
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 1

Compressive Sensing for Missing Data Imputation

in Noise Robust Speech Recognition
Jort Florent Gemmeke*, Student-Member, IEEE, Hugo Van hamme, Member, IEEE,

Bert Cranen, Lou Boves

Abstract—An effective way to increase the noise robustness of
automatic speech recognition is to label noisy speech features as
either reliable or unreliable (missing), and to replace (impute)
the missing ones by clean speech estimates. Conventional im-
putation techniques employ parametric models and impute the
missing features on a frame-by-frame basis. At low SNR’s these
techniques fail, because too many time frames may contain few,
if any, reliable features.
In this paper we introduce a novel non-parametric, exemplar-

based method for reconstructing clean speech from noisy ob-
servations, based on techniques from the field of Compressive
Sensing. The method, dubbed sparse imputation, can impute
missing features using larger time windows such as entire words.
Using an overcomplete dictionary of clean speech exemplars, the
method finds the sparsest combination of exemplars that jointly
approximate the reliable features of a noisy utterance. That linear
combination of clean speech exemplars is used to replace the
missing features.
Recognition experiments on noisy isolated digits show that

sparse imputation outperforms conventional imputation tech-
niques at SNR = −5 dB when using an ideal ‘oracle’ mask.
With error-prone estimated masks sparse imputation performs
slightly worse than the best conventional technique.

Index Terms—Compressive sensing, missing data techniques,
noise robustness, automatic speech recognition.

I. INTRODUCTION

REMOVING a foreground object that partially occludes

the image of interest is a well-known image processing

task (cf. Fig. 1). Occlusion due to the presence of objects

between the camera and the object(s) of interest is a pervasive

problem in image recognition. Recognition performance can

be improved by discarding the features that are missing due

to the occlusion, or by imputing the missing features on the

basis of what is still visible [1], [2]. Speech recognition in the

presence of competing audio signals can also be formulated as

a missing data problem, similar to the treatment of partially

occluded images. Audio signals can be represented as two-

dimensional grey-scale (or color) pictures, where one axis
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represents time, the other represents frequency and the grey

value (or color) represents the acoustic energy at a specific

instant in time in a specific frequency band (cf. Fig. 2a). If

the noise power in a certain time-frequency area is larger than

the power of the speech, it can be said that the noise occludes

or masks the speech. In Automatic Speech Recognition (ASR)

Missing Data Techniques (MDTs) [3]–[5] do indeed provide

a powerful way to mitigate the impact of both stationary and

non-stationary noise for a wide range of Signal-to-Noise ratios

(SNR).

Obviously, MDT hinges on the assumption that it is possible

to estimate −prior to decoding− which spectro-temporal ele-
ments represent speech and which represent background noise

that ‘occludes’ the speech. These estimates, referred to as a

spectrographic mask, can then be used to instruct the decoder

to ignore these elements (known as marginalization), or to

replace the occluded elements by clean speech estimates prior

to or during decoding. The latter case is an example of missing

data imputation [6], [7]. In this paper we will only investigate

imputation techniques.

While missing data imputation appears to be very effective

in noise robust ASR at moderate SNR levels ≥ 10 dB, the
performance of conventional techniques drops substantially at

SNR levels ≤ 0 dB, even when using an ‘ideal’ spectrographic
mask (cf. Fig. 6). This drop is due to several interrelated

problems. First, the proportion of data that is missing is

substantial: at SNR = −5 dB over 80% of the data needs
to be imputed (cf. Fig 3). Second, contrary to the typical case

in image recognition, occlusions are not confined to compact

regions of the spectro-temporal picture (cf. Fig. 2c). While

a random distribution of occlusions might seem conducive

to estimating the features of the occluded parts, in actual

practice it gives rise to the third problem: It becomes difficult

to know which parts of the picture represent speech and which

represent noise. The difficulty of telling speech from noise is

only aggravated by the fact that (different from most image

recognition tasks) even in clean speech there are no sharp

boundaries between speech and ‘silence’. Finally, the energy

in a spectro-temporal cell is a random variable in its own right.

A speaker cannot produce the exact same signal twice when

repeating a word or an utterance. Moreover, small changes

in the position of the microphone relative to the lips and the

properties of a specific microphone and transmission channel

may result in a large change of acoustic energy.

From the articulation processes that produce speech signals

it can be inferred that values of adjacent time-frequency cells

are strongly correlated along both axes. Yet, conventional
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(a) Occluded Image (b) Missing data mask (c) Restored Image

Fig. 1. A typical task in image processing, ‘inpainting’, is removing a foreground object from an occluded image (Fig. 1a) using a manually selected missing
data mask (Fig. 1b), yielding the unoccluded object displayed in Fig. 1c.

imputation techniques for ASR employ parametric models

for reconstructing the spectral envelope on a frame-by-frame

basis (i.e., for individual time slices). Parametric models are

used because until recently non-parametric methods for recon-

structing spectral envelopes from a possibly small number of

‘clean’ observations were not available. Imputation is limited

to one axis because the number of parameters of models that

cover a sufficiently wide window in two dimensions quickly

becomes unwieldy [7]. The preference for the frequency axis

over the time axis is because in general the spectral envelope is

smoother than the time envelope. Yet, limiting the imputation

to the spectral envelope of a single time frame makes this

approach especially vulnerable in frames that contain few

spectral regions where speech energy is higher than the energy

of the competing sounds. Here, help from expectations based

on the temporal envelope could come in handy. Thus, it

would seem unlikely that frame-based parametric techniques

for reconstructing clean speech spectra from noisy speech

observations can solve the recognition problems at SNR levels

≤ 0 dB.

In this paper we introduce a non-parametric, exemplar-

based, method for reconstructing clean speech from noisy

observations, based on a Compressive Sensing approach [8],

[9]. The approach, dubbed sparse imputation, can impute

missing features using time windows that comprise multiple

frames. Conceptually, the use of exemplar-based imputation

can be justified with a metaphor: if we observe a few mountain

tops above a blanket of low clouds, and we have cloud-free

3-D representations of all mountainous areas on the planet, we

can reconstruct the invisible terrain very accurately by finding

the representations that match best with the observations. Due

to the intrinsic variability in speech exact reconstruction of a

speech spectrum from a small number of observations may

be impossible, but because of the fact that speech signals

are observations of a random process to begin with, this is

probably not necessary either.

The theory of Compressive Sensing (CS) asserts that if

a signal (such as a picture) can be expressed as a sparse

linear combination of vectors, it can be recovered using a very

limited number of measurements. In [10] it was suggested

that CS techniques can be used for missing data imputation.

They illustrated their approach by recovering missing pixels

in images that were sparsely represented in an inverse discrete

cosine transformation (IDCT) basis. The technique works

by treating the non-missing pixels as measurements of an

unknown sparse representation. After finding the sparse repre-

sentation, the complete picture can be recovered by projecting

the sparse representation in the IDCT basis. In [11] it was

suggested that a picture might be very sparsely represented

in an overcomplete dictionary of examples, by expressing that

picture as a linear combination of a small number of example

images.

In this paper we investigate whether a combination of the

approaches proposed in [10] and [11] can be applied to noisy

speech. Thus, the goal of the paper is to explore whether

sparse imputation can solve the missing data imputation

problems for noise robust ASR that were sketched above. To

that end we compare recognition accuracies obtained using

sparse imputation with the results obtained with state-of-the-

art conventional imputation techniques. As a first step towards

more general ASR tasks we test our approach with material

from the well-known AURORA-2 digit recognition task [12].

While doing so, we address two issues in particular. First, since

the minimum proportion of spectro-temporal features that is

required for reconstructing clean speech spectra is not known,

we develop a theoretical estimate for this proportion and put

it to an experimental test. Second, to investigate the influence

of mask estimation errors, we compare two types of masks:

1) The ‘oracle’ mask1 and the harmonicity mask that derives

reliability estimates from a harmonic decomposition [13].

The rest of the paper is organized as follows. In Section II

we introduce Missing Data Techniques for ASR and the two

types of missing data masks that we will compare. In Section

III we describe the sparse imputation framework. In addition,

we propose a theoretical estimate for the minimum number

of spectro-temporal features that are needed for successful

reconstruction of noise-free representations. In Section IV we

1Oracle masks are masks in which reliability decisions are based on
exact knowledge about the extent to which each time-frequency element is
dominated by either noise or speech.
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(a) Clean digit
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(b) Noisy digit
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(c) Ideal missing data mask
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(d) Estimated mask

Fig. 2. Fig. 2a shows the spectro-temporal representation of the digit ‘one’. In Fig. 2b the clean speech is artificially corrupted by suburban train noise
at SNR = −5 dB. The horizontal axis represents time, the vertical axis represents frequency and the intensity represents the acoustic energy. As can be
observed in Fig. 2c, a substantial part of the data needs to be imputed even when using an ideal missing data mask which is calculated using knowledge of
the corrupting noise. Comparison with the realistic estimated mask in Fig. 2d shows that the mask estimation is not error-free. In this case this results in even
more missing data that must be imputed.

briefly describe the two conventional imputation techniques

against which the novel sparse imputation technique will be

compared. In Section V we explain the design of the experi-

ments and the results are presented in Section VI. We discuss

the results in Section VII and suggestions for future research

in Section VIII; we present our conclusions in Section IX.

II. MISSING DATA TECHNIQUES IN ASR

A. Motivation

In this Section we give a very brief introduction to the use of

MDT for noise robust ASR [14], [15]. In ASR, speech is rep-

resented as a spectro-temporal distribution of acoustic power, a

spectrogram. In noise-free conditions, the value of each time-

frequency cell in the spectrogram, a two-dimensional matrix,

is determined only by the speech signal. In noisy conditions,

the power in each cell represents a combination of speech and

background noise.

Assuming noise is additive, the power spectrogram of noisy

speech, denoted by Y , can be approximately described as the

sum of the individual power spectrograms of clean speech S

and noise N , i.e., Y = S + N . ASR systems mimic human

hearing by employing logarithmic compression resulting in

log-spectral energy features. The logarithmic compression of

a sum can be approximated by a compression of the largest

of the two terms [16]. For noisy speech features in which the

speech energy dominates we can write:

log[S(k, t)+N (k, t)] = log[S(k, t)(1+ N(k,t)
S(k,t) )]

≈ log[S(k, t)]
(1)

with the spectrograms S, N and Y represented as K × T
dimensional matrices (with K the number of frequency bands
and T the number of time frames) indexed by frequency band
k (1≤k≤K) and time frame t (1≤t≤T ).
From (1) we can infer that noisy speech features in which

the speech energy dominates remain approximately uncor-

rupted and can be used directly as estimates of the clean speech

features.

B. Missing data masks

Elements of Y that predominantly contain speech or noise

energy are distinguished by introducing a spectrographic mask

M . The elements of a maskM are either 1, meaning that the
corresponding element of Y is dominated by speech (‘reli-

able’) or 0, meaning that it is dominated by noise (‘unreliable’
c.q. ‘missing’). Thus, we write:

M(k, t) =

{

1
def
= reliable if

S(k,t)
N(k,t) > θ

0
def
= unreliable otherwise

(2)

with constant threshold θ. Smaller values of θ will result in
more elements considered as reliable in the mask, but the

proportion of errors implied in the assumption that S(k, t) =
Y (k, t) will be larger, while larger values of θ lead to a safer
model, but fewer reliable elements to impute the missing data

from.

C. Estimating missing data masks

In experiments with artificially added noise, the oracle

masks can be computed directly by means of (2) using

knowledge of the corrupting noise and the clean speech signal.

The oracle mask is useful to assess the potential of missing

data imputation techniques and to compare the performances

of different techniques in ideal conditions.

In realistic situations, however, the masks must be estimated

from the noisy speech. Many different estimation techniques

have been proposed, such as SNR based estimators [17],

mask estimation by means of Bayesian classifiers [18], [19],

methods that focus on speech characteristics, e.g. harmonicity

based SNR estimation [13], and mask estimation exploiting

binaural cues [20] or correlogram structure [21] (cf. [22] and

the references therein for a more complete overview of mask

estimation techniques). In the experiments presented in this

paper we used the oracle mask and the estimated harmonicity

mask [13].

Fig. 3 shows the proportion of missing data in the AURORA-

2 database for several SNR values, both for the oracle and the

estimated harmonicity mask. The most interesting observations

that can be made from that figure are (1) that the harmonicity

mask is more biased towards considering spectral values

unreliable than the oracle mask, (2) that the proportion of

unreliable values varies widely for every SNR value, (3) that

the harmonicity mask considers a substantial proportion of the

values in clean speech as unreliable, and (4) that even for the

oracle mask more than 80% of the data are unreliable at the

SNR value -5 dB.
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Fig. 3. The percentage of missing data as a function of SNR for all digits in
the test database of AURORA-2. Results are shown for the oracle missing data
mask, which is calculated from exact knowledge of the corrupting noise, as
well as for an estimated mask, the harmonicity mask described in Section V-C.
The vertical bars around the data points show the 1st and 99th percentile.

D. Use of MDT in ASR

Techniques for speech recognition in the presence of miss-

ing data can be divided in two categories: marginalization and

imputation. In the marginalization approach [4], [23] acoustic

likelihoods are calculated by integrating over the range of

possible values of the missing features and recognition is

carried out primarily based on the reliable features. In the

imputation approach [6], [7] the missing features are replaced

by clean speech estimates, after which recognition can proceed

without modification of the recognition system. In conditional

imputation the clean speech estimates are made dependent on

the underlying statistics, such as the hypothesized state.

The advantage of the imputation approach is that the re-

constructed clean speech features can be converted to cepstral

features, which improves recognition accuracy at high SNR’s.

Marginalization, on the other hand, has been shown to be

more robust against data scarcity at low SNRs than traditional

imputation methods [4]. In this paper we will only investigate

imputation techniques.

E. Bounded MDT

Both marginalization and imputation approaches are called

unbounded if there are no restrictions on the range of possible

values the unreliable features can take. In this work we

consider only additive noise. This implies that the observed

acoustic power of noise corrupted speech can be considered

as an upper bound for a clean speech estimate:

Ŝ =

{

Ŝ(k, t) = Y (k, t) if M(k, t) = 1

Ŝ(k, t) ≤ Y (k, t) if M(k, t) = 0
(3)

In reconstructing the clean speech estimate Ŝ the upper bound

given by (3) should not be exceeded.

III. SPARSE IMPUTATION

A key concept in Compressive Sensing is that many real-

life signals have a sparse representation given an appropriate

change of basis. In Section III-A we will show how speech

signals corresponding to spoken digits can be sparsely rep-

resented in a dictionary of example speech tokens and how

such a sparse representation can be recovered from observed

spectrographic elements. In Section III-B we show how the

sparse representation can be recovered from incomplete spec-

trograms and how the missing data can be reconstructed.

In Section III-C we discuss the difficulties associated with

determining how much reliable data must be available to

reconstruct the spectrogram of a spoken digit in the presence

of competing acoustic signals.

A. Sparse representation of speech

We express the K × T spectrogram of clean speech S as

a single vector s of dimension D = K · T by concatenating
T subsequent time frames. To keep the correspondence with
research in image processing, we assume that T can be fixed.
This can be achieved, for example, by time-normalizing all

utterances [24].

Inspired by a similar approach in the field of face recogni-

tion [11], we assume that s can be represented exactly (or

at least approximated with sufficient accuracy) by a linear

combination of exemplar spectrograms an, where n denotes
a specific exemplar (1 ≤ n ≤ N) in the set of N available
exemplars:

s =

N
∑

n=1

xnan = Ax (4)

with x an N -dimensional weight vector,2 and the overcom-
plete dictionary A = (a1 a2 . . . aN ) a matrix of size D×N
with N ≫ D. In fact, since the dictionary is overcomplete, any
vector can be represented as a linear combination of vectors

from the dictionary.

Although it may not be obvious at first that an arbitrary

log-power spectrogram can be represented as a sparse linear

combination of similar spectrograms, the experimental data

below indicates that this is a reasonable assumption. The

reason for this is that spectrograms of different realizations

of the same word have approximately the same patterns

of energy concentration. The differences between multiple

exemplar spectrograms of the same word manifest themselves

mainly as relatively small variations in the shape and position

of the high-energy regions in the time-frequency plane. As a

consequence, a linear combination of exemplar spectrograms

that represent the same word, will result in a new spectrogram

that looks very similar to a possible realization of that word but

with slightly different boundaries of the high-energy regions.

Although the system of linear equations in (4) has no unique

solution, research in the field of Compressive Sensing [8], [9]

2We do not require that x is non-negative. In practice, however, we hardly
observe any negative values.
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has shown that if x is sufficiently sparse, x can be uniquely

determined by solving:

x = argmin
x̃∈IRN

{ ‖x̃‖0 } subject to s = Ax̃ (5)

with ‖.‖0 the l0 zero norm (i.e., the number of nonzero
elements).

The combinatorial problem (5) is NP-hard [25] and there-

fore unfeasible for practical applications. It has been shown

in [26] however, that with weak conditions on A the solution

of the l0 zero norm minimization is equal to the solution of
an l1norm minimization:

x = argmin
x̃∈IRN

{ ‖x̃‖1 } subject to s = Ax̃ (6)

This convex minimization problem can be cast as a least

squares problem with an l1 penalty, also referred to as the
LASSO [27]:

x = argmin
x̃∈IRN

{ ‖Ax̃ − s‖2 + λ‖x̃‖1 } (7)

with a regularization parameter λ. Public domain software
packages exist to solve problem (7) efficiently.

We can use this approach to obtain a sparse representation

x of the clean speech vector s by treating the speech features

as measurements of the unknown sparse signal x.

B. Imputation

By concatenating subsequent time frames of the spectro-

graphic mask M , similarly as we did for the clean speech

spectrogram S, we construct a mask vectorm. Using the same

approach for the noisy speech spectrogram Y we construct a

noisy observation vector y. The elements of y corresponding

to elements of mask vector m equal to 1 are the reliable
coefficients yr . We use the reliable elements yr as an

approximation for the corresponding elements of s, so problem

(7) becomes:

x = argmin
x̃∈IRN

{ ‖Arx̃ − yr‖2 + λ‖x̃‖1 } (8)

with Ar pertaining to the rows of A for which m = 1. We
can now use the sparse representation x obtained by solving

problem (8) to estimate the clean observation vector as ŝ =
Ax. However, since the reconstruction error will generally not

be zero if we solve problem (8), we only impute the unreliable

elements:

ŝ =

{

ŝr = yr

ŝu = Aux
(9)

with Au and ŝu pertaining to the rows of A and ŝ for which

m = 0. Note that the resulting clean speech estimate ŝ is

obtained using unbounded imputation: we have not taken the

upper bound on clean speech estimates into account (cf. Sec-

tion II-E). While bounded imputation would probably better

be implemented by adapting the minimization problem (6) (cf.

Section VIII-C), we have opted for a computationally more

convenient solution, i.e., we reject those elements of which

we are sure they have been estimated incorrectly incorrectly

because the estimate exceeds the observed noisy speech. For

that purpose we modify (9) as follows:

ŝ =

{

ŝr = yr

ŝu = min (Aux,yu)
(10)

with the min operation taking the element-wise minimum of
two values.

A version of ŝ that is reshaped into a K ×T matrix can be
considered a denoised spectrogram of the underlying speech

signal and can directly be used for speech decoding.

C. Minimum proportion of reliable features for successful

imputation

The question arises how much missing data can be imputed

using sparse imputation. Obviously, no imputation is possible

if y does not contain any reliable coefficients. In practice, a

minimum number of reliable coefficients will be required for

successful restoration of y. However, it is not possible to give

an exact lower bound for the proportion of reliable features

needed for successful imputation.

A necessary condition for the recovery of x is given in [26]:

‖x‖0 .
F + 1

3
(11)

with F the number of ‘measurements’ of x. Thus, at least

F = (‖x‖0·3)−1 measurements (in our case, observed reliable
features in y) are necessary to recover x. However, this does

not necessarily equal the number of measurements that are

sufficient to recover x. Three issues play a role here.

The first issue is that, for a given speech token, we do not

know how sparse its representation x is. While an average

sparsity (i.e. the number of nonzero elements in x) could be

established using a representative collection of clean speech

tokens, specific speech tokens may require far more or far

less exemplars. Thus, any bound will depend on the individual

properties of the speech token under consideration.

The second issue is that (11) is only a necessary condition.

Depending on the dictionary A, the real number of measure-

ments necessary can be higher [28]. Some theoretical bounds

exist (cf. [29], [30]) on the successful recovery of a sparse

representation given the sparsity of x and a dictionary A.

Unfortunately bounds such as the Restricted Isometry Property

(RIP) are sufficient, but not strictly necessary conditions and

are NP-hard to establish.

The third issue is that even if we had a bound on the number

of measurements needed to recover x using the dictionary

A, we recover x using the row-reduced dictionary Ar. The

Johnson-Lindenstrauss lemma [31] asserts that when points are

projected onto a randomly selected subspace of suitably high

dimension, the distances between the points are approximately

preserved. Removing randomly selected rows fromA could be

considered a random mapping of A to a low dimensional ver-

sion Ar, thus allowing recovery of x from Ar. Unfortunately,

in our application the missing data is not randomly distributed.

Even if the background noise was random noise, the reliable

data would still be located in compact regions determined by
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the speech signal (corresponding to high energy regions in the

spectrogram). This makes bounds on the successful recovery

of x dependent on the exact structure of Ar, which will be

different from utterance to utterance.

All considerations above make it unpractical to derive

bounds on successful recovery. We will therefore follow an

experimental approach in which we first investigate what the

sparsity is of clean speech and then try to generalize that result

to noisy speech.

IV. BASELINE MISSING DATA ASR METHODS

In this Section we briefly describe two imputation methods

that are among the best front-end (i.e. imputation before

decoding) and best overall (employing imputation during

decoding) methods in the literature on missing data techniques

for ASR. The front-end method is inspired by cluster-based

imputation [7] and is described in Section IV-A. The second

method is called per-Gaussian-conditioned imputation [13]

and is described in Section IV-B.

A. Cluster-based imputation

Consider a single time frame of the clean speech spectro-

gram S and the noisy speech Y and denote these by ς(t) and
ψ(t). In the cluster-based imputation front-end, we assume
that every clean speech frame ς(t) is part of a cluster. Each
cluster is described by a Gaussian distribution N(µz,Σz) with
cluster identity z ∈ Z, mean µ and full covariance matrix Σ.

The cluster means are trained on a clean speech database

using K-means vector quantization (VQ). Once the cluster

identities of all speech frames in the database are known, we

determine the covariance of each cluster.

If we know the cluster identity z of an observed noisy
speech vector, its Maximum Likelihood Estimate (MLE) under

the assumption of additive noise (cf. Section II-E) is:

ς̂z = argmin
ς̃∈IRK

{1

2
(ς̃ − µz)

′
Σ

−1
z (ς̃ − µz)}

subject to ς̃u ≤ ψu, ς̃r = ψr (12)

in which we dropped the time dependency to simplify notation.

The minimizer ς̂z is a clean speech estimate for the noisy

speech frame. ς̂u and ψu denote the unreliable elements of

ς̂ and ψ, respectively. Accordingly, ς̂r and ψr denote the

reliable elements of ς̂ and ψ.

Since in practice we do not know the cluster identity in

advance, we construct clean speech estimates ς̂z for all clusters

Z and calculate their likelihood using:

f(ς̂z|z) =
exp(− 1

2 (ς̂z − µz)
′
Σ

−1
z (ς̂z − µz))√

2π
K√

det(Σz)
(13)

Finally, we construct ŝ as a weighted sum of cluster-

conditioned clean speech estimates:

ŝ =

Z
∑

z=1

f(ς̂z|z)
∑

f(ς̂z|z)
ς̂z (14)

By applying this procedure for every time frame independently

we obtain an estimate of a clean speech spectrogram.

B. Per-Gaussian-conditioned imputation

We used a mainstream Hidden Markov Model (HMM)

based recognizer with Gaussian Mixture acoustic Models

(GMM). A clean speech frame ς(t) is modeled by a mixture
of Gaussians with diagonal covariance. We explain the impu-

tation technique for a single Gaussian, but the results extend

naturally to a mixture of Gaussians [13].

In an HMM the likelihood of observing ς(t) is calculated
under the assumption of being in the q-th HMM state by:

f(ς(t)|q) = N(ς(t);µq,Σq) (15)

with state index q and N(x;µ,Σ) a Gaussian density function
at x with mean µ and diagonal covariance Σ.

For every Gaussian the MLE of an unreliable element

is given by its corresponding Gaussian mean µ. Under the

constraint of additive noise (cf. Section II-E) this gives:

ς̂u(t) = min (ψu(t),µq) (16)

with the min operation working element-wise.
Features in the log-spectral domain are not attractive for

speech recognition because they tend to be correlated. In

automatic speech recognition a linear transformation (such as

for example a Discrete Cosine Transformation (DCT)) is used

to decorrelate the log-spectra. Under a transformation C we

express ς(t) as:

c(t) = Cς(t) (17)

with C the DCT-matrix in the case of cepstral features. Under

this transformation (dropping the time dependency and index

q for ease of notation) the MLE is given by:

ς̂ = argmin
ς̃∈IRK

{1

2
(ς̃−µς)

′P (ς̃−µς)} subject to ς̃u ≤ ψu (18)

with µς the Gaussian mean in the log-spectral domain. P is

constructed as:

P = C ′
Σ

−1
C C + κΣ

−1
S (19)

with ΣC the diagonal covariance in the transformed domain,

ΣS the diagonal covariance in the log-spectral domain and κ
a regularization parameter which depends on the structure of

C.

The minimization problem (18) can be cast as a non-linear

least squares problem and can be solved efficiently using a

gradient descent or multiplicative updates method.

When modeling the speech by a mixture of Gaussians, the

clean speech estimates are conditioned per-Gaussian: we get

as many clean speech hypotheses for ψ as there are Gaussians

in the speech model. Each Gaussian conditioned likelihood is

evaluated using the imputed speech. During the Viterbi search

over all likelihoods, these hypotheses are in competition with

each other.

In our implementation, we did not use the cepstral transfor-

mation, but PROSPECT features (cf. [32]), a computationally

efficient low order approximation of cepstral features that

does not require regularization of P . The speech recognizer
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uses first and second time derivatives of features which are

processed in a similar manner [33].

V. EXPERIMENTAL SETUP

In this Section we outline the setup of our experiments with

spoken digit recognition. The recognition task is described in

more detail in Section V-A. Section V-B explains the prepro-

cessing of the speech data prior to recognition. Section V-C

discusses the creation of the two types of missing data masks

that are used in the experiments. The implementation of the

sparse imputation algorithm and the creation of the overcom-

plete dictionary of exemplars are described in Section V-D.

The implementation of cluster-based imputation is described

in Section V-E. The speech decoder that can perform per-

Gaussian-conditioned imputation is described in Section V-F.

A. Recognition task

We studied an isolated-digit recognition task using speech

data from the AURORA-2 corpus [12]. The isolated-digit

speech data was created by extracting individual digits from

the connected digit utterances in the AURORA-2 corpus. To this

end we used a segmentation obtained from a forced alignment

of the clean speech utterances with the reference transcription.

The clean speech training set of AURORA-2 consists of

27 748 digits in 8440 utterances. The original connected
digit utterances were used for extracting cluster means and

covariances for cluster-based imputation (Section V-E) and for

training the acoustic models of the ASR engine (Section V-F).

Isolated digits extracted from these utterances were used to

construct the exemplar dictionary used in sparse imputation

(Section V-D).

For our experiments we used test set A, which comprises 4
clean and 24 noisy subsets. The noisy subsets are composed
of four noise types (subway, car, babble, exhibition hall) artifi-

cially mixed at six SNR values, SNR= 20, 15, 10, 5, 0,−5 dB.
Every SNR subset consisted of 3257, 3308, 3353 and 3241 dig-
its per noise type, respectively. All experiments were carried

out on the isolated, time-normalized digits.

We evaluated word recognition accuracy of the imputation

methods as a function of SNR and mask type, averaging the

results over the four noise types.

B. Preprocessing

Acoustic feature vectors consisted of mel frequency log

power spectra: 23 frequency bands with center frequencies
starting at 100 Hz (frame shift = 10 ms). All words were
represented as a matrix of 35 time frames, using spline inter-
polation to compress longer and expand shorter word tokens.

This corresponds to the average duration of the digits in the

training set. Comparison with previously reported recognition

accuracies of AURORA-2 clean speech (cf. [34] in which the

same ASR engine was used as in the current study), shows that

the time normalization does not affect recognition accuracy.

The ASR engine requires first and second time derivatives

of the features. Both for cluster-based imputation and sparse

imputation these derivatives were obtained from the time-

normalized representations after imputation. For per-Gaussian-

conditioned imputation first and second derivatives were calcu-

lated based on the noisy (but time-normalized) spectra. Adding

the derivatives results in a 69 features per frame.

C. Missing data mask estimation

The oracle mask was calculated for every digit using (2)

(for AURORA-2 the power spectrograms of both clean speech

S and noise N are available) with a threshold 10 log10(θ)=-
3 dB.

For the computation of the harmonicity mask, we followed

the procedure described in [13]. The noisy speech signal is first

decomposed in a harmonic and a residual part using a least

squares fitting method. The harmonic energy can be used as

an estimator of the clean speech energy and the residual as

an estimator for the noise energy, for use in (2). However, the

harmonic part will also contain contributions from the noise,

while the residual also contains contributions from the speech.

Therefore, the method uses a signal-to-noise-dependent com-

pensation, combining harmonicity and SNR criteria. Following

[13], [24] we chose 10 log10(θ)=-9 dB. From Fig. 3 it can be
seen that the harmonicity mask systematically overestimates

the proportion of unreliable features (relative to the oracle

mask). Experiments have shown that lowering the proportion

of false unreliables raises the proportion of false reliables at

at least the same rate, resulting in a lower overall recognition

performance.

For per-Gaussian-conditioned imputation we calculated

masks for the first and second time derivatives of features by

taking derivatives of the static missing data mask (cf. [33]).

D. Sparse imputation

The sparse imputation method was implemented in MAT-

LAB. The l1 minimization was carried out using the l1_ls
solver [35].3 The regularization parameter λ was determined
using the utility function find_lambdamax_l1_ls. The

stopping criterion of the solver was a duality gap of 0.01.
A pilot study conducted to investigate the effect of the

number of examples in the dictionary showed that recognition

accuracy did not improve with dictionary sizes N ≥ 4000,
while computational complexity increased more than linear

in the dictionary size (in [35] it was stated that the l1_ls

solver has complexity O(N1.2)). Therefore, we used a single
dictionary containing 4000 exemplars that were randomly
selected from the set of clean speech training exemplars. No

attempt was made to represent genders, regional background

or digits uniformly.

The exemplars were time-normalized in the manner de-

scribed in Section V-B. Next, every digit (exemplar) was

represented as a 23 · 35 = 805 dimensional vector by con-
catenating subsequent time-frames. The resulting N = 4000
exemplars were concatenated to form a single 805 × 4000
dimensional dictionary matrix A. Finally, the Euclidean norm

of all columns were normalized to 1.

3This solver is publicly available from http://www.stanford.edu/∼boyd/l1
ls/
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E. Cluster-based recognition

As in [7] we extracted means and covariances for 512
clusters from the (non time-normalized) clean speech training

set of AURORA-2. First, the cluster means were calculated

on 50 000 frames, which were randomly selected from the
training set, using the kmeans function of the SPIDER

toolbox.4 Then, every frame of the 745 761 clean speech
frames in the training set was assigned a cluster identity based

on the Euclidean distance to these cluster means. Finally,

we calculated for every extended cluster the new mean and

covariance, resulting in 512 Gaussians of 23 dimensions with
full covariance.

The bounded imputation routine was implemented in MAT-

LAB and carried out using 300 multiplicative updates [36].

F. Speech recognition

For recognition we used a MATLAB implementation of the

ASR engine described in [32]. This engine internally converts

the spectral features to PROSPECT features (cf. Section IV-B).

As in [32] we trained 11 whole-word models with 16 states
per word, as well as two silence words with 1 and 3 states,
respectively, using the (non time-normalized) clean speech

train set of AURORA-2. Every state was modeled by 16
Gaussians with diagonal covariance.

The recognition system performs per-Gaussian-conditioned

imputation during recognition, guided by a missing data mask.

For the experiments with cluster-based imputation and sparse

imputation we used the same recognizer, fed with clean

speech estimates provided by the imputation front-ends, in

combination with a mask that labels all features reliable.

VI. RESULTS

In this Section we present the results of several experiments.

In Section VI-A we investigate how sparsely clean speech

digits can be represented using our exemplar dictionary. We

give visual examples of the output of cluster-based imputation,

sparse imputation and per-Gaussian-conditioned imputation in

Section VI-B. We conclude with describing the recognition

results obtained by employing the three imputation methods

for both mask types and report recognition accuracy as a

function of SNR in Section VI-C.

A. Sparse representation of speech

We investigated the sparsity of clean (uncorrupted) speech

of isolated digits in subset 1 of the AURORA-2 test database. To
compare the sparsity of different digits the observation vector

was normalized to a Euclidean unit norm. For every digit,

we recovered its sparse representation by solving problem (7)

using a dictionary of N = 4000 exemplars. Then, we sorted
the resulting weight vector x with respect to weight. Finally,

we averaged the sorted weight vectors over all 3257 digits.
The result is a cumulative weight vector which shows the

average weights of sparse representations of digits ordered

with respect to the largest weights of every digit. The 40 largest

4The toolbox publicly is available from http://www.kyb.mpg.de/bs/people/
spider/main.html
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Cumulative sparse weights of clean digits in AURORA−2

Fig. 4. The sparsity of clean speech isolated digits in subset 1 of the
AURORA-2 test database. The sparse representation x of every digit is found
by solving problem (7) using a dictionary of N = 4000 exemplars taken
from the clean training database of AURORA-2. The graph shows the average
weight of the 40 largest nonzero elements of each sparsely represented digit.

weights are shown in Figure 4. From this figure it can be seen

that the isolated clean speech digits in the test set can indeed

be sparsely represented in a dictionary of exemplar digits. The

results show that there is a fast decay of the sparse weights

and that on average digits can be sparsely represented using

no more than approximately 25 exemplars.

B. Visual example of imputation results

In Figure 5 we show the clean speech estimates of a single

isolated digit. The digit is the word “three” (pronounced /Tri/
using the IPA phonetic alphabet) extracted from the utterance

MAH_1390A which was artificially mixed with subway noise

at SNR = 5 dB. In all cases the digit had been correctly
recognized after imputation.

The clean speech estimate of per-Gaussian-conditioned im-

putation was created after recognition using the recognized

state-sequence. This is necessary since the method creates

an imputation hypothesis for every Gaussian (and thus ev-

ery state). The clean speech estimate at every time frame

corresponds to the imputation hypothesis of the best scoring

Gaussian pertaining to the recognized state.

Comparing the clean speech spectrogram shown in Fig. 5a

with the oracle mask overlayed noisy digit shown in Fig. 5d it

can be seen that an imputation technique has to reconstruct

the onset (the moderate energy pattern on the left of the

spectrogram, indicated by ellipse number 1 in Fig. 5a) as well
as the frication of the /T/ (the high energy pattern in the upper
left corner, ellipse number 2). Making the same comparison
with the estimated mask overlayed noisy digit shown in Fig. 5e

it can be seen that the imputation technique has to reconstruct

an additional formant trace (the high energy structure in the

upper right corner, ellipse number 3).
Comparing the three clean speech estimates obtained

with an oracle mask of per-Gaussian-conditioned imputa-

tion, cluster-based imputation and sparse imputation shown
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in Figs. 5f, 5g and 5h we can see substantial differences.

Cluster based imputation shown in Fig. 5g clearly has retained

some of the corrupting noise shown in Fig. 5c and failed to

reconstruct some of the occluded high energy areas. Both per-

Gaussian-conditioned imputation (Fig. 5f) and sparse imputa-

tion (Fig. 5h) have reconstructed the missing energy patterns

to some extent but the clean speech estimate of per-Gaussian-

conditioned imputation looks more like a checker board than

the sparse imputation result.

Clean speech estimates created by cluster-based imputation

employing the estimated mask shown in Fig. 5j clearly fails

to reconstruct the high energy structure in the upper right

corner. Per-Gaussian-conditioned imputation (Fig. 5i) and to

a lesser extent sparse imputation (Fig. 5k) have succeeded in

reconstructing this structure. Finally, it is worth noting that

the clean speech estimates obtained using the oracle mask

(Fig. 5f) and the estimated mask (Fig. 5i) are very similar

when employing per-Gaussian-conditioned imputation.

C. Recognition experiments

Fig. 6 depicts the recognition accuracy on the AURORA-

2 single-digit task obtained using the oracle mask. In this fig-

ure three lines are plotted corresponding to sparse imputation,

per-Gaussian-conditioned imputation and cluster-based impu-

tation. It is immediately apparent that our sparse imputation

technique performs very well. While the differences between

the three techniques are negligible at high SNR’s (> 15
dB), sparse imputation substantially outperforms the other two

imputation techniques at lower SNR’s. At SNR = −5 dB
sparse imputation obtains a recognition accuracy of 92%

versus 61% for per-Gaussian-conditioned imputation and 50%

for cluster-based imputation.

Fig. 7 shows the recognition accuracies of the three imputa-

tion techniques obtained with the harmonicity mask described

in Section V-C. It can be seen that per-Gaussian-conditioned

imputation now outperforms sparse imputation, while cluster-

based imputation still performs worst. As with the results dis-

played in Fig. 6, the differences are negligible at SNR’s ≥ 15
dB. Overall, the differences in accuracy between the three

techniques when using the estimated (harmonicity) mask are

much smaller than with the oracle mask. The largest gap be-

tween the recognition accuracies of per-Gaussian-conditioned

and sparse imputation is 4.6% at SNR = 5 dB, while the
largest difference between sparse imputation and cluster-based

imputation is 8% at SNR = 0 dB.

VII. DISCUSSION

We first discuss the results of the experiments in Sec-

tions VII-A, VII-B and VII-C. In Section VII-D we discuss the

generalizability of the findings presented in this work. Finally,

we discuss related work in Section VII-E.

A. Sparse representation of speech

The experiment described in Section VI-A was carried out

on clean speech, so the sparse representations were obtained

using F = D = K ·T = 23·35 = 805 measurements (features

in s). We showed that the average sparsity of clean speech

digits is 25. Using the necessary condition in (11) as a best-
case scenario, it can be inferred that to recover x we need at

least F = (25 × 3) − 1 = 74 measurements. It is unlikely
that 74 reliable features of a noisy speech spectrogram are
sufficient in practice, however: (un)reliable features are not

randomly distributed over time and frequency and the real

number of features required will depend on the dictionary A

(cf. Section III-C). Still, we can use this figure to estimate a

best-case upper bound on the SNR at which we can achieve

‘perfect’ reconstruction using the results in Fig. 3.

The 74 features amount to 74/805 ≈ 9% of the available
features in a spectrogram. From Fig. 3 we can deduce that for

the oracle mask, even at SNR = −5 dB on average 18% of the
features is reliable, which is more than the lower bound of 9%.
However, for some noisy digits the number of reliable features

will be below average, leading to a erroneous imputation; this

may reduce the overall recognition accuracy.

We can make an estimate of an upper bound on the SNR

that still allows ‘perfect’ reconstruction by finding the SNR at

which for most digits up to 100− 9 = 91% of the features is
missing. Using the 99th percentile shown in Fig. 3 we can infer

that for the oracle mask this occurs at SNR ≈ 5 dB. For the
harmonicity mask the 91% limit is reached at SNR ≈ 15 dB.
In other words, we can at best expect ‘perfect’ reconstruction

for 99% of the digits for SNR’s up to 5 dB for the oracle
mask. Ignoring mask estimation errors we can at best expect

‘perfect’ reconstruction at SNR = 15 dB for the harmonicity
mask. This is corroborated by the results in Figs. 6 and 7.

B. Visual example of imputation results

The cluster-based imputation method described in Sec-

tion IV-A failed to reconstruct the high energy structures

of the clean speech spectrogram outside the frames which

contain reliable features both when using an oracle and an

estimated mask. This is due to the frame-by-frame processing:

the imputation has no knowledge of neighboring frames,

neither through state-based knowledge as in per-Gaussian-

conditioned imputation nor through the longer time-windows

used in sparse imputation. Cluster-based imputation also re-

tained much of the corrupting noise. This is due to the

difficulty of determining cluster-identity. In our implementa-

tion we use a weighted sum of all cluster-based imputation

hypotheses. While some hypotheses may contain no residual

noise, the weighted sum is likely to contain residual noise

due to the averaging. As noted in [7], however, choosing only

one imputation hypothesis result is not a solution, due to the

difficulty of selecting the proper cluster identity in the presence

of noise.

Both sparse imputation and per-Gaussian-conditioned impu-

tation succeed in reconstructing the unseen clean speech fea-

tures to a large extent. In per-Gaussian-conditioned imputation

this is due to the knowledge of an underlying state-sequence,

in sparse imputation through the use of the large time-window.

The greater roughness of per-Gaussian-conditioned imputed

spectra when compared to sparse imputation can be understood

from the state/Gaussian conditioned nature. The spectra are
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with oracle mask
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(g) Cluster-based imputation with oracle
mask
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(h) Sparse imputation with oracle mask
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(i) per-Gaussian-conditioned imputation
with estimated mask
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mask

Fig. 5. Figure 5a shows the spectrographic representation of the digit ‘three’. The horizontal axes represent time and the vertical axes frequency. The ellipses
indicate areas of interest for imputation. Fig. 5b shows the spectrographic representation of the background subway noise. Fig. 5c shows the spectrographic
representation of the digit artificially corrupted by the background noise at SNR = 5 dB. Figs. 5d and 5e show the noisy digit with the oracle respectively
estimated mask overlayed. Figs. 5f, 5g and 5h show the imputation results of per-Gaussian-conditioned imputation, cluster-based imputation and sparse
imputation respectively using the oracle mask. The imputed spectra obtained using the estimated mask are displayed in the corresponding Figs. 5i, 5j and 5k.

reconstructed based on a state-description. That means that

every time a new state is entered, a different Gaussian is used

for imputation. This results in the block structure in Figs. 5f

and 5i with every block having a length of a few frames (recall

that digits are described by 16 states in 35 time-frames).

Finally, the similarity between the per-Gaussian-conditioned

reconstructed spectra employing the oracle and estimated mask

is also due to its state-based nature: In both cases the digit

in this example was first (correctly) recognized, after which

the state sequence is used for selecting the state-dependent

clean speech estimate. Since the state sequences are very

similar if the recognition result is the same, the clean speech

estimates are also very similar. Consequently, when a digit is

not correctly recognized, the reconstructed spectra might look

very different from the clean speech spectra.

C. Recognition experiments

1) Oracle mask: The recognition accuracies displayed in

Fig. 6 show that sparse imputation can successfully restore the

missing data even at low SNR’s. Since at SNR = −5 dB on
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Fig. 6. Recognition results of the single digits extracted from AURORA-
2. The results displayed in this figure are obtained using an oracle mask.
We compare three imputation techniques: sparse imputation, per-Gaussian-
conditioned imputation and cluster-based imputation. The horizontal axis
describes the SNR at which the clean speech is mixed with the background
noise, while the vertical axis describes recognition accuracy averaged over the
four noise types described in Section V-A. The accuracy range in this figure
is [40, 100]. The vertical bars around the data points indicate 95% confidence
intervals.
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Fig. 7. Recognition results of the single digits extracted from AURORA-2.
The results displayed in this figure are obtained using an estimated mask,
the harmonicity mask described in Section V-C. We compare three imputa-
tion techniques: sparse imputation, per-Gaussian-conditioned imputation and
cluster-based imputation. The horizontal axis describes the SNR at which
the clean speech is mixed with the background noise, while the vertical axis
describes recognition accuracy averaged over the four noise types described
in Section V-A. The accuracy range in this figure is [20, 100]. The vertical
bars around the data points indicate 95% confidence intervals.

average 82% of the data is missing (cf. Fig 3), this is a very en-
couraging result. By contrast, recognition accuracies obtained

using per-Gaussian-conditioned imputation and cluster-based

imputation show a sharp decline at SNR’s ≤ 5 dB. This is
due to the frame-based character of these techniques: many

frames contain few -if any- reliable features making successful

imputation of those frames difficult.

Recognition accuracy using sparse imputation remains al-

most constant for SNR ≥ 10 dB. This SNR corresponds with
the prediction on the basis of reliable measurements derived in

Section VII-A. The decline in recognition accuracy for sparse

imputation at lower SNR’s can be explained by the fact that

either the assumption that data is missing at random fails

or because digits occasionally do not have enough reliable

features.

It is interesting to note that per-Gaussian-conditioned im-

putation shows the steepest decline in accuracy. Because all

imputation hypotheses are in competition through the Viterbi

search, accuracy falls off very steeply once too many frames

do not contain any reliable values.

2) Estimated mask: The recognition accuracies in Fig. 7

show a qualitatively different picture. Most strikingly, with the

estimated harmonicity mask the recognition accuracies start

to drop already at moderate SNR’s for all three imputation

methods. Also, the difference between the three methods is

much smaller when compared to the oracle mask situation.

Moreover, the per-Gaussian-conditioned imputation now out-

performs sparse imputation.

As was the case with the oracle mask, the SNR at which

the recognition performance with sparse imputation starts to

break down corresponds with the prediction on the basis of

reliable measurements derived in Section VII-A. However, the

much steeper drop in recognition accuracies at SNR ≤ 5 dB
compared to the oracle mask is somewhat unexpected. Part of

the differences in recognition accuracy between harmonicity

and oracle mask can be attributed to a smaller number of

reliable features. The lower recognition accuracies for sparse

imputation cannot entirely be explained by the reduced number

of reliable features alone, however. One explanation is that

mask estimation techniques suffer from two kinds of errors,

unreliable features that are incorrectly labeled as reliable

(false reliables) and reliable features incorrectly labeled as

unreliable (false unreliables). Both errors affect imputation:

false unreliables reduce the number of features we can use

to recover x, while false reliables mislead the search for a

correct sparse representation x. As can be inferred from Figs. 2

and 3, the harmonicity mask is tuned towards avoiding false

reliables. The price to be payed, of course, is having fewer

reliable elements in total.

Besides the fact that false reliables may play a role here,

another factor must be taken into account: The location of

the true reliable and unreliable features in the time-frequency

plane. As was noted in [18], differences in recognition ac-

curacy cannot be expressed simply as a function of the

number of differing time-frequency cells: Some incorrectly

labeled spectro-temporal elements may hardly affect recogni-

tion, while others are crucial for discriminating between dif-

ferent words. Apparently, the set of features that are classified

as reliable by the harmonicity mask at lower SNR’s contain

(much) less information about the word identity compared to

the oracle mask situation.

Mask estimation procedures are more likely to correctly

label large coherent areas reliable because speech energy tends

to be concentrated in coherent regions of the time-frequency

plane. From a compressive sensing perspective this is not



12 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING

ideal, because the measurements are not sampled randomly.

Moreover, changes in the mask estimation algorithm, such as

changing the threshold θ, are likely to yield fewer or more
reliable features in the same coherent regions. These reliable

features might be much less informative than a single reliable

feature in a different area of the time-frequency plane.

We conclude that the harmonicity mask, already at moderate

SNR’s, fails to label some “crucial” features as reliable,

making it impossible to correctly impute prior to decoding.

Features that are the most likely to be incorrectly labeled

unreliable are the low energy features in the consonant parts

(like the /T/ in the digit “three”). Yet, the consonant parts that
are extremely important for discriminating between different

digits that have similar vowels.

3) Per-Gaussian-conditioned imputation vs sparse impu-

tation: An intriguing question that remains is why sparse

imputation performs much better than the other imputation

methods when using the oracle mask, while the per-Gaussian-

conditioned imputation performs best when using an estimated

mask. Our current experiments do not allow to formulate

a definitive answer to this question, but several plausible

explanations come to mind.

(1) A first explanation is related to the assumption that the

noise is additive. We will discuss this issue in more detail in

Section VIII-C. (2) It is also possible that sparse imputation

is simply much more sensitive to false reliables than per-

Gaussian-conditioned imputation: in per-Gaussian-condition

imputation a false reliable only affects the imputation of a

single frame, while neighboring frames are only indirectly

affected through the Viterbi search, which takes place over

all possible frame based imputations. In contrast, in sparse

imputation, a single false reliable influences the search for x

over multiple frames (in our case entire words). Thus, what

appears to be a strength when using oracle masks −only a few
reliable features are needed for successful imputation− may
turn into a weakness as soon as the estimated mask contains

a substantial number of false reliables. (3) Per-Gaussian-

conditioned imputation does missing data imputation on static

features as well as on the first and second time derivatives

of the features as opposed to sparse imputation where only

static features are imputed. With per-Gaussian-conditioned

imputation the derivative features are imputed using separate

masks. In contrast, in sparse imputation, derivative features are

derived directly from the statics of the clean speech estimates

solely to serve as input for the ASR engine. As a consequence,

any incorrect imputation of the statics is only reinforced

by these derivative features. In practice, this means that the

recognizer may be confronted with vastly different derivative

features than those seen during training.

D. Generalizability of findings

Our experiments using estimated masks were limited to the

harmonicity mask. Moreover, we did not optimize the esti-

mation procedure for the three different imputation methods.

In fact, we kept the settings that resulted from previous opti-

mization for per-Gaussian-conditioned imputation. It should be

noted, however, that different imputation methods may require

different settings for optimal performance. Therefore, there is

room for improvement of the performance of cluster-based and

sparse imputation.

The mask estimation techniques reported in [37], [38]

appeared to improve recognition accuracy in combination

with per-Gaussian-condition imputation. It is reasonable to

expect that mask estimation techniques can be developed that

diminish the gap in performance between the oracle mask

and the estimated mask for sparse imputation. Since sparse

imputation outperforms per-Gaussian-conditioned imputation

when using an oracle mask, we believe that sparse imputation

is a promising alternative.

The experiments described in this paper are limited to

recognition of single words extracted from one dataset (i.e.,the

AURORA-2 corpus). Obviously, this raises questions about the

generalizability of our findings to more general noisy speech

recognition tasks. A set of experiments that are not reported

in this paper suggest that our sparse imputation method can

be extended beyond the realm of isolated AURORA-2 words.

The sparse imputation framework presented here has also been

used for noisy consonant recognition in the VCV-consonant

challenge [39]. The sparse imputation results for that challenge

were comparable with those obtained using other missing

data approaches [40]. This suggests that the current findings

can be replicated at least in other small vocabulary tasks.

Furthermore, in [41] it was shown that the sparse imputation

framework can also be extended from isolated word recogni-

tion to a connected digit recognition task (cf. Section VIII-E).

Also in that work it was found that the sparse imputation

approach substantially outperforms per-Gaussian-conditioned

imputation when using oracle masks.

The extent to which our findings can be generalized to

large vocabulary continuous speech recognition is still an open

issue. In Section VIII-F we discuss in more detail how the

complications of handling the much larger variability of the

speech feature vectors in large vocabulary continuous speech

could be addressed.

E. Related work

Independent of our work, the authors of [42] have applied

l1 minimization in a similar fashion to impute missing features
of motion trajectories using the complete test set of trajectories

as a dictionary. The differences with our work are that in our

application the missing data is not randomly distributed, the

location of missing data has to be estimated (and thus is error-

prone) and that we use a separate dictionary of uncorrupted

(clean speech) exemplars for missing data imputation.

Work in inpainting has utilized sparse (possibly overcom-

plete) dictionaries [43], [44]. The difference with our work

is again that the location of the occlusions is known exactly

and that these are often distributed more evenly over the

pictures. Moreover, the amount of missing data in inpainting

applications is typically much smaller.

Also, there is a substantial amount of work on source

separation using sparse representations (e.g. [45]–[47]). These

methods, however, have in common that they decompose the

signal using models of all sources. In our case that would
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amount to having a model of the clean speech as well as

a model of the corrupting noise. In most speech recognition

applications it is not possible to build a useful model of the

noise.

In [6] the author proposed a covariance-based reconstruction

method which also exploits the time-context during reconstruc-

tion. It works by modeling the spectral features as a stationary

random process. Then, pairwise statistical correlations (i.e.

correlations across frequency and time dimensions) are used

to reconstruct missing regions. The method was found to

perform well when features are missing at random, but was

outperformed by bounded cluster-based imputation in a more

realistic setting. The main difference with our method is that

we make no assumptions about the statistical distributions of

the underlying process, because we use an exemplar-based

approach.

Finally, the speech fragment decoder approach [15], [48] is

worth mentioning, in which a marginalization-based decoder

simultaneously searches for a set of reliable speech fragments

and a word sequence that best matches the target speaker,

effectively performing a search over a large number of possible

missing data masks. In this approach time-context is indirectly

taken into account during the search.

VIII. FUTURE APPLICATION OF SPARSE IMPUTATION IN

ASR

The sparse imputation method presented in this work out-

performs cluster-based imputation, a state-of-the-art front-end

based imputation technique. Therefore, the sparse imputation

technique is promising for fields where adaptation of the

speech decoder is undesirable or impossible, or for applica-

tions such as speech enhancement. The excellent oracle mask

results also indicate that the sparse imputation technique might

be useful in applications where the missing data mask is

exactly known, such as bandwidth extension [49].

Additional research is needed to bridge the gap between the

results obtained with the oracle mask and the estimated har-

monicity mask. Several options could be explored to achieve

this. Below, we discuss using probabilistic missing data masks

(also known as soft masks) as a way to mitigate mask estima-

tion errors (Section VIII-A), extension of the method to impute

derivative features, just like the per-Gaussian-conditioned im-

putation method does (Section VIII-B), adapting the way in

which the constraint posed by the fact that noise is additive

is handled (Section VIII-C), and finally, the introduction of

a sparse error term in the minimization problem to improve

noise robustness (Section VIII-D).

For future application of sparse imputation to noise robust

ASR it is imperative that the method is able to impute time-

continuous speech. We sketch a possible extension to time-

continuous ASR in Section VIII-E and discuss determining a

suitable exemplar dictionary in Section VIII-F.

A. Soft missing data masks

In practical settings, especially at low SNRs, missing data

mask estimation errors are unavoidable. Previous studies [18],

[34], [50] have shown that the influence of mask estimation

errors can be reduced when the binary reliability score is

replaced by the probability that a spectral component is

reliable: soft masks. Soft masks can be generated directly using

the probabilistic output of machine learning techniques [18],

or by the approach followed in [34], [50], e.g. by replacing

the binary decision in (2) by a sigmoid function.

One possible approach to exploiting the additional infor-

mation captured by soft masks is to replace (8) with a

weighted norm minimization. In a weighted norm minimization

problem, the reconstruction error of features is weighted by

the probability that the feature is reliable. This allows the

imputation to exploit more fully the information from the

underlying speech signal, especially when the energy levels

of noise and clean speech are approximately equal.

In [51] the use of soft masks in the sparse imputation

framework is described and substantial improvements are

reported.

B. Imputation of derivative features

Time derivatives of static features are known to improve

recognition accuracy substantially in noise-free conditions. In

a noisy environment, however, an increasing proportion of

the static features becomes unreliable. As a consequence, no

reliable derivative features can be computed whenever one of

the static features involved in the computation appears to be

unreliable. To avoid obfuscation of our experimental results

related to this issue, the presented sparse imputation method

was applied to static features only. In principle, however, it can

be applied to any data that has a sparse representation. Since

derivative features are linear combinations of time shifted log-

spectra, it is likely that the sparse model holds equally well

for this type of feature.

Hence, two alternative methods to handle this information

come to mind. First, one could impute the derivative features

independently of the static features. The imputed derivative

features could then be offered as a separate information stream

to the speech recognizer as is customary to ASR systems.

As a second option, one could impute static and derivative

features jointly, arguing that the sparse model holds for the

static and derivative data jointly. Such an approach would have

the additional advantage that the consistency between both

streams is guaranteed. One might object that in the second

option the derivative features comprise only dependent data

that is being added. However, it is important to realize that

the masks of the static and derivative features need not be the

same so that the incorporation of derivative features does in

fact enable to impose new constraints. Future research has to

reveal to what extent derivative features can help reduce the

overall number of imputation errors in actual practice.

C. Bounded imputation

Both cluster-based imputation and per-Gaussian-

conditioned imputation employ bounded imputation: The

imputation result is calculated using the constraint that the

energy of the clean speech feature vector s (and thus the

clean speech estimate ŝ) cannot exceed the energy in the

noisy observation vector ŝ. Sparse imputation adheres to
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this constraint by rejecting individual elements of the linear

combinations of exemplars which exceed the observed energy.

However, sparse imputation may still represent a noisy digit

using exemplars of which the corresponding unreliable areas

do exceed the observation energy. Since such exemplars may

correspond to different digits, it is conceivable that we get

better results if we take a different approach. One option

would be to remove for every digit, prior to normalizing the

columns of the dictionary, all exemplars from the dictionary

which have energy values which exceed the corresponding

observation energy. A more principled approach would be to

constrain the minimization itself, changing (6) as follows:

x = argmin
x̃∈IRN

{ ‖x̃‖1 } subject to
{

yr = Arx̃

yu ≥ Aux̃
(20)

The interior point technique [35] used in this work cannot be

used to solve problem (20). Thus, investigating the extent to

which such a formulation can improve recognition accuracy

will require the use of general-purpose solvers or the devel-

opment of a custom solver.

D. Error Correction

The sparse imputation method may be misled by features

that are erroneously labeled as reliable by the mask estimation

procedure. In [11] the authors achieve robustness against

corruption in face recognition by including an error term in

the minimization problem.

Assuming that most, if not all, reliable features are correctly

identified by the mask estimation procedure, it is reasonable

to assume that an error vector e (describing which elements

of the reliable feature vector yr ≈ sr + e constitute false

reliables) will be sparse. Accepting the fact that mask estima-

tion will never be flawless, it might make sense to search for

a sparse solution from the dictionary in combination with a

sparse error vector. Thus, we could modify (8) as follows:

w = argmin
w̃∈IRN+V

{ ‖w̃‖1 } subject to yr = [Ar, I]w̃ (21)

with V the dimensionality of the reliable feature vector yr, I

the V × V identity matrix and w = [x,e]′ with the error e ∈
IRV . Using this formulation, errors incoherent with respect to

the dictionary A will be captured by activations of the identity

matrix I as encoded in e. In [52] it was shown that such an

approach can handle large and even dense errors effectively.

Investigating to what extent such a formulation can reduce the

effect of false reliables is left as future work.

E. Time-continuous imputation

The promising results obtained with sparse imputation raise

the question how applicable this technique might be for

applications in large vocabulary continuous speech recogni-

tion. Continuous speech recognition differs in three aspects

from isolated word recognition: we do not know the word-

boundaries in advance, the utterances may vary in duration

so that time-normalization is no longer an option and the

intrinsic variability of the speech is much larger in a large

vocabulary task. In practice, this means that we have to

adapt both the exemplar dictionary (to account for the larger

variability in speech and the lack of duration invariance) and

the imputation technique (to deal with the continuous, non-

segmented character).

Given a suitable exemplar dictionary (discussed in more

detail in the next Section), one possible approach is to apply

sparse imputation using a sliding time window of a fixed

number of frames: imputation in every window is treated

as a separate imputation problem. One can use overlapping

windows to provide robustness for windows that contain few

-if any- reliable elements. Overlapping windows would also

result in several overlapping imputation candidates. This can

be handled by using for example averaging or more elaborate

schemes that take the estimated quality (confidence) of the

imputation into account. While using overlapping time win-

dows leads to an increase in computational complexity, this

increase is linear in the number of overlapping windows. First

experiments with this approach are presented in [41].

F. Dictionary selection

In this work, the exemplar dictionary was created by a

random selection from a larger set of exemplar digits. While

this approach showed promising results, it is easy to see how it

could be improved. A better dictionary could result in sparser

solutions (thus allowing reconstruction with fewer measure-

ments), and provide robustness against duration variation and

time-shifts in continuous speech recognition. Another issue is

that in large-vocabulary continuous speech the variability of

the speech feature vectors is much larger. The digits 0, 1, · · · , 9
do not comprise all phonemes of English, and an even smaller

fraction of the diphones and triphones.

For time-continuous imputation we need an exemplar dic-

tionary which can sparsely represent arbitrary speech. Shift-

invariance can be handled algorithmically [53] or through in-

clusion of time-shifted variants of exemplars in the dictionary.

A simple extension of our random selection method would

consist of randomly selecting fixed-length time windows from

continuous speech utterances in the training set. This provides

shift invariance and will cover variability in duration. However,

it is unlikely that such an exemplar dictionary will capture the

full variance of speech with a dictionary of a few thousand

exemplars. A possible way to improve the dictionary would

be by clustering a much larger number of exemplars and

include only a few thousand cluster centroids in the eventual

dictionary.

Much work has been done on dictionary learning (e.g. [54],

[55]). A substantial part of this work, however, deals with

building atomic dictionaries: Signals are described as com-

binations of low(er) dimensional dictionary elements, called

‘atoms’. While a clean speech signal can be sparsely described

by an atomic dictionary (e.g. [45]), its sparse representation

in the row-reduced dictionary (for imputation of missing data)

will most likely not be equal to its sparse representation

of clean speech, preventing the imputation of the missing

elements. In other words: Such dictionary elements give us

no information about the missing parts of the spectrogram.
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IX. CONCLUSIONS

In this paper we introduced a non-parametric, exemplar-

based method for reconstructing clean speech from noisy ob-

servations, based on techniques from the field of Compressive

Sensing. While conventional imputation techniques for ASR

employ parametric models and impute the missing data on a

frame-by-frame basis, our method, dubbed sparse imputation,

can impute missing data using larger time windows such as en-

tire words. Using an overcomplete dictionary of clean speech

exemplars, the technique first finds the sparsest combination of

exemplars which jointly approximate the non-missing features

of a noisy speech signal. Next, that linear combination of clean

speech exemplars is used to replace the missing features.

We compared our front-end based method with two state-of-

the-art baseline methods: a front-end based technique, cluster-

based imputation and a technique in which imputation is

integrated in the speech decoding, per-Gaussian-conditioned

imputation. Our results show that sparse imputation performs

much better than the two baseline methods when using an

oracle mask, with a recognition accuracy of 92% at SNR =
−5 dB. With error-prone estimated masks sparse imputation
performs slightly worse than per-Gaussian-conditioned impu-

tation, but it achieves higher accuracies than cluster-based

imputation.

We have discussed ways for improving the performance of

sparse imputation with estimated masks and outlined a strategy

for extending the approach to large vocabulary continuous

speech recognition.
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must be imputed. . . . . . . . . . . . . . . . . . 3

3 The percentage of missing data as a function

of SNR for all digits in the test database of

AURORA-2. Results are shown for the oracle

missing data mask, which is calculated from ex-

act knowledge of the corrupting noise, as well as

for an estimated mask, the harmonicity mask de-

scribed in Section V-C. The vertical bars around

the data points show the 1st and 99th percentile. 4

4 The sparsity of clean speech isolated digits in

subset 1 of the AURORA-2 test database. The
sparse representation x of every digit is found

by solving problem (7) using a dictionary of

N = 4000 exemplars taken from the clean
training database of AURORA-2. The graph shows

the average weight of the 40 largest nonzero
elements of each sparsely represented digit. . . . 8

5 Figure 5a shows the spectrographic representa-

tion of the digit ‘three’. The horizontal axes rep-

resent time and the vertical axes frequency. The

ellipses indicate areas of interest for imputation.

Fig. 5b shows the spectrographic representation

of the background subway noise. Fig. 5c shows

the spectrographic representation of the digit ar-

tificially corrupted by the background noise at

SNR= 5 dB. Figs. 5d and 5e show the noisy digit
with the oracle respectively estimated mask over-

layed. Figs. 5f, 5g and 5h show the imputation

results of per-Gaussian-conditioned imputation,

cluster-based imputation and sparse imputation

respectively using the oracle mask. The imputed

spectra obtained using the estimated mask are

displayed in the corresponding Figs. 5i, 5j and

5k. . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Recognition results of the single digits ex-

tracted from AURORA-2. The results displayed

in this figure are obtained using an oracle mask.

We compare three imputation techniques: sparse

imputation, per-Gaussian-conditioned imputation

and cluster-based imputation. The horizontal axis

describes the SNR at which the clean speech

is mixed with the background noise, while the

vertical axis describes recognition accuracy av-

eraged over the four noise types described in

Section V-A. The accuracy range in this figure is

[40, 100]. The vertical bars around the data points
indicate 95% confidence intervals. . . . . . . . . 11

7 Recognition results of the single digits extracted

from AURORA-2. The results displayed in this

figure are obtained using an estimated mask,

the harmonicity mask described in Section V-C.

We compare three imputation techniques: sparse

imputation, per-Gaussian-conditioned imputation

and cluster-based imputation. The horizontal axis

describes the SNR at which the clean speech

is mixed with the background noise, while the

vertical axis describes recognition accuracy av-

eraged over the four noise types described in

Section V-A. The accuracy range in this figure is

[20, 100]. The vertical bars around the data points
indicate 95% confidence intervals. . . . . . . . . 11


