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Compressive sensing for multipolarization through-the-wall radar imaging

Abstract

Discrimination of targets can be improved significantly by analyzing the polarization of scattered
electromagnetic waves. In radar imaging, the target image can be enhanced by combining measurements
from different polarizations. In this chapter, we propose a joint image formation and fusion approach for
multipolarization through-the-wall radar imaging, using compressive sensing (CS). The measurements
from different polarization channels are processed jointly using the multiple measurement vector (MMV)
model to produce several images of the scene, each corresponding to a polarization channel.
Furthermore, the measurement vectors are fused together to form a composite measurement vector,
which yields a composite image of the scene. The advantage of fusing the measurement vectors before
image formation is that the measurement noise is reduced and the target information is enhanced, which
leads to a more informative composite image. The MMV model enforces the same sparsity support for all
formed images by reinforcing target information across channels and attenuating noise. Experimental
results are presented using simulated and real data. Analysis and comparison of experimental results
demonstrate the effectiveness of the proposed through-the-wall radar imaging approach, especially in the
presence of high-measurement noise.
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ABSTRACT Discrimination of targets can be improved significantly by
analyzing the polarization of scattered electromagnetic waves. In radar
imaging, the target image can be enhanced by combining measurements
from different polarizations. In this chapter, we propose a joint image for-
mation and fusion approach for multipolarization through-the-wall radar
imaging, using compressive sensing (CS). The measurements from different
polarization channels are processed jointly using the multiple measurement
vector (MMV) model to produce several images of the scene, each corre-
sponding to a polarization channel. Furthermore, the measurement vectors
are fused together to form a composite measurement vector, which yields a
composite image of the scene. The advantage of fusing the measurement vec-
tors before image formation is that the measurement noise is reduced and the
target information is enhanced, which leads to a more informative composite
image. The MMV model enforces the same sparsity support for all formed
images by reinforcing target information across channels and attenuating
noise. Experimental results are presented using simulated and real data.
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Analysis and comparison of experimental results demonstrate the effective-
ness of the proposed through-the-wall radar imaging approach, especially in
the presence of high-measurement noise.

7.1 Introduction

Through-the-wall radar imaging (TWRI) is emerging as a viable technology
to generate high-resolution images behind walls or inside enclosed build-
ing structures. TWRI systems employ electromagnetic (EM) waves that can
penetrate opaque materials, such as walls and doors, to detect, recognize,
and track targets inside a building. The technology has numerous civil-
ian and military applications, for example, search-and-rescue, law enforce-
ment, and urban surveillance and reconnaissance [3,4,6,7]. There are,
however, increasing demands on TWRI systems to produce high-resolution
images that can effectively discriminate the targets of interest from clutter
without increasing the data acquisition and processing time.

The discrimination of the targets can be enhanced significantly by analyz-
ing the polarization of the EM waves scattered by objects in the scene [11,19].
Several approaches for target detection and classification have been reported
based on multiple-polarization signals. In [13], two statistical detectors were
proposed for joint target detection and fusion of multipolarization radar
images. In [15], a method for through-the-wall detection of small weapons
was developed by exploiting target polarization signature. It was found that
the ratio of the co- to cross-polarization return can be used to distinguish a
human carrying a weapon from a human without a weapon. In [20], target
segmentation and classification was achieved using features extracted from
multipolarization images. In [26], a human detection method was proposed
using a fully polarimetric scattering model of the human body.

The aforementioned studies, however, were not concerned with the prob-
lem of image formation from multiple polarizations. The problem of imaging
with multiple polarizations is that the target may exhibit different responses
when interrogated by different polarized signals. Therefore, the main con-
cern of a practical full-polarization TWRI system is to effectively combine the
received radar data from all polarimetric channels so as to produce an image
with low background clutter and high target reflections. In [22], image fusion
techniques were employed to combine the images from different polarimet-
ric channels. In this chapter, we develop a compressed sensing (CS)-based
technique for simultaneous image formation and fusion, based on multiple
measurement signals.

Recently, CS has been considered for radar imaging due to its ability
to reconstruct a high-resolution image from a reduced set of measurements
[2,5,17,18,23,24,31]. The scene reconstruction is posed as an inverse problem,
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whereby a spatial map of reflections is formed from radar measurements.
Most CS-based methods for TWRI exploit sparsity in a single polarimetric
channel only or assume the targets have invariant reflections at different
polarizations; in other words, the interchannel correlations are not fully
exploited by the image formation process.

In this chapter, we present a CS approach based on the multiple mea-
surement vectors (MMV) model, where multiple measurements from several
polarizations are combined in a CS framework to compute a sparse repre-
sentation of the scene. Preliminary results were presented in [29]. The scene
reconstruction using multiple polarization channels is formulated as finding
a sparse matrix that satisfies the measurement constraints. Compared with
existing CS-based methods, the proposed approach performs simultaneous
image formation and fusion, and enforces the same sparsity support across
all channels. Experimental results on synthetic and real data, acquired with
a stepped frequency radar, are presented, which demonstrate that the pro-
posed method improves image quality by enhancing target reflections and
attenuating background clutter.

The remainder of the chapter is organized as follows. Section 7.2 reviews
the existing image formation techniques for TWRI, including delay-and-
sum beamforming and compressed sensing. An extension of the single-
channel CS model to multiple polarizations is also presented in this section.
Section 7.3 describes the proposed MMV-based image formation approach.
Section 7.4 presents experimental results, which illustrate the effectiveness
of the proposed method. Finally, Section 7.5 concludes the chapter.

7.2 Through-the-Wall Radar Imaging

To obtain high-resolution images that can reveal objects inside an enclosed
building, a ground-based TWR with a long array aperture and large band-
width is required. The array aperture can be physical or synthesized by
moving a transceiver parallel to the front wall. The data received at all
antenna locations are then collected and processed to form the image of
the scene behind the wall. Here, we assume the front wall reflections are
removed prior to image formation [27,28]. Before discussing compressed
sensing for TWRI, we first present a brief review of image formation using
the traditional delay-and-sum (DS) beamforming in the next section.

7.2.1 Delay-and-Sum Beamforming

Consider a monostatic stepped-frequency TWR system with a synthetic
array aperture containing M antennas [4]. At each antenna location, the
transceiver transmits and receives N monochromatic signals of frequencies:
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fa=A+m—-1Af, n=1,...,N), (7.1)

where
f1 is the initial frequency
Af is the frequency step size

The transceiver is moved horizontally parallel to the wall to synthesize an
array aperture. Given P targets in the scene, the monochromatic signal of
frequency f,, received at the mth antenna location is given by

P
Zmn = Z Op exp(_jzﬂfﬂTmp) ’ (7.2)
p=1

where
0y is the complex reflectivity of the pth target
Tmp is the round-trip signal propagation delay from the mth antenna
location to the pth target

The delay Ty is given by

2(da + /E o)
C 4

Tmp = (7.3)

where
d, is the distance traveled through the air
€ is the dielectric constant of the wall
dy is the distance traveled through the wall
c is the speed of light in the air

Assume that the scene behind the wall is represented as a rectangular grid
comprising Ny and Ny pixels along the crossrange and downrange direc-
tions, respectively. Let x denote the one-dimensional vector containing the
image pixels arranged in a lexicographical ordering:

x:[x1,...,xq,...,xQ]T, (7.4)

where Q= N;Ny. The complex amplitude of the gth pixel can be obtained
by summing the delayed monochromatic signals received at all M antenna
locations and N frequencies:

M N
1 .
Xg = s E Z Zin €XP(j 27 Ting) , (7.5)

m=1n=1
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where Ty is the focusing delay between the mth antenna location and the
gth pixel. DS beamforming utilizes all measurements to compute the com-
plex amplitude of every pixel, thereby increasing the requirements for data
acquisition and computation cost. To alleviate this problem, CS-based image
formation methods have been developed for TWRI, where a reduced set of
measurements is usually sufficient to recover a sparse scene. In the follow-
ing section, the reconstruction of a TWRI scene from a single polarization is
formulated as a single measurement vector (SMV) CS model.

7.2.2 Single-Polarization Imaging Using SMV Model

With the rapidly increasing demand on large-scale signal processing, it is not
surprising to see CS emerging as one of the most important research areas in
the past decade. CS has received considerable attention recently for its abil-
ity to perform data acquisition and compression simultaneously [1,9,16,21].
It can be used to reconstruct an approximation of a sparse or compressible
signal from far fewer measurements than required by the sampling theorem.
In TWRI, this has the advantage of reducing the number of measurement
samples and data acquisition and processing time. A number of CS-based
methods were proposed for TWRI in recent years [5,8,23,24,30,31]. In this
section, we review briefly the CS-based approach for solving the image
formation problem as an inverse problem using the single measurement
vector model.

Suppose the received monochromatic signals are arranged into a column
vector z of length MN,

T
z= [2111221/-.-/Zmn/'anMN] 7 (76)

where z;,;; is the signal received by the mth antenna at the nth frequency, see
Equation 7.2. Then, Equation 7.2 can be expressed in matrix—vector form as

z = Vx, (7.7)

where W = [1;] is the so-called sensing or steering matrix. The element 1;; is
given by

1]),‘]‘ = eXp(—jZTCfnij) ’ (7.8)

where
m =imod M
n=1+G-m)/M
Tmj is the round-trip propagation delay between the mth antenna location
and the jth pixel
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In the absence of measurement noise and clutter, the gth pixel value is ideally
given by

op, if gth pixel includes pth target

Xg = (7.9)

0, otherwise

where 0y, is the complex reflectivity of the pth target; in other words, the pixel
value is nonzero only if a target exists at that pixel location. In practice, this
may not be the case due to shadows and ghosts formed by multipath and
multiple reflections between targets. However, in TWRI the imaged scene
is usually sparsely populated, and hence the number of nonzero pixels is
expected to be much smaller than the image size.

Suppose the vector x is K-sparse; that is, x contains at most K nonzero
elements with K« Q. Given a linear measurement process, represented by
a matrix ® of size R x MN (where R < Q), the measurement vector y can be
expressed as

y = &z = dWx = Dx, (7.10)

where D = ®W is known as the dictionary. CS theory allows the reconstruc-
tion of a K-sparse vector x from the measurements y by solving the following
problem:

min ||x|; subject toy = Dx, (7.11)

where ||.||; denotes the p-norm (with p=1). Alternatively, if the measure-
ment vector is corrupted by noise, a sparse signal x can be recovered by
solving

min ||x||; subjectto ||y — Dx||2 <, (7.12)

where € is an upper bound on the noise level (see Candes and Wakin in [1]).
The problem now is how to design a measurement matrix ® that ensures
stable recovery of a K-sparse vector x from a reduced set of measure-
ments y. A sufficient condition for stable recovery is incoherence between
the matrices ® and V. For an orthogonal measurement matrix &, the signal
x can be recovered almost perfectly provided the number of measurements
R~ O (K?u(®, V) log(Q) [8], where w(®, W) is the mutual coherence between
® and W. If ¢ contains only one nonzero element in each row, then this is
equivalent to selecting a subset of antennas and frequencies to perform the
measurements; in this case, ® is referred to as a selection matrix.
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7.2.3 Multipolarization Imaging Using SMV Model

The extension of the SMV model to multiple polarimetric channels is given
in this section. Assume we have L polarimetric channels. The measurement
vector of each channel can be represented as

y;=Dix;, (i=1,...,0L), (7.13)

where
D; = o;¥
x; is a column vector containing the image of the ith polarimetric channel
arranged in a lexicographical ordering

Here, without loss of generality, we assume all polarimetric channels have
the same steering matrix ¥. The SMV model given in Equation 7.12 can be
applied to each polarization channel separately. Alternatively, the problem
can be formulated as a single SMV model comprising all the channels. Let

) T 3 T .
y=[yl,....y]] and x=[xI,...,x]]" denote the composite measurement

and image vectors, respectively. The corresponding composite dictionary D
is obtained by arranging the individual channel dictionaries D; (i = 1,...,L)
along the main diagonal and setting the off-diagonal elements to zero:

D; 0 O
D=|o9 . o |- (7.14)
0 0 D

The SMV model can now be applied to recover the composite vector x by
solving

min [|X|; subject to || — Dx||> < e. (7.15)

Although the extension of SMV model to multipolarization TWRI is straight-
forward, the drawback is that the recovered vectors x; (i = 1,...,L) are not
guaranteed to have the same sparse support. Furthermore, the SMV model
of (7.15) does not exploit interchannel correlations. Finally, the complexity of
the problem increases with increased size of the matrix D, thereby requiring
larger storage and more computation time to solve the CS problem (7.15). In
the next section, we present a model that exploits the interchannel correla-
tions using a joint sparse representation to enforce the same sparsity support
on the recovered signals.
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7.3 Multipolarization Imaging Using MMV Model

In this section, we present an MMV-based image formation method for mul-
tipolarization TWRL First, a brief description of the multiple measurement
vectors CS model is given in the next section. Then, the multipolarization
TWRI problem is formulated as an inverse MMV problem.

7.3.1 MMV CS Model

The MMV model processes several measurement vectors simultaneously to
produce a sparse matrix solution [10,12]. Consider a matrix of measurements
Y e CR*L, comprising L measurement vectors, and a known dictionary D
containing Q atoms. The MMV model aims to find a sparse matrix X by
solving the following problem [10]:

min Sp(X) subjectto Y = DX, (7.16)

where Sy(X) denotes the sparsity rank of the matrix X, which is the number
of nonzero rows in X. In other words, the aim is to find a sparse matrix
solution whose columns possess the same sparsity profile. Let r; denote
the ith row of the matrix X. Furthermore, let us define a column vector s
whose ith element s; = Ixill, , with p > 2. The sparsity rank of the matrix X is
given by

So (X) = |Isllp, (7.17)

where ||-]|p denotes the zero pseudo-norm or cardinality of the vector
argument.

However, minimizing Sy (X) is NP-hard because an exhaustive enumer-
ation is required in terms of all possible locations of nonzero rows in X.
Therefore, the zero pseudo-norm is usually replaced with the one-norm, ||-||1,
resulting in the following problem:

min S; (X) = [sll; subjectto Y = DX. (7.18)

In [10], the authors proved that minimization of S (X) is equivalent to
minimization of Sy (X) when the sparsity rank of X is sufficiently low.

7.3.2 Joint Image Fusion and Formation Using MMV

For a stepped-frequency TWRI system, the steering matrix W is related to the
bandwidth of the signal and the image size, see Equation 7.8. Since the radar
interrogates the same scene, all polarization channels share the same sensing

© 2015by Taylor & FrancisGroup,LLC
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matrix, thatis, ¥;=W¥ (i=1,...,L). Moreover, we can choose the selection
matrix to be identical for all channels, ®; = ® Vi. This means the same dictio-
nary can be used across all channels, D;=D (i=1,...,L). Substituting D for
D; in (7.13) yields the single channel measurement vector

y,=Dx;, i=1,...,L. (7.19)

Since the vectors x; (i=1,...,L) represent images of the same scene, a final
composite image of the scene can be easily obtained using image fusion
techniques [22]. By contrast, here we propose first to combine the raw
measurement vectors from different polarimetric channels, then perform
image reconstruction based on the fused measurement vector. Specifically,
a composite measurement vector y is defined as a linear combination of the
measurement vectors of different polarimetric channels:

L L
y=) wy,=D) wx =Dx, (7.20)
i=1 i=1

where w;s are positive weights satisfying ZZL: 1 w; =1. Here we employ a cri-
terion based on mutual information (MI) to compute the weights w;. Mutual
information is used to estimate the coherence between two measurement
vectors y; and y;:

I (YirYj) =H(y;) +H <Yj> —-H (Yi/ Yj) . GFE), (7.21)

where
H (y;) is the marginal entropy

H (yi, yj) is the joint entropy

The weights w; (i=1,2,...,L) are computed as

H(y)" = Tl (y,-,yz-) + il (yj, Vil Uksij Yk)

w; =
Z H (Y1/Y2/ e fYL) H (Yi)

, (7.22)

where | (y]-, Vil Uksji yk) is the conditional mutual information. The first term

in the numerator of (7.22) defines the importance of the ith measurement
vector compared with other measurement vectors, whereas the second and
third terms are used to remove the overlapping information in the first term.
The rationale for computing a weighted-average measurement vector is to
have a sparse solution that represents the final output image with better
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signal-to-noise ratio. It is relatively simple to show that for additive i.i.d.*
measurement noise, the weighted linear combination (7.20) reduces the noise
variance in y, compared with the noise variance in y;.

Since the radar images the same scene, it is reasonable to assume that
the images of the L polarimetric channels share the same sparse support
but may have different nonzero coefficients. Therefore, using an augmented
measurement matrix Y= [yy,...,y;,¥], we can simultaneously reconstruct

the vectors x; and the composite vector X = Z%:l w;x;, using the MMV model
of Equation 7.18. However, in general, the measurements are corrupted by
noise; therefore, we replace the MMV problem (7.18) with the following
mixed-norm regularized least-squares problem:

min ||X]|12 subjectto ||Y —DX]|r <, (7.23)

where
[I]]1,2 denotes the mixed (1,2)-norm, which is the sum of the Euclidean
norms of the rows of X
[|-||g is the Frobenius norm
€ is an upper bound on the noise level

The resulting solution matrix X contains in its first L columns the images cor-
responding to the individual polarimetric channels, and in the last column
the image corresponding to the composite measurement vector. Conse-
quently, this approach may be viewed as performing joint image fusion and
image formation.

7.4 Experimental Results

In this section, the proposed MMV-based method for multipolarization
TWRI is evaluated on both synthetic and real radar data. For comparison,
DS beamforming and the SMV model are implemented and tested. The effec-
tiveness of the proposed method is tested in terms of the number of selected
measurements and the signal-to-noise ratio of the received signals. To evalu-
ate different image formation algorithms, the target-to-clutter ratio (TCR) is
used as a performance measure:

1/Np quB |x11|2
1/Ne quC |x‘7|2

TCR = 10log ) (7.24)

* Independent and identically distributed.

© 2015by Taylor & FrancisGroup,LLC



Downloaded by [University of Wollongong] at 21:47 06 July 2015

Compressive Sensing for Multipolarization TWRI 241

where
xq represents the gth pixel from the image
B and C denote the target and clutter regions
Np and N¢ are the number of pixels in the regions B and C, respectively

7.4.1 Experimental Results Using Synthetic Data

In this section, experiments are conducted using synthetic data. The simu-
lated TWRI system is a monostatic synthetic aperture radar consisting of 71
transceivers with an aperture of 2.0 m. The stepped-frequency signal covers
a 2 GHz bandwidth, ranging from 1 to 3 GHz, with a 5 MHz frequency step.
Thus, the radar system transmits and receives 28,471 (71 x 401) monochro-
matic signals. The imaged scene is situated behind a wall of thickness 0.15 cm
and a dielectric constant €, =7.5. It covers an area of 5.0 m x 5.0 m, that is,
5.0 m wide and 5.0 m deep. The scene is partitioned into 128 x 128 pix-
els along the crossrange and downrange directions. Three point targets are
placed behind the wall at coordinates (—1.5, 4)m, (0, 1.5)m, and (1.5, 3)m.
Here, we assume the scattering matrix is symmetric, hence only three polar-
ization channels are considered: HH, VV, and HV. Figure 7.1 illustrates
the images reconstructed from the three polarimetric channels using DS

g g

[ )

) o

5 =

g g

c c

2 3

5 5

[a)] [a)

-2 -1 0 1 2 -2 -1 0 1 2
(a) Crossrange (m) (b) Crossrange (m)
0
E 4 :’ -10
& 3 -20
=
[
§ 2 n -30
21 ?:# -40
"
0 =50
-2 -1 0 1 2

(c) Crossrange (m)

FIGURE 7.1
DS beamforming with full measurement set. The targets are simulated with different reflection
coefficients at different polarization. (a) HH image, (b) HV image, and (c) VV image.
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FIGURE 7.2

Images formed with 5% measurements using SMV model of Equation 7.15. (a) HH image,
(b) HV image, (c) VV image, and (d) Composite image.

beamforming with the full set of measurements. As can be observed, the
formed images contain many large sidelobes around the targets.

Next, CS-based algorithms are employed to reconstruct the image of the
scene using 5% of the full measurement set. Figure 7.2 illustrates the images
formed by the SMV model given in Equation 7.15; the image displayed in
Figure 7.2d is obtained from the composite measurement vector of the three
channels, given by Equation 7.20. Clearly, the images in Figure 7.2 do not
share the same support, and some images fail to detect all targets. One pos-
sible reason is that the SMV model does not exploit interchannel correlations
and does not impose the same sparsity profile on the reconstructed images.
By contrast, Figure 7.3 depicts the images formed by the proposed MMV
model given in Equation 7.23. These images share the same support, the
targets are clearly visible, and the clutter is significantly reduced.

To further assess the effectiveness of the CS-based methods, the MMV
and SMV models are tested on measurements corrupted by noise. Various
scenarios are considered by varying the SNR and the number of measure-
ment used to reconstruct the image of the scene. Each experiment is repeated
20 times, and the average TCR is recorded as a measure of performance.
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FIGURE 7.3

Images formed with 5% measurements using MMV model of Equation 7.23. (a) HH image,
(b) HV image, (c) VV image, and (d) Composite image.

The TCR is computed from the final output images obtained from the
composite measurement vector y (see Figures 7.2d and 7.3d). Figure 7.4 illus-
trates the average TCR as a function of the number of measurements for
different SNR values. As expected, increasing the percentage of measure-
ments improves the quality of the reconstructed image for both SMV and
MMYV; however, MMV-based method achieves consistently higher TCR than
does its SMV-based counterpart.

7.4.2 Experimental Results Using Real Data

Real radar data were collected at the Radar Imaging Lab of the Center for
Advanced Communications, Villanova University, PA, USA. An Agilent net-
work analyzer, model ENA-5071B with an operation frequency range of
300 kHz to 8.5 GHz, was used to generate a stepped-frequency signal in
the range [0.7, 3] GHz with a frequency step of 2.875 MHz. A 57-element
array was synthesized by mounting a horn antenna, model ETS-Lindgren
3164-04, with an operational bandwidth of 0.7-6 GHz on a scanner and mov-
ing the scanner horizontally at an interspacing of 0.022 m. A room of size
7.62 x 7.62 m was padded with radio frequency-absorbing material for data
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FIGURE 7.4

Average TCR as a function of number of measurements. The measurements are corrupted by
additive white Gaussian noise with different SNR values. (a) SMV and (b) MMV.

collection; the interested reader is referred to [14] for more details about
the room setting, the data acquisition, and the specification of the imaging
system. The TWRI system was used to interrogate a scene populated with
three targets placed at different locations behind a concrete wall of thick-
ness 0.14 m and dielectric constant 7.6632. Figure 7.5a shows an image of
the real scene with the three targets: a dihedral, a sphere, and a trihedral.
Figure 7.5b presents a schematic diagram of the imaged scene depicting the
target locations in the downrange—crossrange plane. The total number of col-
lected measurement samples is 45,657 (801 frequencies x 57 antennas). The
region of interest behind the wall is set to 4m x 4m, and the pixel size is
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FIGURE 7.5
(a) A real scene populated with three targets: a dihedral, a sphere, and a trihedral. (b) Schematic
diagram of a horizontal cross section of the imaged scene.
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set to 3.125cm x 3.125 cm, resulting in an image of size 128 x 128 pixels. The
received signals are preprocessed by removing the strong wall returns, using
background subtraction, and the common signal at each antenna location. If
the background signal is not available, then the strong wall returns can be
mitigated using wall parameter estimation techniques that do not require
the full measurement set [25].

The received signals from each polarization channel are first processed
using DS beamforming to form three images. Figure 7.6 depicts the recon-
structed images using the full measurement set. All images contain sig-
nificant amount of clutter, but the targets are visible in the images of the
copolarized channels, HH and VV. Figure 7.7 presents the images obtained
from 15% of the measurements, selected randomly from the full measure-
ment set. Clearly, the level of clutter increases in all images as the number of
measurements is reduced.

In the remaining experiments, the CS methods are tested on reduced
measurements from real data. Figure 7.8 depicts the images generated by
the SMV model using 15% of the measurements. We can observe that some
targets are missing from the single polarization images, and the composite
image in Figure 7.8d contains a high level of clutter. In contrast, Figure 7.9
illustrates the images produced by the proposed MMV method, where all
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FIGURE 7.6
Reconstructed images using DS beamforming with full measurements. (a) HH image, (b) HV
image, and (c) VV image.
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FIGURE 7.7

Reconstructed images using DS beamforming with 15% measurements. (a) HH image, (b) HV
image, and (c) VV image.

images display the targets correctly and the level of clutter is much reduced
compared with the amount of clutter in the SMV generated images. Table 7.1
lists the TCR of the reconstructed composite images for different measure-
ment percentages using DS beamforming and SMV and MMV models.
Again, the quality of the reconstructed image improves as the number of
measurements increases, but the MMV approach always yields a higher TCR
than DS beamforming and SMV model. These experimental results confirm
the superiority of the proposed image formation approach.

7.5 Conclusion

This chapter presented an image formation approach for multipolarization
TWRI based on the multiple measurement vectors model of compressed
sensing. In the MMV model, the measurement vectors obtained from
different polarimetric channels are arranged into columns of a measure-
ment matrix, which is then used to recover a sparse matrix solution whose
columns constitute the images of different polarimetric channels. This is in
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FIGURE 7.8

Reconstructed images using SMV approach with 15% measurements. (a) HH image, (b) HV
image, (c) VV image, and (d) Composite image.

contrast to the single measurement vector model, where each measurement
vector is processed independently or, alternatively, all measurements are
concatenated into a single measurement vector. Notwithstanding the dif-
ferences in target reflectivity at different polarizations, the reconstructed
channel images should ideally have the same sparsity support since they
represent the same scene. The MMV model enforces the same support on
all columns of the solution matrix by exploiting the interchannel correlations
between the different measurement vectors. Furthermore, in the proposed
approach, all channel measurement vectors are combined together to form a
composite vector, which is used to reconstruct a fused image of the scene.
Therefore, the proposed method can be viewed as a joint image forma-
tion and fusion approach. Experimental evaluation was conducted using
synthetic and real data. The performance of the proposed approach was
compared with that of the single measurement vector CS model and the
traditional DS beamforming. Experimental results prove that the proposed
approach reconstructs images with higher target-to-clutter ratio than does
SMYV or DS beamforming. In particular, the MMV images tend to have much
less clutter and share the same support.
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FIGURE 7.9
(See color insert.) Reconstructed images using MMV approach with 15% measurements. (a) HH
image, (b) HV image, (c) VV image, and (d) composite image.

TABLE 7.1

TCR of Reconstructed Composite Images Using
DS Beamforming, SMV, and MMV Models

% Measurements 5% 10% 15%
DS (dB) 52 6.7 7.9
SMV (dB) 39.9 41.6 47.5
MMV (dB) 447 46.4 50.6
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