∑
k=1

∑
p1,p2∈Bk
p1 6=p2

εp1ε
′
p2(Up2,γr

p1 + Up1,γr
p2)

∥∥∥∥∥∥∥∥
2

, (3.9)

where the sequence {ε′i} is an independent sign sequence distributed the same as {εi},
we have (see [14, Chapter 3])

P(‖Φ∗Γφγ‖2 > λ) < CD P(Z > λ/CD) (3.10)

for some known constant CD, and so we can shift our attention to bounding Z.
We will bound the two parts of the random vector separately. Let

vγ =
m

n

m∑
k=1

∑
p1,p2∈Bk
p1 6=p2

εp1ε
′
p2Up2,γr

p1 .

We can rearrange this sum to get

vγ =
m

n

m∑
k=1

∑
p∈Bk

n/m−1∑
q=1

εpε
′
(p+q)k

U(p+q)k,γr
p (where (p+ q)k is addition modulo Bk)

=
m

n

n/m−1∑
q=1

εq

m∑
k=1

∑
p∈Bk

εp
εq
ε′(p+q)kU(p+q)k,γr

p

=
m

n

n/m−1∑
q=1

εq

m∑
k=1

∑
p∈Bk

ε′′(p+q)kU(p+q)k,γr
p (where {ε′′i } is an iid sign sequence independent of {εq})

=
m

n

n/m−1∑
q=1

εqwq, where wq =
m∑
k=1

∑
p∈Bk

ε′′(p+q)kU(p+q)k,γr
p.

We will show that ‖wq‖2 can be controlled properly for each q, and then use the
a concentration inequality to control the norm of vγ . We start by bounding the mean
of ‖wq‖2:

(E ‖wq‖2)2 ≤ E ‖wq‖22

=
m∑
k=1

∑
p∈Bk

U2
(p+q)k,γ

‖rp‖22

≤ ν2
n∑
i=1

U2
i,γ

= nν2.
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Using (A.3), we have that

P
(
‖wq‖2 >

√
n · ν + λ

)
≤ 2e−λ

2/16σ2
,

where

σ2 = sup
‖ξ‖2≤1

ξTV V T ξ, with V :=
(
U(1−q)k,γr

1 U(2−q)k,γr
2 · · · U(n−q)k,γr

n
)

= U∗ΓD,

and D is a diagonal matrix with the U·,γ along the diagonal. Since σ2 is the largest
(squared) singular value of V , and since ‖U∗Γ‖ =

√
n and ‖D‖ ≤ µ, we have that

σ2 ≤ nµ2. Thus

P
(
‖wq‖2 >

√
n · ν + λ

)
≤ 2e−λ

2/16nµ2
.

Let Mλ be the event that all of the ‖wq‖2 are close to their mean, specifically

max
q=1,...,n/m

‖wq‖2 ≤
√
n · ν + λ,

and note that

P(Mc
λ) ≤ 2nm−1e−λ

2/nµ2
. (3.11)

Then

P(‖vγ‖2 > α) ≤ P(‖vγ‖2 > α |Mλ) + P(Mc
λ). (3.12)

Given that Mλ has occurred, we will now control ‖vγ‖2. Again, we start with
the expectation

E[‖vγ‖22 | Mλ] =
m2

n2

∑
q1,q2

E[εq1εq2 |Mλ] E[〈wq1 , wq2〉|Mλ]

=
m2

n2

∑
q1,q2

E[εq1εq2 ] E[〈wq1 , wq2〉|Mλ]

=
m2

n2

∑
q

E[‖wq‖22|Mλ]

≤ m2

n2

∑
q

(
√
nν + λ)2

=
m

n
(
√
nν + λ)2.

Using Khintchine-Kahane ((A.2) in the Appendix), we have

P
(
‖vγ‖2 > C ′m1/2n−1/2(n1/2ν + λ)

√
log(n/δ) | Mλ

)
≤ δ/n. (3.13)

Choosing λ = 4n1/2µ
√

log(2n2/mδ), we fold (3.11) and (3.13) into (3.12) to get

P
(
‖vγ‖2 > C ′m1/2

√
log(n/δ)

(
ν + 4µ

√
log(2n2/mδ)

))
≤ 2δ/n (3.14)

By symmetry, we can replace ‖vγ‖2 with Z in (3.14), and arrive at the lemma by
applying the decoupling result (3.10).
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We finish up the proof of Theorem 3.4 by again applying the Hoeffding inequality.
Let A be the event that the spectral bound (3.6) holds; we know that P(Ac) ≤ δ for
m as in (3.7). Let B be the event that

max
γ∈Γc

‖(Φ∗ΓΦΓ)−1Φ∗Γϕ)γ‖2 ≤ 2Cm−1/2
√

log(n/δ)
(
ν + 4µ

√
log(2n2/δ)

)
,

where the constant C is the same as that in Lemma 3.6; we have shown that P(Bc|A) ≤
2δ. By the Hoeffding inequality

P
(

sup
γ∈Γc

|π(γ)| > 1 | B,A
)
≤ 2n exp

(
− m

8C2 log(n/δ)(ν + 4µ
√

log(2n2/mδ))

)
.

(3.15)
When ν ≥ 4µ

√
log(2n2/mδ), as will generally be the case, the left-hand side of (3.15)

will be less than δ when

m ≥ Const · ν2 · log(n/δ).

When ν < 4µ
√

log(2n2/mδ), the left-hand side of (3.15) will be less than δ when

m ≥ Const · µ2 · log3(n/δ).

The theorem then follows from a union bound with A and B.

4. Discussion. Theorems 1.1 and 1.2 tell us that we can recover a perfectly
S sparse signal from on the order of S log n, in the case of random subsampling, or
S log2 n, in the case of random pre-modulated summation, noiseless measurements. If
we are willing to pay additional log factors, we can also guarantee that the recovery
will be stable. In [27], it is shown that if Φ is generated by taking random rows
from an orthobasis, then with high probability it will obey the uniform uncertainty
principle when

m & µ2 · S · log4 n.

The connection between the uniform uncertainty principle and stable recovery via `1
minimization is made in [9–11]. Along with Lemma 3.1, we have stable recovery from
a randomly subsampled convolution from

m & S · log5 n

measurements. There is also a uniform uncertainty principle for an orthobasis which
has been subsampled using randomly pre-modulated summation [30] with an addi-
tional log factor; in this case, stable recovery would be possible from m & S · log6 n
measurements.

The results in this paper depend on the fact that different shifts of the pulse
h are orthogonal to one another. But how critical is this condition? For instance,
suppose that h is a random sign sequence in the time domain. Then shifts of h
are almost orthogonal, but it is highly doubtful that convolution with h followed
by subsampling is a universal CS scheme. The reason for this is that, with high
probability, some entries of the Fourier transform ĥ will be very small, suggesting that
there are spectrally sparse signals which we will not be able to recover. Compressive
sampling using a pulse with independent entries is a subject of future investigation.
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Appendix A. Concentration inequalities.
Almost all of the analysis in this paper relies on controlling the magnitude/norm

of the sum of a sequence of random variables/vectors. In this appendix, we briefly
outline the concentration inequalities that we use in the proofs of Theorem 1.1 and
1.2.

The Hoeffding inequality [20] is a classical tail bound on the sum of a sequence of
independent random variables. Let Y1, Y2, . . . , Yn be independent, zero-mean random
variables bounded by |Yk| ≤ ak, and let the random variable Z be

Z =

∣∣∣∣∣
n∑
k=1

Yk

∣∣∣∣∣ .
Then

P (Z > λ) ≤ 2 exp
(
− λ2

2‖a‖22

)
, (A.1)

for every λ > 0.
Concentration inequalities analogous to (A.1) exist for the norm of a random sum

of vectors. Let v1, v2, . . . , vn be a fixed sequence of vectors in RS , and let {ε1, . . . , εn}
be a sequence of independent random variables taking values of ±1 with equal prob-
ability. Let the random variable Z be the norm of the randomized sum

Z =

∥∥∥∥∥
n∑
k=1

εkvk

∥∥∥∥∥
2

.

If we create the S × n matrix V by taking the vi as columns, Z is the norm of the
result of the action of V on the vector [ε1 · · · εn]T .

The second moment of Z is easily computed

E[Z2] =
∑
k1

∑
k2

E[εk1εk2 ]〈vk1 , vk2〉

=
∑
k

‖vk‖22

= ‖V ‖2F ,

where ‖ · ‖F is the Frobenius norm. In fact, the Khintchine-Kahane inequality [22]
allows us to bound all of the moments in terms of the second moment; for every q ≥ 2

E[Zq] ≤ C · qq/2 · (E[Z2])1/2,

where C ≤ 21/4. Using the Markov inequality, we have

P (Z > λ) ≤ E[Zq]
λq

≤
(
C
√
q‖V ‖F
λ

)q
,

for any q ≥ 2. Choosing q = log(1/δ) and λ = C · e · √q · ‖V ‖F gives us

P
(
Z > C ′‖V ‖F

√
log(1/δ)

)
≤ δ, (A.2)

with C ′ ≤ e · 21/4.
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When the singular values of V are all about the same size, meaning that the
operator norm (largest singular value) is significantly smaller than the Frobenius
norm (sum-of-squares of the singular values), Z is more tightly concentrated around
its mean than (A.2) suggests. In particular, Theorem 7.3 in [21] shows that for all
λ > 0

P (Z ≥ E[Z] + λ) ≤ 2 exp
(
− λ2

16σ2

)
, (A.3)

where

σ2 = sup
‖ξ‖2≤1

n∑
i=1

|〈ξ, vi〉|2 = ‖V ‖2.

The “variance” σ2 is simply the largest squared singular value of V .
When the random weights in the vector sum have a variance which is much smaller

than their maximum possible magnitude (as is the case in Lemma 3.5), an even tighter
bound is possible. Now let Z be the norm of the random sum

Z =

∥∥∥∥∥
n∑
k=1

ηkvk

∥∥∥∥∥
2

,

where the ηk are zero-mean iid random variables with |ηk| ≤ µ. A result due to
Talagrand [28] gives

P (Z ≥ E[Z] + λ) ≤ 3 exp
(
− λ

KB
log
(

1 +
Bλ

σ̄2 +B E[Z]

))
, (A.4)

where K is a fixed numerical constant,

σ̄2 = E[|ηk|2] · ‖V ‖2, and B = µ ·max
k
‖vk‖22.
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