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The computational ghost imaging with a phase spatial light

modulator (SLM) for wave �eld coding is considered. A trans-

mission mask amplitude object is reconstructed from multiple

intensity observations. Compressive techniques are used in order

to gain a successful image reconstruction with a number of

these observations (measurement experiments) which is smaller

that the image size. Maximum likelihood style algorithms are

developed, respectively for Poissonian and approximate Gaussian

modeling of random observations. A sparse and overcomplete

modeling of the object enables the advanced high accuracy and

sharp imaging. Numerical experiments demonstrate that an

approximative Gaussian distribution with an invariant variance

results in the algorithm which is quite simple in implementations

and nevertheless e¢ cient for Poissonian observations. c
 2012
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1. Introduction

In the chaotic pseudothermal light ghost imaging (GI) a laser beam illumi-

nates an transmission mask object and a transmitted light is collected by a

single-pixel (bucket) sensor with no spatial resolution. The reconstruction of

the object transmission is formed by correlating the bucket sensor�s output

with the output from a spatially resolving sensor that is illuminated by a

reference beam correlated with the signal beam but has not interacted with

the object.

There is a long list of publications that run the gamut from various ex-

perimental realizations to discussions of fundamental classical and quantum

physics behind GI. Initially, it is demonstrated by Pittman et al. [1] that GI

is enabled by speci�cally quantum e¤ects. The discovery, that GI could be

performed with the pseudothermal light, proved that GI admits the classical

(coherence theory and statistical optics) and quantum-mechanical (nonlocal

two-photon interference) interpretations. The both interpretations have been

successfully used to analyze the thermal-light GI and to predict experimen-

tal observations [2, 3]. It has been demonstrated that the pseudothermal GI

results from correlation of the object and reference �elds [4,5]. A comprehen-
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sive review of the fundamentals of GI using classical and quantum physics is

given by Erkmen and Shapiro [6] and Shih [7].

Based on the speckle-correlation interpretation of the thermal-light GI,

Shapiro proposed to implement GI using a phase spatial light modulator

(SLM) illuminated by a spatially coherent laser beam [8]. This development

is a starting point of computational GI, where a reference wave �eld and high-

resolution sensor are not compulsory because the reference speckle wave �eld

and the sensor output can be precompute using the models for the free space

wave �eld propagation. The �rst experimental proof of this idea was done by

Katz et al. [9].

Further works in this �eld concern application and development of novel

computational techniques. Originally, the computational GI is founded on

calculation of the cross-correlation between the data collected by the high-

resolution sensor in the reference arm and by the single-pixel sensor in the

object arm. Contrary to it, compressive sensing ghost imaging (CS-GI ) is

based on modeling and sparse approximations of the transmission mask ob-

ject. Then, the algorithms and reconstructions are solutions of special con-

strained optimization problems. The cross-correlations appear as implicit

4



parts in these algorithms.

The �rst work on CS-GI is done by Katz et al. [10], where the l1-norm

of the image spectral sparse approximation is used as an objective function

of optimization. Another CS-GI technique is developed by Jiying et al. [11],

where the maximum likelihood style approach is developed for noisy data.

Compressive sensing (CS) is a recent trend in image/signal processing hav-

ing the potential to signi�cantly extend the capabilities of digital imagers.

The CS theory states that if the image/signal is sparse, then under certain

conditions on the observation operator, it can be recovered exactly from the

compressive measurements [12, 13]. The sparsity in CS assumes that there

exists a basis consisting of a comparatively small number of items where the

image can be represented exactly or approximately with high accuracy. This

ideal sparse basis is a priori unknown and selected from a given set of poten-

tial bases (dictionary or dictionaries). The popularity and success of CS are

due to the attractive theory, the e¢ cient algorithms and the evidence that

the developed formalism �ts perfectly to many important applications. In CS

the image is reconstructed from subsampled data. A total number of available

observations can be smaller (much smaller) than size of the image. CS can be
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treated as a special regularization technique for variational inverse imaging

where regularization is introduced through a sparse and overcomplete object

modeling.

Recently in optics, sparse and overcomplete imaging has become a subject

of multiple applications, in particular, in the context of CS. Complex-valued

signals and operators are distinctive features of this development. Basic facts

of the corresponding theory, algorithms, simulations as well as experimental

demonstrations are presented by Gazit et. al [14], where the sparsity con-

straints are exploited for sub-wavelength imaging overcoming the di¤raction

limitations. An extensive survey of the CS theory and techniques addressed

to applications in optics is done by Willett et al. [15]. It is shown in the

papers [10, 11] that CS algorithms allow to get good reconstructions for GI

provided that the total number of observations is much smaller than the num-

ber of pixels of the image. Contrary to it, in order to achieve a good quality

by the cross-correlation methods the total number of observation should be

much larger than the image size (e.g. [16]).

In this paper based on the recent works of our research group [17, 18] we

propose and develop the original CS algorithms which are able to give opti-
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mal or near optimal object reconstructions due to a constrained maximum

likelihood formulation of the problem. It is assumed that the observations

are Poissonian, i.e. photon counting e¤ects are taken in consideration. The

proposed algorithms are iterative with decoupling of the inverse of the im-

age formation model in observations and the �ltering of errors in the object

transmission. The sparse and overcomplete modeling of the object to be re-

constructed is a special points of these algorithms. A family of the Block

Matching 3-D (BM3D) algorithms for various imaging problems has been

proposed within the framework of nonlocal patch-wise image modeling [19].

The analysis and synthesis operations from BM3D algorithms have been used

in order to design the BM3D frames [17]. In this paper we use this advanced

overcomplete BM3D image modeling for the object to be reconstructed.

While our approach is based on multi-objective optimization and essen-

tially di¤erent from the conventional variational techniques using a single-

objective optimization it is useful to provide references on some recent works

on inverse imaging for Poissonian observations in CS. Some of the basic prin-

ciples discussed in these works can be tracked in our technique. In the pa-

per by Figueiredo and Bioucas-Dias [20] the imaging is formulated as the
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constrained maximum likelihhood optimization solved using the alternating

direction method of multipliers. The technique uses splitting variables es-

sentially bene�cial for solution of partial optimization problems. The opti-

mization formulation considered by Harmany et al. [21] exploits a penalized

likelihhood objective function and especially focussed on nonnegativity con-

straints for optical problems. It is demonstrated that the accurate treatment

of these constraints may result in signi�cant improvement of imaging in com-

parison with the rude projections of estimates on the quadrants of negative

values. CS performance bounds under Poisson observations are studied by

Raginsky et al. [22].

The rest of the paper is organized as follows. In Section 2 a mathemati-

cal modeling for observation formation in GI system is presented. It includes

the Poissonian and approximative Gaussian observation models as well as

the sparse and overcomplete modeling of the object transmission mask. The

variational approach to the object reconstruction in GI is given in Section 3,

where the algorithm derived for the Gaussian approximation with invariant

standard deviation is presented. The derivation of the algorithms for Pois-

sonian data and Gaussian approximation with varying standard deviations
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are given in Appendices A and B. Simulation experiments are discussed in

Section 4.

2. Observations and sparse overcomplete object modeling

The two-arm thermal-light GI setup with SLM is shown in Fig.1. The speckle

wave �eld testing the object is generated by the monochromatic laser beam

illuminating SLM used for modulation of the wave �eld. The reference (hori-

zontal) and object (vertical) light beams are outputs from a 50-50 beam split-

ter. These beams undergo paraxial di¤raction over free-space paths of length

d, yielding identical (at least in theory) speckle measurement-plane �elds ur.

The reference beam is registered by a high-resolution digital sensor with the

beam intensity output jurj2. The signal beam illuminates the transmission-

mask object u0, located immediately in front of the bucket (single-pixel)

sensor. The bucket sensor measures the total intensity or of the wave �eld

illuminating this sensor.

The single-arm computational setup of GI is considered in the form shown

in Fig.2, where the precalculated intensity of the speckle �eld jurj2 is used

instead of jurj2 measured in the reference arm of the two-arm GI setup. In

the both setups, single- and two-arms, the object amplitude transmission
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is reconstructed using the multiple outputs obtained for experiments with

various phase distributions of SLM.

In this section we derive the image formation model linking observation

intensities at the output of the single-pixel bucket sensor with the squared

magnitudes of the transmission mask object and intensities of the speckle

wave �eld generated by SLM. It is assumed that the wave �eld is coherent,

the wave front is �at and the paraxial approximation can be used for wave

�eld propagation. The derived models are applicable for the both single- and

two-arm setups.

2.A. Observation modeling

Let u1(x) and u2(x), x 2 R2, denote complex-valued wave �elds in the ini-

tial and following parallel planes, with a distance d between the planes. In

discrete modeling the continuous argument x is replaced by the digital one

with a corresponding replacement of all continuous functions by their dis-

crete sampled counterparts: u1(x) ! u1[k], u2(x) ! u2[k] with 2D integer

argument k.

In what follows we use a vector-matrix notation with N1�N2 images given

as vectors in Cn, n = N1N2, where Cn stands for the space of complex-valued
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vectors of length n. These vectors are obtained from the standard matrix

representation for images by concatenating the columns of these matrices.

We use bold lower case characters for these vectors. Thus, u1 and u2 are

vectorial representations for u1[k] and u2[k].

The forward propagation of the wave �eld from the plane with the distribu-

tion u1 gives u2 as

u2 = Adu1, (1)

where Ad is a generic notation for a discrete forward propagation operator

(complex-valued n� n matrix, Ad 2 Cn�n).

Eq.(1) corresponds to the convolution of the object distribution u0 with

the di¤raction kernel of the wave �eld propagation operator Ad. Depending

on the used discretization of the Rayleigh-Sommer�eld integral the operator

Ad in Eq.(1) can be: convolutional; angular spectrum decomposition (ASD);

discrete di¤raction transform given in the Fourier domain (F-DDT) [23], etc.

We use the model (1) for both the reference and signal arms of the GI setup.

Let a complex-valued transmittance of SLM be given by a matrix Mr 2

CN1�N2. Then for an uniform laser beam of the intensity 1 the wave �eld ur

is de�ned by the equation ur = AdMr, where the vectorMr 2 Cn stands for
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the vectorized representation of the matrix Mr.

Let a set of K experiments be performed with di¤erent Mr, r = 1; :::; K.

The corresponding intensities at the output of the bucket sensor are of the

form

or =

nX
k=1

juo[k]j2 � jur[k]j2 = bTr c; r = 1; :::; K. (2)

where jur[k]j2 are intensities of the speckle wave �elds illuminating the object.

Here we use the vectorial notation c =juoj2 2 Rn for the squared magnitude

of the transmission mask object, and br = jurj2 2 Rn. The intensities or =

bTr c can be treated as projections of the squared modulus c =juoj2 on the

random directions given by the intensity speckle vectors jurj2.

The cross-correlation of the observations or with the corresponding speckle

wave �elds ur is a fundamental idea for reconstruction of the object trans-

parency juoj2. The analytical expression commonly used for this reconstruc-

tion in the form (e.g. [10])

jûo[k]j2 =
1

K

KX
r=1

(or � �o)jur[k]j2: (3)

Here �o = 1
K

PK
r=1 or is the mean value of the observations. This reconstruction

is calculated as a correlation function between the centered measurements and

the intensities of the reference speckle �elds jur[k]j2.
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It can be seen that this estimate is biased and improperly scaled with

respect to uo. A corrected version of (3) is discussed in Subsection 4.C.

2.B. Poissonian and approximative Gaussian observations

The Poissonian observations (2) take random integer values ~or interpreated as

a counted number of photons detected by the sensor. This discrete distribu-

tion has a single parameter � � 0 and de�ned by the formula p(~or = k) =

exp(��)�kk! . Here p(~or = k) is the probability that a random ~or takes value

k, k � 0 is an integer. The parameter � is the intensity �ow of Poissonian

random events.

For di¤erent experiments the parameter � takes values �r = bTr c, and the

probabilistic Poissonian observation model is given by the formula p(~or =

k) = exp(�bTr c�)
(bTr c�)

k

k! ; r = 1; :::; K.

According to the properties of the Poissonian distribution, we have for the

mean value and the variance of the observed ~or, Ef~org = varf~org = bTr c�.

In these formulas � > 0 is a scaling parameter. A larger � means a larger

exposure time, and a larger number of the photons recorded by the sensor.

The probabilistic observation model corresponding to (2) can be written in
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the form

~or = PoissonfbTr c�g; (4)

where Poissonf�g stands for a generator of random Poissonian numbers with

the corresponding intensity. Practically, instead of (4) the normalized inten-

sity (intensity/sec) is measured as

or = PoissonfbTr c�g=�: (5)

It is not di¢ cult to realize that Eforg = bTr c and varforg = bTr c=�.

Here Ef�g stands for operation of mathematical expectation. Thus, larger

� (larger observation time) results in a smaller variance, and or is an unbi-

ased estimate of bTr c. For the signal-to-noise ratio (SNR) we have SNR =

Eforg=
p
varforg =

p
bTr c�. Thus, smaller � means a smaller SNR and a

relatively larger level of the noise. Note that the distribution of or de�ned in

Eq.(5) is not Poissonian anymore, in particular because Eforg 6= varforg.

For a su¢ ciently large bTr c�, b
T
r c� > 1000 (and even for much smaller

bTr c�), the Poissonian distribution is approximated with a good accuracy by

the Gaussian distribution [24]. Then, or in Eq.(5) is also Gaussian with the

distributions N (bTr c;bTr c=�).

The observed random or can be represented in the form with an additive
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random noise

or = bTr c+ �r"r; r = 1; :::; K; (6)

�2r = bTr c=�: (7)

where "r is the standard zero-mean Gaussian white random noise, "r �

N (0; 1).

It was noticed in simulation experiments that the variances �2r are nearly

invariant and can be replaced by a constant value, �2r ' �2. It happens

because for large n and under quite general assumptions bTr c ' EfbTr cg =

EfbTr gc= EfbTgc, where b = Efbrg, r = 1; :::K. Thus, �2r can be taking

asymptotically invariant, �2r !n!1 b
Tc =�2.

Then, the model (6) is simpli�ed to the form with an invariant standard

deviation noise

or = bTr c+ �"r; r = 1; :::; K; (8)

�2 = bTc=�. (9)

For a large bTr c, or in Eq.(8) is nonnegative as it is in (4).

A good and unbiased estimate of �2 from or is of the form

�̂2 =
1

K

KX
r=1

or=�: (10)
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Restoration of the image c from linear noisy observations of or is an inverse

problems, and the linear observation operator is singular for K < n . We

characterize compressive sampling ratio by the parameter � = n=K de�ned

as a ratio of the image size n to the number of observations K used for

reconstruction.

A thermal Gaussian random noise typical for digital sensors can be included

in the models (6) and (8) as a Gaussian random summand.

2.C. Sparse object modeling

According to the sparse overcomplete approximation techniques the vector

object c can be represented in the following synthesis and analysis forms,

respectively, [17,18]:

c = 	�, (11)

� = �c: (12)

Here, c 2Rn, � 2Rm, and 	 and � are transform matrices of the corre-

sponding sizes, n �m and m � n, respectively. The vector �, usually called

spectrum, gives the parameters for the parametric approximation of the im-

age c as c = 	�. Thus, c =
Pm

j=1	j � �j, where 	j are the columns of the

matrix 	, and �j are the items of the vector �.
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The synthesis de�nes the image provided that the spectrum is given, c =

	�. Contrary to it, the analysis de�nes the spectrum corresponding to a

given image as � = �c.

The complexity of the image approximation c =
Pm

j=1	j � �j is character-

ized by the l0-norm of the vector �, denoted by jj�jj0, and calculated as a

number of nonzero elements of the vector. The image model is named over-

complete if m > n and sparse if the number of the nonzero (active) spectral

elements of � is smaller that the image size, jj�jj0 < n.

The l1�norm of � is de�ned as the sum of the absolute values of all items

of the vector, jj�jj1 =
P

s j�sj. Both these l0-and l1-norms are used in order

to characterize sparsity of approximation. A smaller value of the norm means

a higher sparsity of approximation (e.g. [25]).

In Eqs.(11)-(12) the transform matrices 	 and � de�ne the bases (dictio-

nary) for object approximations. In the classical approaches the orthonormal

bases are the standard tools, where m = n and the analysis and synthesis

transforms are such that ��T = In�n, 	 = �T . It is obvious that when we

are looking for the sparsest approximation a larger set of potentially good

basic function gives a better opportunity for model selection. It is recognized
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that overcomplete representations for c with m � n and linearly dependent

	j form a much more powerful tool for advanced imaging than the classical

orthonormal bases with m = n.

The concept of frame is a generalization of the classical bases especially

developed for overcomplete (synthesis and analysis) representations with lin-

early dependent approximating functions (e.g. [26]).

There are special links between the analysis and synthesis frames. In partic-

ular, the requirement, 	 �� = In�n, where In�n is the n�n identity matrix,

enables a perfect reconstruction of any Y from the corresponding spectrum

�, indeed c = 	� = 	 ��c = c. For details and applications of overcom-

plete, in particular, frame based modeling for imaging we refer to the recent

book [25].

In our algorithm implementations we use for the analysis and synthesis the

BM3D frames [17].

3. Variational object reconstruction

Di¤erent algorithms for reconstruction of the object transmittance c =juoj2

can be developed using the Poissonian (5) and approximative Gaussian mod-

els (6)-(7), (8)-(9). A comparative study shows that the algorithm based on
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the Gaussian modeling with the invariant standard deviation demonstrates

a very good performance. Computationally, this algorithm is much simpler

than those for the Poissonian modeling and the Gaussian modeling with the

varying standard deviations.

In this section we are focussed on the Gaussian modeling with the invari-

ant standard deviation. The algorithms for the Gaussian modeling with the

varying standard deviations and Poissonian observations are presented in

Appendices A and B.

Let us start from the conventional CS technique based on the overcomplete

modeling of the object (e.g. [10] and [11]). For the Gaussian noise distribu-

tion in Eq.(8)-(9) the maximum likelihood approach leads to the following

objective function

JG = L(forgK1 ; c) + � � jj�cjjlp; (13)

�2 = bTc=�, (14)

where jj � jjlp stands for the lp-norm, p = 0 or p = 1, and � > 0 is a regular-

ization parameter.

The �rst summand in Eq.(13) is theminus log-likelihood function calculated

using the joint probability density of the independent Gaussian observations
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(8)-(9), L(forgK1 ; c) = � ln�Kr=1 1p
2��
exp(

�1
2�2

(or � bTr c)2). The second sum-

mand in Eq.(13) is the penalty (regularization) term de�ning the complexity

(sparsity) of the model for squared magnitude of the object transmittance c.

The standard CS formulation of the reconstruction problem is of the form

ĉ =argmin
c
JG, or ĉ =argmin

c�0
JG: (15)

The latter formulation is used if nonnegativity of c is taken into consideration.

In this paper for derivation of the GI algorithm we use the original CS tech-

nique based on the multi-objective optimization which is very di¤erent from

the single-objective optimization (15) conventional for CS. The advantage of

this novel CS technique is demonstrated in the papers [17] and [18].

Let us introduce the following two objective functions:

L1(c; �) = L(forgK1 ; c) +
1

2
0
jjc�	�jj22, �2 = bTc=�; (16)

L2(c;�) = � � jj�jjlp +
1

2
jj� � �cjj22. (17)

Here jj�jj22 stands for the squared Euclidean norm of the vector.

The �rst summand in Eq.(16) is the �delity term from Eq.(13). The sec-

ond summand corresponds to the transform modeling the constraint (11)

linking c with its spectrum �. This link is given using the quadratic pe-
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nalization for Eq.(11), where 
0 is a parameter of this penalization. Recall,

that Eq.(11) gives the synthesis constraint. The quadratic penalization of

constraint-equations is a common practice in order to reduce constrained op-

timization to unconstrained one. Smaller values of the corresponding penal-

ization parameter 
0 mean that in the solution the corresponding equations

will be ful�lled more accurately (e.g. [27]).

The �rst summand in (17) de�nes the complexity (sparsity) of the analysis

model for the object squared magnitude c. The second summand is the analy-

sis constraint (12) again given using the quadratic penalization for Eq.(12).

The multi-objective optimization as it is proposed in [17] and [18] means

the alternating minimization of the two objective functions L1 and L2 leading

to the following iterative algorithm:

ct+1=argmin
c�0

L1(c, �t); (18)

�t+1=argmin
�
L2(ct+1, �). (19)

In Eq.(18) minimization of L1 on c inverses the image formation operator.

Minimization of L2 on � �lters the squared magnitude of the object transmit-

tance function. Instead of minimization of a single-objective function as in

Eq.(15) the algorithm (18)-(19) is looking for a quite di¤erent solution which
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is a �xed-point (��, c�) de�ned by the equations:

c�=argmin
c�0

L1(c, ��); (20)

�� =argmin
�
L2(c�;�).

This �xed-point balances two di¤erent intentions: minimization of the �-

delity term (accuracy of observation �tting) in L1 and minimization of the

complexity of the object model (de�ned in L2 as � � jj�jjlp), provided the

analysis and synthesis restrictions.

In order to simplify the problem (18) we replace it by unconstrained op-

timization with projection of the solution on the quadrant of non-negative

values. Instead of (18)-(19) we will consider the iterative procedure

ct+1=2=argmin
c
L1(c, �t); ct+1 = P+fct+1=2g, (21)

�t+1=argmin
�
L2(ct+1, �), (22)

where P+fcg is an elementwise projector of the vector c, P+fc[k]g = c[k] if

c[k] > 0 and P+fc[k]g = 0 otherwise.
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3.A. Solution of optimization problems

Consider the optimization problems (21) and (22). Assume for a while that

�2 is known, e.g. calculated using the formula (10). Then

L1(c; �) =
1

2�2

KX
r=1

(or � cTbr)2 + (23)

1

2
0
jjc�	�jj22,

and the minimum condition @L1(c, �)=@c = 0 gives the linear equation

�1
�2

KX
r=1

(or � cTbr)br +
1


0
(c�	�) = 0: (24)

Let us rewrite this equation as

c = 	� + 
0=�
2
KX
r=1

(or � (cTbr))br (25)

and multiply this equation by bTk for k = 1; :::; K. Introducing the variables

xr = c
Tbr, we arrive to the set of the K equations

KX
r=1

(
1

�2
bTkbr +

�k;r

0
)xr =

KX
r=1

1

�2
orb

T
kbr +

1


0
bTk	�,

k = 1; :::; K:

Let B be a n �K matrix, B = (b1; :::;bK), then the above equations can

be written in the compact form

(
1

�2
BTB+

1


0
IK�K) � x =

1

�2
BTB � o+ 1


0
BT	�, (26)
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where x = (x1; :::; xK)T .

With a given variable x Eq.(25) is of the form

c = 	� +

0
�2
B(o� x). (27)

Thus, the solution of Eq.(24) can be obtained in two sequential stages.

First, x 2 RK is calculated from (26), second the vector c 2 Rn is calculated

from (27). In Eq.(26) we need to invert K � K matrix ( 1�2B
TB + 1


0
IK�K)

instead of inversion of much larger n� n matrix
PK

r=1(
1
�2brb

T
r +

1

0
In�n) for

Eq.(24). It de�nes the essential advantage of the derived two stage solution

(26)-(27) in comparison with a direct solution of the original Eq.(24).

The problem (22) has the well known solution speci�ed for l0 and l1 norms

as the elementwise operator (e.g. [25])

� = Th� (�c) = (28)8>><>>:
Thsoft� (�c) = sign (�c) �max (j�cj � � ; 0) , if lp = l1,

Thhardp
2�
(�c) = �c � 1

�
j�cj �

p
2�
�
, if lp = l0,

where the indexes 0soft0 and 0hard0 indicate the type of the solution as the

soft- or hard-thresholding. The threshold parameters for the soft- and hard

thresholdings are di¤erent. In (28) ���stands for the elementwise multiplica-

tion of the elements of two vectors, and j�cj is a vector of the absolute values
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of the elements of the vector �c.

3.B. Developed algorithm

The successive steps of the proposed iterative algorithm are based on the

above solutions for (21) and (22). In our implementation of the algorithm the

analysis and synthesis operations, thresholding and design of the analysis and

synthesis frames (matrixes � and 	) are integrated in a single block, which

we call BM3D-�lter. Then the developed algorithm can be presented in the
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following compact form:

Algorithm: CSGIinv

Input: o; B, c init, �2init

Set t = 0, v 0
0 = c

init, (�0)2 = �2init

Repeat until convergence:

1. ( 1

(�t)2
BTB+

1


0
IK�K)x

t+1 =

1

(�t)2
BTBo+

1


0
BTv t

0 ;

2. ct+1=2 = v t
0 +


0

(�t)2
B(o� xt+1),

ct+1 = P+fct+1=2g;

3. v t+1
0 = BM3D-�lter(ct+1);

4. (�t+1)2 = bTct+1=�;

t = t+ 1.

The input variables of the algorithm are: the intensity observation vector

o 2RK+ , the speckle wave �eld intensitiesB 2RK�n, calculated by propagation

of the SLM phase mask radiations Mr in the scenario of Fig.2 or measured

in the scenario of Fig.1, the initial guess c init2Rn+ for ju0j2, and the estimate

of the noise variance �2init calculated according to Eq.(10).
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Steps 1 and 2 corresponds to the solution (26)-(27) of the problem (21)

with minimization of L1 with respect to c.

At Step 3 the analysis � and synthesis 	 transforms are constructed by

BM3D-�lter for the image (input of this �lter) ct+1. The BM3D analysis op-

eration de�nes the spectrum �ct+1, which after thresholding gives the �ltered

spectrum �t+1=Th�
�
�ct+1

�
. The BM3D synthesis operations v t+1

0 = 	�t+1

de�nes the output of BM3D-�lter.

In Step 4 the noise variance (�t+1)2 is updated according to the current

estimate of c:

The initial guess c init is calculated according to t0 steps of a no-�ltering

option of the CSGIinv algorithm. This no-�ltering option is a simpli�ed version

of CSGIinv obtained by dropping the �ltering step 3 and assuming that

v t+1 = c t+1:

BM3D-�lter allows two di¤erent modes: �rst, with the �xed analysis and

synthesis frames and, second, with the design of the analysis and synthesis

frames.

The mode with the design is compulsory for the iteration t = t0 + 1. The

BM3D frames are data dependent and for this step they are obtained for
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the initial guess c init. These obtained frames could be �xed up to the end of

reconstruction.

The frames also can be updated by BM3D-�lter after a number of iterations.

Then these new frames depend on the reconstructions c t, where t is a number

of iteration where the update of the frames is produced.

It was noticed that only a few updates should be used because a larger

number of updates does not improve the reconstruction and even can results

in their degradation. Note also that the frame design takes time and slows

reconstruction process.

We use the name CSGIinv for the proposed algorithm as the abbreviation

for Compressive Sensing Ghost Imaging with invariant standard deviation.

The reconstruction algorithmCSGIvar for Gaussian observations with vary-

ing standard deviation and the algorithm CSGIpoiss for Poissonian observa-

tions are presented in Appendices A and B, respectively.

4. Simulation experiments

In the presented experimental results we use two types of transmission mask

objects: binary 26�44 test-image TUT (abbreviation for Tampere University

of Technology) and a 64� 64 fragment of the gray-scale test-image Camera-
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man . In our vectorial notation they form vectors c 2Rn+ with n = 26 � 44

and n = 64� 64, respectively.

Simulation is addressed to the single-arm scenario (Fig.2). The pixelation of

modeling is de�ned by pixels of SLM. We assume that these pixels are square

�x � �x, �x = 8 �m, with 100% �ll factors. The wavelength � = :532 �m

corresponds to a green laser. �In-focus�distance for the considered lensless

setup is calculated as df = N ��2x=�. In particular, df = 7:7 mm for N = 64.

The F-DDT technique is applied for modeling of the free space forward

propagation (operator Ad in Eq.(1)). Recall that this technique enables the

exact wave �eld propagation for pixelated sensor and object wave �elds [23].

The phase modulation masks Mr, r = 1; :::; K, are generated according to

the formula

Mr[k1; k2] = exp(j2�'r[k1; k2]);

1 � k1 � N1, 1 � k2 � N2,

where the random phase 'r[k1; k2] is uniformly distributed over the interval

[0, 1) and independent for all k1, k2 and r.

The random masks Mr, r = 1; :::; K, are generated only once and �xed

through all image reconstruction experiments. It is done in order to enable
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the reproducible and accurately comparable results for di¤erent parameters

of the experimental setup. In particular, it is used for optimization of the

free propagation distance d. The observations or are Poissonian generated

according to Eq.(5). The number of experiments/observations K is de�ned

as K = n=�, where the compressive sampling ratio � = 1; 2; 4; 8; 16 for TUT

and � = 2; 4; 8; 16 for Cameraman test-images.

We consider the distance d between the SLM and the sensor in Fig. 2 as a

design parameter and produced experiments for d = df �kd, kd = 1; 2; 3; 5; 10.

kd = 1 corresponds to in-focus imaging, while kd > 1 gives out-of-focus

imaging.

Parameter � de�nes the level of the randomness in the observations. In our

experiments � = 102, 104, 106. For test-image TUT it corresponds to SNR

equal about 15:6, 35:6 and 55:6 dB. Thus, for � = 102 we obtain the most

noisy observations, while � = 106 corresponds to the nearly noiseless case.

Note that the noise level obtained even for � = 104 is quite essential for the

considered ill-posed (singular) inverse imaging problems.

In what follows we show the results obtained for the hard-shresholding

�ltering only corresponding to use the l0-norm in (28). Experimental study
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shows that the l0-norm usually results in better image reconstructions than

those for the l1-norm.

The computational complexity of the algorithm is characterized by the

time required for 100 iterations, including the initialization iterations. For an

image 64� 64 it takes about 200 sec. provided � = 2 (K = 2028) and about

60 sec. provided � = 4 (K = 1024) for the computer and the software used

in the experiments: Intel Core 2Duo E8400 @ 3GHz, RAM 4GB, Windows

Xp SP3, Matlab 7.9.0 (R2010b). The computationally most intensive parts of

the algorithm (BM3D-frame design, analysis and synthesis operations) have

been written in C++.

Two parameters are used in order to tune the algorithm: weight 1=
0 and

threshold � . Overall, larger values of the threshold parameter � and smaller

values of 
0 result in a stronger smoothing of reconstruction. For selection of

the parameters 
0 and � we use the oracle rule assuming that the true image

is given and the corresponding PSNR is maximized. In this case the shown

results demonstrate the potential of the algorithm. Practically, these para-

meters can be selected by special tests looking for parameter values optimal

for various classes of objects.
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We make our MATLAB programs for the demo version of our algorithms

publicly available for testing: http://www.cs.tut.�/~lasip/DDT/.

4.A. Performance of CSGIinv algorithm

We use peak signal-to-noise ratio (PSNR) as a criterion for the accu-

racy of the object reconstruction. PSNR is calculated as a ratio between

the maximum possible power of the signal and the power of reconstruc-

tion error. PSNR is expressed in the logarithmic decibel scale, PSNR =

20 log10maxk juo[k]j2=RMSE dB, where maxk juo[k]j2 is the maximum value

of the squared magnitude of the object, and RMSE is the root-mean-squared

error of juoj2 reconstruction.

Usually the values of PSNR about 25 � 30 dB are evidence of a good

quality reconstruction, and 40 dB and higher values correspond to a nearly

perfect reconstruction.

In Tables 1-3 we show PSNR values obtained for TUT test-image with

� = 102, 104, 106, respectively. The rows of the tables correspond to distances

d = df � kd, kd = 1, 3, 5, 10, and the columns show results for di¤erent

compressive sampling ratio � = 1; 2; 4; 8; 16.

The cells of these tables where PSNR � 20 dB are marked by fail, because
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of a low quality imaging in these cases.

For dependence of PSNR with respect to the free propagation distance d,

we can note that there exists an optimal distance in each column giving the

maximum PSNR value. Provided �xed other parameters, d varies the size of

speckles in ur. In general, larger speckles appear for larger d. The existence

of the optimal value for d is intuitively obvious.

The probabilistic modeling of speckles presented in Goodman�s book [28]

allows to calculate speckle size, speckle correlation, speckle resolution, etc.

However, it is quite di¢ cult to apply these results for evaluation of the real

GI accuracy for a particular image. The developed simulation instruments can

be successfully used for this sort of problems, and Tables 1-3 demonstrates it.

The found optimal d de�ne speckle sizes which are the best for a particular

image and particular experimental parameters.

It is interesting to note that the best results can be achieved for compres-

sive sampling ratio � which is not compulsory equal to 1 (the case when

the number of observations is equal to image size). In particular, the best

PSNR = 45:82 dB for � = 102 is obtained for d = 3df and � = 2.

The overall best results for � = 102, 104, 106 are, respectively PSNR =

33



31:60; 45:82; and 58:85 dB. Naturally, lower levels of noise allow to get better

results.

The visual quality of imaging is illustrated in Fig.3-Fig.5. For noiseless data

with � = 106 we obtain the perfect reconstruction even for the compressive

sampling ratio � = 4, in the same scenario but with the compressive sampling

ratio � = 8, the result shown in Fig.4 is good but not perfect with PSNR =

29:3 dB.

Imaging of gray-scale objects is a more di¢ cult problem as compared with

imaging of a binary object such as TUT. In Fig.5 we show the reconstruction

for the Cameraman test-image. The visual quality is good with quite high

value of PSNR. This result is shown for noisy data with � = 104 and the

compressive sampling ratio � = 2.

Provided the �xed phase masks Mr, r = 1; :::; K, the only source of ran-

domness in observations and image reconstructions are de�ned by Poissonian

observations calculated according to Eq.(5). We checked by Monte Carlo ex-

periments that PSNR values are nearly identical for di¤erent trails of the

random observations with a di¤erence in PSNR of about 1%� 2%.

Another interesting point concerns the compressibility of the overcomplete
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image modeling when the used dictionaries (frames � and 	) are truly re-

dundant.

Let jj�jjl0=M be compressive spectral ratio, where M is the total size of the

spectrum � and jj�jjl0 is a number of the nonzero elements of the � obtained

after the thresholding. This compressive spectral ratio shows what a portion

of the spectra is actually used for approximation. Remind that the image

reconstruction is sparse jj�jjl0 < n, where n is the image size.

In our experiments we obtain the following �gures which are typical for

good quality maging. For TUT test-image with � = 4: jj�jjl0=M ' 10, jj�jjl0 '

260, M ' 2600 and PSNR ' 39 dB. This reconstruction is sparse because

jj�jjl0 ' 250 < n = 1144 and shows a good value for the compressive spectral

ratio equal to 10.

For Cameraman test-image with � = 2 : jj�jjl0=M ' 5, jj�jjl0 ' 1300,

M ' 6500 and PSNR ' 30 dB. This reconstruction is sparse because jj�jjl0 '

1300 < n = 6400 and also shows a good value for the compressive spectral

ratio equal to 5.

Thus, BM3D frames enable a good compressibility both in the image and

the spectral domains, a good sparsity of reconstruction as well as a good
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quality imaging.

4.B. CSGIinv versus CSGIvar and CSGIpoiss

Comparison of the algorithms CSGIinv and CSGIvar shows that the ad-

vantage which could be gained by CSGIvar, based on the more accurate

observation modeling, is quite negligible provided that the level of the noise

is not high, � > 103�104. The PSNR values can be improved by few percents

only.

A more valuable PSNR improvement by CSGIvar can be achieved for nois-

ier data, � < 103. However, the visual quality of this imaging is poor. We

wish to note that the computational complexity of CSGIvar is essentially

higher than the complexity of CSGIinv, because the matrix to be inverted

(BTBDt + 1

0
IK�K) is di¤erent for each iteration while the corresponding

matrix (BTB + 1

0
IK�K) in CSGIinv is invariant and can be inverted only

once.

The complexity of CSGIpoiss is even higher than the complexity of

CSGIvar because a set of the quadratic (not linear as it is for Gaussian

approximations) equation (43) should be solved for every iteration.

The PSNR advantage by CSGIpoiss versusCSGIinv could be demonstrated
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only for quite small �, however, despite of this numerical advantage, the visual

quality of the imaging is poor.

Our conclusion is that the exposure time in experiments should be large

enough in order to enable a lower level of the randomness in observations and

the possibility of good imaging. Then the algorithm CSGIinv is able to give

good results and application of the algorithm CSGIvar and CSGIpoiss has

no sense.

4.C. Cross-correlation reconstructions

Let us rewrite the cross-correlation GI algorithm (3) as 1
K

PK
r=1(or � �oK)br,

where br = jurj2 2 Rn, and modify this algorithm to the following form

jûo[k]j2 =
1

K

KX
r=1

(or � �oK)(br � �bK); (29)

�bK =
1

K

KX
r=1

br, �oK =
1

K

KX
r=1

or (30)

Simple manipulations show that 1
K

PK
r=1(or� �oK)(br��bK) = 1

K

PK
r=1(br�

�bK)
Tc(br � �bK), c =juoj2. Then the expectation of (29) is calculated as

Efjûoj2g = DKc, DK = Ef
1

K

KX
r=1

(br � �bK)(br � �bK)Tg.

Using this result we propose a modi�ed cross-correlation algorithm in the
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form

jûo[k]j2 = D̂+
K �

1

K

KX
r=1

(or � �oK)(br � �bK); (31)

D̂K =
1

K

KX
r=1

(br � �bK)(br � �bK)T .

Here D̂K is an asymptotically unbiased estimate of DK , and D̂+
K is a

pseudoinverse (or regularized inverse) of DK . Then, the reconstruction (31)

is asymptotically unbiased and properly scaled with respect to juoj2. Thus,

we modify the estimate (3) in two ways. First, br is replaced by a centered

random br� �bK , and second, the n�n matrix D̂+
K makes the reconstruction

asymptotically unbiased.

It can be proved that the estimate jûoj2 converges to juoj2 in the mean

squared sense, i.e. Efjjjûoj2 � juoj2jj22g ! 0 as K ! 1. However, the ex-

periments show that the convergence rate with respect to K is very slow.

A number of experiments required for a good accuracy should be in orders

larger than the image size. In Fig.6 and Fig.7 we show the performance of

the algorithm (31) for two test images TUT and Cameraman. The imaging

achieved even for K = 30000 is quite poor visually and numerically in PSNR

values. This number of experiments is much larger then the sizes of these test

images, K � n.
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Comparison with reconstructions obtained in Subsection 4.A show that

the developed CSGIinv algorithm yields incomparably better results provided

much smaller number of experiments K.

5. Conclusion

The computational GI using a phase spatial light modulator (SLM) for a wave

�eld modulation is considered. Three maximum likelihood algorithms are

developed, respectively for Poissonian observation modeling and approximate

Gaussian ones with varying and invariant standard deviations. An original

compressive imaging technique developed in this paper results in the iterative

algorithms decoupling inverse of the image formation operator and �ltering.

A sparse and overcomplete object modeling based on BM3D frames enables

the advanced high accuracy reconstruction and sharp imaging even for quite

large values of compressive sampling ratio. It is demonstrate that a Gaussian

approximation for Poissonian observations using an invariant variance results

in the e¢ cient and comparative simple in implementation algorithm.
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Appendix A. Algorithm for Gaussian observation modeling with

varying standard deviations

For the varying standard deviations the Gaussian minus log-likelihood is

calculated as L(forgK1 ; c) '
PK

r=1[
1
2�2r
(or � cTbr)2 + ln�r], �2r = bTr c=�.

The unconstrained minimum condition @L1(c, �)=@c = 0 in the problem (21)

gives the equation nonlinear with respect to c :

�
KX
r=1

1

�2r
(or�cTbr)br+

KX
r=1

[
�1
�2r
(or�cTbr)2+1](

1

2bTr c
br)+

1


0
(c�	�) = 0.

(32)

It can be shown that (or � cTbr)2 is of the order �2r and (or � cTbr) is of

the order �r. Then for a large � the �rst summand in Eq.(32) is of the order

0 (
p
�) and the second summand is of the order 0 (1). It follows that for large

� the second summand in Eq.(32) can be omitted, and the equation becomes

linear with respect to c provided given �r:

�
KX
r=1

1

�2r
(or � cTbr)br +

1


0
(c�	�) = 0. (33)

After manipulations similar to the ones used in Subsection 3.A the solution
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of Eq.(33) can be given by the two stage calculations

(BTBD+
1


0
IK�K) � x = BTBD � o+ 1


0
BT	�, (34)

D = diagf 1
�21
; :::;

1

�2K
g,

and

c = 	� + 
0BD(o� x). (35)

First, x 2 RK is calculated from (34), and, second, the vector c 2 Rn is cal-

culated using (35). If �r = �, r = 1; :::; K, then D = IK�K=�
2 and Eqs.(34)-

(35) are identical to Eqs.(26)-(27).

The solution of the problem (22) has the form (28). The GI reconstruction
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algorithm is given in the form

Algorithm: CSGIvar

Input : o; B, c init,

Set t = 0, c0 = v 0
0 = c

init, (�0r)
2 = bTr c

init=�

Repeat until convergence:

1. (BTBDt +
1


0
IK�K) � xt+1 =

BTBDt�o+ 1


0
BTv t

0 ;

2. ct+1=2 = v t
0 + 
0BD

t(o� xt),

ct+1 = P+fct+1=2g;

3. v t+1
0 = BM3D-�lter(ct+1);

4. (�t+1r )2 = bTr c
t+1=�,

Dt+1=diagf 1

(�t+11 )2
; :::;

1

(�t+1K )2
g;

t = t+ 1.

The algorithm is initiated by c init obtained by the CSGIinv algorithm. Steps

1 and 2 of the algorithm are di¤erent from the corresponding steps of the

CSGIinv algorithm by the varying weights Dt depending on the variances

(�tr)
2.
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Step 3 is identical to the corresponding step 3 in the CSGIinv algorithm. In

Step 4 the variances (�tr)
2 are recalculated accordingly to the updated values

of the reconstruction c t. Meaning and using of BM3D-�lter is discussed in

subsection 3.B.

We use the name CSGIvar for the developed algorithm, where "var" em-

phasizes that the varying variances in Dt+1 is the main di¤erence between

the algorithms CSGIinv and CSGIvar.
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Appendix B. Algorithm for Poissonian observation modeling

The minus loglikelihood for the Poissonian observations Eq.(4) has the form

L(forgK1 ; c) =
KX
r=1

(�~or log ~bTr a+ ~bTr a), (36)

where ~br = br�.

In the framework of the multi-objective optimization formalism, for the

Poissonian observations and sparse modeling of the object we introduce two

objective functions

L1(c; �) =
KX
r=1

(�~or log ~bTr c+ ~bTr c) +
1

2~
0
jjc�	�jj22, (37)

and

L2(c;�) = � � jj�jj0 +
1

2
jj� � �cjj22. (38)

The �rst summand in Eq.(37) corresponds to the Poissonian �delity term

(36). The second summand is the transform modeling constraint (11) linking

the squared magnitude c with its spectrum �. This link is given using the

quadratic penalization function, where ~
0 is a parameter of this penalization.

Let us consider minimization of L1(c;�). The necessary minimum condition

for (37) has the form

@L1(c; �)=@c =
KX
r=1

(�~or
1

~bTr c
~br + ~br) +

1

~
0
(c�	�) = 0. (39)
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From (39) we obtain the equations for ~bTk c

~bTk @L1(c; �)=@c= (40)

KX
r=1

(1� ~or
1

~bTr c
)~bTk ~br +

1

~
0
(~bTk c� ~bTk	�) = 0;

k = 1; :::; K:

With notations ~bTk c =~xk, ~x = (~x1; :::; ~xK)
T , and using a n�K matrix, ~B =

(~b1; :::; ~bK), this set of the equation can be rewritten in the compact form

~BT ~B(~o:=~x)� 1

~
0
~x = ~BT ~B1K�1�

1

~
0
~BT	�, (41)

where 1K�1 is a K � 1 vector of 1.

Here ~o:=~x stands for the elementwise division of the corresponding items

of two vectors.

If xk are found then it follows from (39) that c = 	�+~
0
PK

r=1(or
1
~xr
�1)~br

or in the matrix form

c = 	� + ~
0(~B(~o:=~x)� ~B1K�1). (42)

Now let us make the following replacement of the variables

~B = B�, ~x = x�, ~b = br�, ~o = o�, 
0 = ~
0�.
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Then the equations (41)-(42) take the �nal form

BTB(o:=x)� 1

0
x = BTB1K�1�

1


0
BT	�. (43)

c = 	� + 
0(B � (o:=x)�B1K�1), (44)

where o = ~o=� as it is in Eq.(5).

Thus, instead of the linear equations (26)-(27) and (34)-(35) derived for the

Gaussian observations we obtain a set of the quadratic equations (43)-(44)

for the Poissonian case. The solution of the problem (22) has the form (28).

The algorithm proposed for the Poissonian data can be as follows

Algorithm: CSGIpoiss

Input : o; br; v00 = c
init

Repeat until convergence:

1. BTB(o:=xt+1)� 1

0
xt+1 = BTB1K�1�

1


0
BTvt;

2. ct+1=2 = vt + 
0�
2(B(o:=xt+1)�B1K�1),

ct+1 = P+fct+1=2g;

3. v t+1
0 = BM3D-�lter(ct+1);

t = t+ 1.
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The initial guess c init is calculated using one of the Gaussian algorithms.

Steps 1 and 2 of the algorithm are obtained from the solutions (43)-(44).

Step 3 is identical to the corresponding step 3 in the CSGIinv algorithm. We

use the abbreviation CSGIpoiss for this algorithm, where poiss stands for

Poissonian.
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List of Figure Captions

Fig.1 Two-arm SLM gost-imaging setup.

Fig.2 Single-arm computational ghost-imaging setup.

Fig.3 TUT test-image, � = 4, d = 5df , � = 106. First row from left to

right: CSGIinv reconstruction and true image; second row from left to right:

cross-sections of the true image (solid, red in colour) and the reconstruction

(dash, blur in colour), and PSNR versus number of iterations.

Fig.4 TUT test-image, � = 8, d = 5df , � = 106. First row from left to

right: CSGIinv reconstruction and true image; second row from left to right:

cross-sections of the true image (solid, red in colour) and the reconstruction

(dash, blur in colour), and PSNR versus number of iterations.

Fig.5 Fragment of cameraman test-image, � = 2, d = df , � = 104. First

row: CSGIinv reconstruction and true image; second row: cross-sections of the

true image (solid, red in colour) and the reconstruction (dash, blur in colour),

and PSNR versus number of iterations.

Fig. 6 Cross-correlation reconstruction of the TUT test-image, d = 3df ,

� = 106: reconstruction and PSNR versus the number of experiments K. In

the cross-section the true image is shown by solid line (red in color) and the
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reconstruction by dash line (blue in color).

Fig. 7 Cross-correlation reconstruction of the Cameraman test-image, d =

df , � = 104: reconstruction and PSNR versus the number of experiments K.

In the cross-section the true image is shown by solid line (red in color) and

the reconstruction by dash line (blue in color)..
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List of Table Captions

Table 1. Object transparency (TUT test image) reconstruction (PSNR

values) for various distances of the free space wave�eld propagation d and

compressive sampling ratios �, � = 102.

Table 2. Object transparency (TUT test image) reconstruction (PSNR

values) for various distances of the free space wave�eld propagation d and

compressive sampling ratios �, � = 104.

Table 3. Object transparency (TUT test image) reconstruction (PSNR

values) for various distances of the free space wave�eld propagation d com-

pressive sampling ratios �, � = 106.
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Table 1. Object transparency (TUT test image) reconstruction (PSNR values)

for various distances of the free space wave�eld propagation d and compression

ratios �, � = 102.

d n � 1 2 4 8 16

df 31.60 26.73 fail fail fail

3df 29.81 24.86 19.77 fail fail

5df 23.80 22.21 fail fail fail

10df fail fail fail fail fail

Table 2. Object transparency (TUT test image) reconstruction (PSNR values)

for various distances of the free space wave�eld propagation d and compressive

sampling ratios �, � = 104.

d n � 1 2 4 8 16

df 43.91 44.28 30.69 fail fail

3df 45.53 45.82 38.94 19.05 fail

5df 36.61 34.19 27.55 22.82 fail

10df 20.23 20.41 19.95 fail fail
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Table 3. Object transparency (TUT test image) reconstruction (PSNR values)

for various distances of the free space wave�eld propagation d and compressive

sampling ratios �, � = 106.

d n � 1 2 4 8 16

df 50.39 58.85 39.99 fail fail

3df 50.42 52.36 42.76 20.92 fail

5df 52.47 42.53 52.66 29.65 fail

10df 21.35 21.10 21.08 20.95 fail
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Fig. 1. Two-arm SLM gost-imaging setup.
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Fig. 2. Single-arm computational ghost-imaging setup.
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Fig. 3. TUT test-image, � = 4, d = 5zf , � = 106. First row from left to right:

CSGIinv reconstruction and true image; second row from left to right: cross-

sections of the true image (solid, red in colour) and the reconstruction (dash,

blur in colour), and PSNR versus number of iterations.
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Fig. 4. TUT test-image, � = 8, d = 5df , � = 106. First row from left to right:

CSGIinv reconstruction and true image; second row from left to right: cross-

sections of the true image (solid, red in colour) and the reconstruction (dash,

blur in colour), and PSNR versus number of iterations.
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Fig. 5. Fragment of cameraman test-image, � = 2, d = df , � = 104. First row:

CSGIinv reconstruction and true image; second row: cross-sections of the true

image (solid, red in colour) and the reconstruction (dash, blur in colour), and

PSNR versus number of iterations.
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Fig. 6. Cross-correlation reconstruction of the TUT test-image, d = 3df ,

� = 106: reconstruction and PSNR versus the number of experiments K.

In the cross-section the true image is shown by solid line (red in color) and

the reconstruction by dash line (blue in color).
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Fig. 7. Cross-correlation reconstruction of the Cameraman test-image, d = df ,

� = 104: reconstruction and PSNR versus the number of experiments K. In

the cross-section the true image is shown by solid line (red in color) and the

reconstruction by dash line (blue in color).
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