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Compressive Sensing for Cluster Structured

Sparse Signals: Variational Bayes Approach

Lei Yu, Jean-Pierre Barbot, Gang Zheng, and Hong Sun,

Abstract

Compressive Sensing (CS) provides a new paradigm of sub-Nyquist sampling which can be considered as an

alternative to Nyquist sampling theorem. In particular, providing that signals are with sparse representations in some

known space (or domain), information can be perfectly preserved even with small amount of measurements captured

by random projections. Besides sparsity prior of signals, the inherent structure property underline some specific

signals is often exploited to enhance the reconstruction accuracy and promote the ability of recovery. In this paper,

we are aiming to take into account the cluster structure property of sparse signals, of which the nonzero coefficients

appear in clustered blocks. By modeling simultaneously both sparsity and cluster prior within a hierarchical statistical

Bayesian framework, a nonparametric algorithm can be obtained through variational Bayes approach to recover

original sparse signals. The proposed algorithm could be slightly considered as a generalization of Bayesian CS, but

with a consideration on cluster property. Consequently, the performance of the proposed algorithm is at least as good

as Bayesian CS, which is verified by the experimental results.

Index Terms

Compressive Sensing, Cluster Structure, Variational Bayes.

I. INTRODUCTION

Compressive Sensing (CS) is recently developed [9], [10], [15], and then attracts lots of researchers. It provides

a new paradigm of sub-Nyquist sampling which can be considered as an alternative to Nyquist sampling theorem.

In particular, providing that signals are with sparse representations in some known space (or domain), information

can be perfectly preserved by random projection measurements.

To reconstruct the original signals, sparse prior is generally exploited into the deficient linear inverse problem,

which results in lots of algorithms, Basis Pursuit (BP) [14], [8], Orthogonal Matching Pursuit (OMP) [26], CoSaMP
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TABLE I

COMPARISON BETWEEN DIFFERENT CS RECOVERY ALGORITHMS.

Algorithms Is for Cluster? Num. of Clusters Size of Clusters Fixed Cluster Positions Sparsity

Greedy algorithms (CoSaMP, OMP, etc) No - - - X

Linear Programming (BP, etc) No - - - X

Iterative Thresholding (IHT, IST) No - - - X

Bayesian CS No - - - X

Block-CoSaMP [2], [16] Yes X X X X

Dynamical Programming [13] Yes X X X X

LaMP [12] Yes X X X X

Struct OMP [20] Yes X X X X

CluSS MCMC [27] Yes X X X X

1 “X” denotes necessary for the corresponding algorithm.

2 “X” denotes unnecessary for the corresponding algorithm.

3 “-” means no consideration for this algorithm.

[23], Bayesian CS [22], Iterative Hard Threshold (IHT) algorithm [7], etc. While besides sparse prior, inherent

structures underlying the sparse patterns have been widely employed to improve the recovery accuracy and promote

the efficiency, [2], [6], [12], [13], [17], [18], [16].

In this paper, we focus on the cluster structured sparse signals, of which significant coefficients appear in clustered

blocks. This kind of sparse pattern is often exploited in many concrete applications, such as multi-band signals, gene

expression levels, source localization in sensor networks, MIMO channel equalization, magnetoencephalography

[2], [6], [16]. Existing algorithms designed for cluster structured sparse signals always require lots of pre-defined

information (Tab. I), such as (a) number of clusters; (b) size of each clusters; (c) positions where clusters are; (d)

number of significant coefficients (Sparsity). However, these priors can never be known in real applications, and

thus a nonparametric recovery algorithm for cluster structured sparse signal is appealed in practical problems.

A. Motivation

1) From graphical Bayesian model to CS: Considering the process of CS measurement as a hierarchical Bayesian

model, namely, a graphical model [11], it provides a new framework for CS [25], [22], [1] and leads to a nonpara-

metric recovery algorithm. In this framework, the sparse constraint is injected through some sparse priors: a Gaussian

distribution together with an Inverse Gamma on the invariance, a Laplace distribution, etc. The interpretation of CS

with Bayesian model provides a systematic framework, where one could conveniently consider other priors, such

as structures on sparse pattern [18], dependencies between multiple signals [21], and so on. Moreover, rather than

providing a point estimation for sparse signals, a full posterior density function is provided, which yields “error

bars” on the estimated sparse signals. These error bars can be used to give a sense of confidence of the recovered

sparse signals.
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2) From latent variable model to structures: In a probabilistic, Bayesian approach, through Graphical Models

(GMs) [11], [4], latent variables are often exploited to describe the dependencies (or joint probability distributions)

between observations and parameters. This method is usually called latent variable model [5], and possibly, results

in some non-parametric approaches to Bayesian estimators. By imposing geometrical relations underlying the sparse

pattern, structures of the sparse coefficients can be conveniently described by latent variable model [12], [18].

3) From MCMC to VB: In the last work [27], a Bayesian approach to reconstruct the cluster structured sparse

signals from compressed measurements has been proposed, where an MCMC re-sampling procedure is exploited

for Bayesian inference. It is well known that even though MCMC is capable to find the global solution via infinite

MCMC iterations, it cannot guarantee the convergence in finite iterations, which is not applicable all the time.

Consequently, we turn to modifying the Bayesian model to make it conjugate and thus can lead to a deterministic

solution, through a variational Bayesian method [3], of which the main idea is to optimize the lower bound of the

log marginal likelihood function, and simultaneously give a maximum of the posterior distribution.

B. Contribution of this paper

The main contribution of this paper is to exploit the statistical graphical model to describe the cluster structured

sparse signals and hence lead to a deterministic algorithm through the variational Bayesian method. The idea of

this work is largely inspired by [19], where the resulted algorithm is dedicated to solve the tree structured sparse

inverse problems. Even though, it is different from the work of [19]: the considered structures are different, where

the tree structure considered in [19] is a directional graphical model but cluster structure in this paper is more likely

an undirectional graphical model, and thus it results different models.

C. Outline

The following sections will introduce the proposed algorithm in detail. In section II, the Bayesian clustered

sparsity model is addressed, where both the sparse prior and cluster prior are considered. Then using variational

Bayes method, the inference of the introduced Bayesian model is implemented in section III. After that, in section

IV, some simulations are presented to show the performance of the proposed algorithm. The paper ends with a

conclusion.

II. BAYESIAN CLUSTERED SPARSITY MODEL FOR CS

In the framework of CS, the sampling process can be modeled as a vector y ∈ R
m, captured by a multiplication

of sensing matrix Φ ∈ R
m×n and the original signals θ ∈ R

n, then plus an error, ǫ, as follows:

y = Φθ + ǫ (1)

Suppose that the perturbation ǫ is white, i.e. ǫ ∼ N (0, σ0I) and thus y ∼ N (Φθ, σ0I), with I an all one vector

with appropriate dimension. To infer the posterior of the noise variance σ0, a Gamma prior is assigned on the

inverse of noise variance α0 = σ−1

0
, i.e. α0 ∼ Gamma(c, d), conjugate to Gaussian distribution.
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In order to introduce both the sparse and cluster prior inside the Bayesian model, we exploit a latent variable z

to indicate whether the corresponding element of θ is nonzero, i.e. θ = w ◦z, where ◦ is point wise multiplication

and w ∼ N (0,σ). Meanwhile, Gamma prior is assigned on the inverse of weight variance α = σ−1, i.e. αi ∼
Gamma(a, b), with αi the i-th element of α, i ∈ {1, ..., n}. The overall prior on w with respect to a, b can be

evaluated analytically through the integration over α, and it corresponds to the Student-t distribution [25]. With

appropriate choice of a, b, the Student-t distribution strongly peaked about w = 0, and thus the overall prior on w

favors sparseness.

Meanwhile, we suppose that the latent variable z is drawn from a Bernoulli distribution with probability π,

i.e. for each element of z, zi ∼ Bernoulli(πi). To model the cluster prior over the coefficients θ, relations

between the current component θi and its neighbors should be considered, called the cluster pattern of θi. Define

Fig. 1. Three different cluster pattern for 1D signals. (a) Pattern 0; (b) Pattern 1; (c) Pattern 2.

the neighborhood of location i over the coefficients θ, Ui = {j|D(i, j) = 1, j 6= i} with D(i, j) the Euclidean

distance between i and j. Denote VN the set of all locations over the coefficients θ, Vn = {1, ..., n}, then define

Ji , Ui∩Vn. Hence we can denote θJi
the set of components located in the neighbor of the ith coefficient θi. And

denote νi =
∑

j∈Ji
zj the number of nonzero neighbors for the ith element θi. Then we can use this counter ν to

categorize the relations into 3 different cluster patterns, i.e. Pattern 0: “strongly eliminate”, when νi = 0, namely,

the ith element should have large probability of being eliminated, see Fig. 1a; Pattern 1: “weakly eliminate”, when

νi = 1, namely, it takes small probability of being eliminated (because of sparsity), see Fig. 1b; Pattern 2: “strongly

plump”, when νi = 2, namely, it should be plumped up with large probability, see Fig. 1c. Then according to the

cluster patterns, the mixing weight πi is chosen by the following pattern selection procedure:

πi =



















π0
i , if Pattern 0

π1
i , if Pattern 1

π2
i , if Pattern 2

(2)

where π0
i , π

1
i and π2

i are drawn from different Beta distribution1.

π0
i ∼ Beta(e0, f0)

π1
i ∼ Beta(e1, f1)

π2
i ∼ Beta(e2, f2)

(3)

1Since Beta distribution is a conjugate prior to Bernoulli likelihood with p the model parameters.



5

In order to clarify the dependance between the random variables, the distributions for π could be rewritten as

follows:

πi|e,f ,zJi

∼ p(πi|e,f , zJi
) (4)

where e , {e0, e1, e2},f , {f0, f1, f2}.

Fig. 2. Graphic depiction for Bayesian clustered sparsity model.

Above all, the overall Bayesian clustered sparsity model is as follows:

θ = w ◦ z

w ∼ N (0,α−1)

αi ∼ Gamma(a, b)

zi ∼ Bernoulli(πi)

y ∼ N (Φθ, α−1

0 I)

α0 ∼ Gamma(c, d)

(5)

where πi is described by (2) and (3). Moreover, it could be depicted by a graphical model in Fig. 2.

III. VARIATIONAL BAYESIAN INFERENCE

In this section, we derive a variational Bayesian (VB) algorithm [3] to implement the inference for the Bayesian

clustered sparsity model. The main idea of VB is to optimize the lower bound of the log marginal likelihood function,

and simultaneously give a maximum for the posterior distribution. Based on the Bayesian clustered sparsity model

(5), the complete marginal likelihood can be written as follows:

p(y|M) =

∫

dθdΘp(θ,y,Θ|M) (6)

with M = {a, b, c, d, e,f} the hyperparameters and Θ = {α, α0,π} the unknown random variables.
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In the following, we define 〈·〉x the expectation with respect to random variables2 x, x̃ the updated estimation

for random variable x, and y−k = y −∑i6=k ziwiφi the contribution of the k-th element of sparse signal on the

measurement y.

A. The VB-E Step

1) Update for w:

q(w) ∼

exp

(

〈
n
∑

i=1

ln p(wi|αi)〉αi

)

exp (〈ln p(y|w, z, α0)〉z,α0
)

The posterior of w can be shown to be multivariate Gaussian distribution, with mean µ and variation Σ, i.e.,

w̃ ∼ N (µ,Σ), with

Σ = (Ã+ α̃0〈ZΦTΦZ〉)−1

µ = α̃0ΣZ̃Φ
Ty

(7)

where A = diag(α) and Z = diag(z). And given the updated value z̃, we can derive

〈ZΦTΦZ〉 = (ΦTΦ) ◦
(

z̃z̃T + diag(z̃ ◦ (1 − z̃)
)

Consequently, we can derive the update for w as follows:

w̃ = µ (8)

2) Update for z: For each element of z, the posterior could be given as

q(zi) ∼ exp(〈ln p(zi|πi)〉πi
) exp(〈ln p(y−i|zi, wi, α0)〉wi,α0

)

Thus the probability that zi = 1 is proportional to

p(zi = 1)

∼ exp (〈lnπi〉) exp
(

− α̃0

2
(〈w2

i 〉φT
i φi − 2w̃iφ

T
i y−i)

) (9)

where 〈w2
i 〉 = w̃2

i +σii with σii the i-th element of diagonal entries of Σ. The probability that zi = 0 is proportional

to

p(zi = 0) ∼ exp(〈ln(1 − πi)〉) (10)

where the update for πi could be referred in (17) in following subsections.

Thus, the update for z can be easily obtained

z̃i =
p(zi = 1)

p(zi = 0) + p(zi = 1)
(11)

2Denote 〈·〉 if there is only one random variable inside the triangle bracket.
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B. The VB-M Step

1) Update for α: For each element of αi, the posterior could be given as

q(αi) ∼ p(αi|a, b) exp(〈ln p(wi|αi)〉wi
)

∼ Gamma (αi|a′, b′)
(12)

with

a′ = a+
1

2
,

b′ = b+
〈w2

i 〉
2

where the conjugate property between Gamma prior and Gaussian distribution is used. Thus, the update for αi is

obtained:

α̃i = a′/b′ (13)

2) Update for α0:

q(α0) ∼ p(α0|c, d) exp (〈ln p(y|w, z, α0)〉w,z)

∼ Gamma(α0|c′, d′)
(14)

with

c′ = c+
m

2
,

d′ = d+
〈‖y − Φ(w ◦ z)‖2〉w,z

2

where the conjugate property between Gamma prior and Gaussian distribution is used. And given the updated value

of w, z, the expectation could be derived:

〈‖y − Φ(w ◦ z)‖2〉w,z

= yTy − 2(w̃ ◦ z̃)TΦTy + IT [〈zzT 〉 ◦ 〈wwT 〉 ◦ (ΦTΦ)]I
(15)

where 〈zzT 〉 = z̃z̃T + diag(z̃ ◦ (1− z̃)) and 〈wwT 〉 = w̃w̃T +Σ.

Thus the update for α0 could be obtained:

α̃0 = c′/d′ (16)

3) Update for π: For each of the πi, given the updated value for z, then we can easily calculate portion of

sparsity pattern effecting on πi:






















p(Pattern 0) = (1− z̃i−1)(1 − z̃i+1)

p(Pattern 1) = z̃i−1(1− z̃i+1) + (1 − z̃i−1)z̃i+1

p(Pattern 2) = z̃i−1z̃i+1

Thus the posterior of πj
i , with j denoting the sparsity pattern, could be written as:

q(πj
i ) ∼ p(πj

i |ej, f j) exp(〈ln p(zi|πj
i )〉zi)

∼ Beta(πj
i |e′ji , f ′j

i )
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where

e′ji = ej + p(Pattern j)z̃i

f ′j
i = f j + p(Pattern j)(1 − z̃i)

thus

〈lnπj
i 〉 = ψ(e′ji )− ψ(e′ji + f ′j

i )

〈ln(1− πj
i )〉 = ψ(f ′j

i )− ψ(e′ji + f ′j
i )

where ψ(x) = d
dx

ln Γ(x) is a digamma function, and then the update for πi could be obtained:

〈lnπi〉 =
2
∑

j=0

p(Pattern j)〈ln πj
i 〉

〈ln(1− πi)〉 =
2
∑

j=0

p(Pattern j)〈ln(1− πj
i )〉

(17)

C. Summary of the algorithm and acceleration

Given observation y and sensing matrix Φ, the algorithm could be summarized as Algorithm 1.

Algorithm 1 CS for Cluster Structured Sparse Signals via VB

Initialization The hyperparameters M = {a, b, c, d, e,f}, the pre-estimated w(0) = ΦTy, z(0) = w
maxw , a stop

criterion C.

1: repeat

2: Update unknown parameters via equations (13), (16) and (17):

Θ̃ = {α̃, α̃0, π̃}

3: Update latent parameters via equations (8) and (11):

x̃ = {w̃, z̃}

4: until C

At the iteration t, define the residual as

Res(t) = ‖y − Φθ̃(t)‖

thus

C , Res(t) 6
√
mσ0

where σ0 is the invariance of noise.
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1) Comparison to BCS: In the framework of BCS, the inverse problem (reconstruction) is solved by a Sparse

Bayesian Learning (SBL) [24], which has been proven to be capable to find the unique sparse solution (Theorem

2 and 3 in [24]).

On the other hand, by setting z ≡ 1, the proposed model would degenerate into BCS model, i.e. without

consideration on clusters. Roughly, BCS model could be considered as a special case of Bayesian clustered sparsity

model, where the prior on clusters provides a guidance of how to assign the priority of choosing bases: “considering

first your neighbors”. While, in BCS model, this priority does not exist. Consequently, the performance of the

proposed algorithm is at least as good as that of BCS and the worst case is when all significant entries of sparse

signal are distributed isolated.

2) Acceleration: In the current form, the algorithm requires an inverse problem to update the value of Σ, which

is an n× n matrix, and thus requires an O(n3) operations. This can be problematic since in cases of large length

of signals, n might be quit large. To alleviate this problem, we compute the Σ as follows:

Σ = (Ã+ α̃0〈ZΦTΦZ〉)−1

= (Ã+ α̃0Z̃Φ
TΦZ̃ + diag(z̃ ◦ (1− z̃)) ◦ (ΦTΦ))−1

= (B + α̃0Φ̃
T Φ̃)−1

(18)

where Φ̃ = ΦZ̃ and B = Ã + diag(z̃ ◦ (1 − z̃)) ◦ (ΦTΦ) which is a diagonal matrix, thus its inverse can be

easily computed by directly inverse the elements located at the diagonal, D = B−1. Then using the inverse identity

property, it has

Σ = D −DΦ̃T (α−1

0 I + Φ̃DΦ̃T )−1Φ̃D (19)

where matrix α−1

0 I + Φ̃DΦ̃T is with dimension of m×m, which reduces the operations to O(m3), with m≪ n.

IV. EXPERIMENTS

To distinguish the algorithm proposed in this paper from the former CluSS algorithm in [27], for simplicity, we

denote the proposed algorithm as CluSS-VB. All the hyperparameters are fixed for every experiments as follows:

a = b = c = d = 1e − 6, (e0, f0) = (1/3, 2/3), (e1, f1) = (1/3, 1/3) and (e2, f2) = (2/3, 1/3). The following

experiments are organized as follows. A first glance on the performance of CluSS-VB on synthetic cluster structured

sparse signals is given. Afterwards, with respect to the oversampling rate, defined as m/s, we compare the recovery

accuracy between CluSS-VB and other state-of-the-art CS algorithms, respectively, BP [14], CoSaMP [23], and

Baysian Compressive Sensing (BCS) [22]. Then in order to verify the performance for mismatched models, we

compare the reconstructions by each of the algorithms with augmenting number of clusters. Meanwhile, the robust

to measurement noises is considered and an application on real musical signal is given.

In the following experiments, all sensing matrix are constructed through Gaussian ensemble with normalized

row vectors. Moreover, if without clarifying, the measurements are corrupted by a white noise with variance

σ0 = 0.01. Note that the accuracy of reconstruction is evaluated through SNR between original sparse signal θ and
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its reconstruction θ̂:

SNR = 20 log10
‖θ‖

‖θ − θ̂‖
(20)

A. General view

First, we shall give a glance on the performance of the proposed algorithm and show the basis selection procedure

during iterations. The original sparse signal is generated with length n = 256, sparsity s = 30 and clusters k = 2,

where cluster information on sizes, locations and numbers is chosen totally randomly and thus is unknown3.

Moreover, the spikes are randomly generated by Gaussian distribution which coincides with the sparsity model and

only m = 2s = 60 measurements are obtained by random projections.

In Fig. 3, the inference of z and w are shown along with the iterations. Apparently, the result shows that basis

choosing priority is considering the neighbors first. The final result is shown in Fig. 4, where the convergence

evolution for Res(t) is also shown. Moreover, the inference for measurement noise invariance σ̂0 = 0.0077, which

coincides with the original set σ0 = 0.01.

Meanwhile, we also exploit the other state-of-the-art algorithms (BP, CoSaMP, BCS) respectively to reconstruct

the same sparse signal, shown in Fig. 5. From the comparison, except for CluSS-VB, all other algorithms cannot

be able to reconstruct this sparse signal with only m = 60 measurements. On the other hand, like BCS, CluSS-VB

can also provide “error bars” for the final reconstruction, which can be used to evaluate the confidence for the

estimation.

0 100 200
0

0.5

1

0 100 200
−2

0

2

0 100 200
0

0.5

1

0 100 200
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0 100 200
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0 100 200
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0 100 200
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0 100 200
0

0.5

1

0 100 200
−2

0

2

0 100 200
−2

0

2

Fig. 3. Inference of z (left column) and w(right column) along with iterations: (from top to bottom) 5, 10, 20, 40, 60 iterations.

3For Block-CoSaMP proposed in [2], it is impossible to recover this kind of cluster structured signals successfully, and thus we did not make

comparison with Block-CoSaMP.
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Fig. 4. Performance of CluSS-VB. (a) Inference of latent variable z; (b) Recovery of sparse signal; (c) Convergence of Res(t).

50 100 150 200 250
−2

0

2

(a) Original Signal
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Fig. 5. General view of performance of CluSS-VB. (a) Original Signal, with length n = 256, sparsity s = 30 and clusters k = 2. (b) Recovery

via BP and its SNR = 7.0449dB; (c) Recovery via CoSaMP and its SNR = 2.8955dB; (d) Recovery via BCS and its SNR = 7.2022dB;

(e) Recovery via CluSS-VB and its SNR = 30.5702dB.

B. Performance with respect to oversampling rate m/s

In order to deeply verify the performance of CluSS-VB, we shall take into account the oversampling rate m/s,

which determines how many measurements are enough to reach the successful reconstruction. The cluster structured

sparse signals are randomly generated with length n = 256 and sparsity s = 30, and their nonzero entries drawn

from a Gaussian distribution with zero mean and unit variance. Respectively, sparse signals with 1 cluster and 2

clusters are both considered. In each case, for fixed cluster structured sparse signal, the number of measurements is

ranging from 50 to 150 with step 10, and for each step, we run the program 100 times with different sensing matrix.
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Fig. 6 shows the corresponding results, where (a) is for 1 cluster case and (b) is for 2 clusters case. The results

show that CluSS-VB improves both the accuracy and the ability of reconstruction: even with very low oversampling

rate, it can obtain desirable reconstructions.
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(a) Sparse signal with length n = 256, sparsity s = 30, and k = 1 clusters.
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(b) Sparse signal with length n = 256, sparsity s = 30, and k = 2 clusters.

Fig. 6. Performance comparison with respect to oversampling rate.

C. Robustness to noise

This experiment is to testify the robustness of the performance of CluSS-VB to noise (perturbations). Similarly,

considering the sparse signals with length n = 256, sparsity s = 30 and clusters k = 2 and with nonzero elements

drawn from Gaussian with zero mean and unit variance, we obtain only m = 100 measurements, corrupted by a

white noise. Let the variance of noise range from σ0 = 0.01 to σ0 = 0.09, and for each noise level, repeat the

experiments 100 times with same sparse signal and sensing matrix, then record the recovery SNR. The results are

shown in Fig. 7, and show that the SNR of CluSS-VB is proportional to the noise bound. Meanwhile, it is shown

that with consideration of cluster structures, CluSS-VB exhaustively improves the recovery accuracy comparing to

other algorithms.
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Fig. 7. Robustness to different level of measurement noise.

D. Effects of clusters: mismatch models

In this section, we will investigate the effects of clusters on the performance of CluSS-VB. Consider the sparse

signals with length n = 256 and sparsity s = 30 and with nonzero elements drawn from Gaussian. Let the

number of clusters k range from 1 to sparsity s, then for different oversampling rate, namely, measurements

m ∈ {60, 80, 100}, we repeat the experiments 100 times for each number of clusters and each of oversampling

rates. The results are shown in Fig. 8, where it shows that: with the number of clusters ascending, (1) the SNR of

recovery by CluSS-VB is decreasing, (2) the variance of recovery by CluSS-VB is increasing, (3) while the SNR

of recovery by other algorithms almost does not change. Even though the performance of CluSS-VB is decreasing,

it still outperforms the other algorithms. This result also implies the robustness to mismatch models for CluSS-VB.

And more interestingly, when the number of clusters k goes to the sparsity s, the performance of CluSS-VB tends

to converge to the performance of BCS, which coincides with the discussion in section III.

E. Experiments on real musical signals

In the last experiment, we apply the proposed algorithm on real musical signals, which have the property of

cluster structured sparsity if considering signals in the frequency domain4, as shown in Fig. 9, where the significant

spectrums are almost clustered together. We choose a clip of music of Mozart played by flute as the test example.

The CS procedure is carried out piecewise with length n = 256 for each of the pieces. Then varying the number of

measurements obtained by random projections, from m = ⌊n/2⌋ to ⌊n/5⌋, corrupted by white noises with variance

σ0 = 0.01, respectively, we use the different algorithms to recover the original musical signals piecewise from the

compressed measurements and then concatenate the recovered pieces. As shown in Fig. 10, with only m = ⌊n/5⌋
measurements, the spectrograms of recovered signals are given for each algorithm. It is shown that CluSS-VB can

desirably preserve the clusters of the original sparsity while suppress the isolated spikes, and hence can give better

4Other transforms are not considered since it is not the important issue in this experiment.
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(b) with 80 measurements.
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(c) with 100 measurements.

Fig. 8. Effects of clusters on the performance.

reconstructions with high recovery SNR. Meanwhile, we record the SNR for each of the algorithms with different

level of oversampling rate, shown in Tab. II. The results show that CluSS-VB gives better reconstructions, especially

with lower oversampling rate.
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TABLE II

RECOVERY SNR FOR DIFFERENT NUMBER OF MEASUREMENTS. (DB)

Measurements ⌊n/2⌋ ⌊n/3⌋ ⌊n/4⌋ ⌊n/5⌋

BP 12.6384 9.8339 7.3692 5.8631

CoSaMP 10.5388 7.9345 4.8592 4.4899

BCS 13.1023 9.688 7.0389 5.4191

CluSS-VB 12.7616 11.1035 9.2251 7.5384
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Fig. 9. Spectrogram of a musical signal.

Fig. 10. Spectrogram of reconstructions of musical signals via CluSS-VB (left-top), BCS (right-top), BP (left-bottom) and CoSaMP (right-

bottom).

V. CONCLUSION AND PERSPECTIVES

In this paper, we proposed an algorithm, namely, CluSS-VB, to solve the cluster structured sparse signals from

compressed measurements. Besides sparse prior, cluster prior on sparsity patterns are considered. Using a statistical
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Bayesian graphical model, both priors are injected into a systematical Bayesian framework, where conjugate priors

are exploited and results in an analytical solution from the variational Bayesian approach. Unlike the MCMC

re-sampling inference, the global convergence (means always with energy descending for cost function) of CluSS-

VB is guaranteed. Moreover, roughly, the cluster sparsity model could be considered as a generalization of BCS,

and hence CluSS-VB will converge to BCS with mismatched models, i.e. spikes of sparse signals are randomly

distributed (without cluster prior).

On the other hand, the theoretical guarantee for the sparse solution with CluSS-VB is not considered in this paper

and thus still an open problem. Moreover, even though the algorithm is accelerated by reducing the dimension of

the matrix involved into the inverse, an m ×m inverse problem still needs O(m3) operations. Consequently, the

acceleration of the algorithm needs to be considered in the future works.
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