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Abstract—In a traditional signal processing system sampling 

is carried out at a frequency which is at least twice the highest 

frequency component found in the signal. This is in order to 

guarantee that complete signal recovery is later on possible. 

The sampled signal can subsequently be subjected to  further 

processing leading to, for example, encryption and 

compression. This processing can be computationally intensive 

and, in the case of battery operated systems, unpractically 

power hungry. Compressive sensing has recently emerged as a 

new signal sampling paradigm   gaining huge attention from 

the research community. According to this theory it can 

potentially  be possible to sample  certain signals at a lower 

than Nyquist rate without jeopardizing signal recovery. In 

practical terms this may provide multi-pronged solutions to 

reduce some systems computational complexity. In this work, 

information theoretic analysis of real EEG signals is presented 

that shows the additional benefits of compressive sensing  in 

preserving data privacy. Through this it can then be 

established generally that compressive sensing not only 

compresses but also secures while sampling. 

 
Keywords: Compressive Sensing, Data Security, Encryption, 

Privacy Preservation, Power efficient, Wireless Systems, EEG. 

I. INTRODUCTION 

uaranteeing data  security and privacy are extremely 

crucial issues in most engineering systems and 

processes dealing with  personal data. Under the UK Data 

Protection Act 1998 [1], records which contain physical or 

mental health information of a person such as clinical notes, 

laboratory reports, radiographs, imaging records, monitoring 

equipment outputs etc., are generally held under legal and 

ethical obligations of confidentiality [2].  

In general, transmission of data over non-secure 

channels, such as wireless links, poses major risks to data 

security. Therefore, when designing portable wireless health 

monitoring devices confidentiality and security aspects 

should be given considerable attention. One of the methods 

for securing sensitive data is through encryption [3]. 

Unfortunately though, this is a computationally intensive 

process, which in the case of portable embedded systems can 

have significant impact in their battery life.   
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Compressive sensing has recently emerged as a new 

signal sampling paradigm. It is based on randomly sampling 

certain signals which meet a series of criteria to effectively 

achieve a sub-Nyquist sampling rate. From a wireless 

portable system perspective this can lead to advantages in 

terms of data rate and potentially power consumption [4].  

This paper explores a further potential benefit of 

compressive sensing: its inherent capability to provide a 

certain level of security in the compressed data, without 

adding any extra computational cost. The paper explores the 

privacy preservation properties of compressive sensing when 

applied to scalp electroencephalography (EEG) brainwave 

signals. The relevance of using compressive sensing in these 

signals is double: On one hand it has been previously 

reported in [5] that EEG signals meet the necessary 

requirements to ensure reconstruction after compression 

when projected in certain basis. Hence compressive sensing 

appears as a very attractive technique to reduce the power 

consumption and thus the size of future miniaturized EEG 

systems, which could be used in a variety of applications 

ranging from long term medical monitoring [6] to brain 

computer interfaces [7]. On the other hand, advances on 

brainwave interpretation research could lead to situations in 

the future in which sensitive personal information, not only 

of medical nature, could potentially be extracted from them. 

This would make privacy preservation even more of an 

important issue in the design of the whole EEG system.  

The paper starts with a brief introduction to the 

compressive sensing theory. Since compressive sensing 

inherently involves a randomization process  its performance 

is compared to two randomization techniques commonly 

used in data mining for privacy preservation. These 

techniques are presented in Section III together with a brief 

discussion of some of their potential problems. This is 

followed in Section IV by a description of the metric that 

will subsequently be used to evaluate performance. Section 

V presents the quantitative comparison including results for 

additive and multiplicative randomization (both  of them 

used in data mining although known to be not very strong in 

terms of privacy preservation); AES encryption (a widely 

used symmetric block cipher); and compressive sensing.  

Finally Section VI presents some of the conclusions that can 

be extracted from this work.   

II. COMPRESSIVE SENSING 

The concept of compressive sensing [8] is based on the 

fact that there is a difference between the rate of change of a 
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signal and the rate of information in the signal. Traditional 

Nyquist sampling, putting the signal into the digital domain 

ready for wireless transmission, is based on the former. The 

Nyquist theorem states that it is necessary to sample the 

signal at a rate at least twice the maximum rate of change 

present. A conventional compression algorithm would then 

be applied to all of these samples taken to remove any 

redundancy present, giving a reduced number of bits that 

represent the signal. 

In contrast, compressive sensing exploits the 

information rate within a particular signal. Redundancy in 

the signal is removed during the sampling process itself, 

leading to a lower effective sampling rate. Provided certain 

conditions are satisfied [9], sampling at a sub-Nyquist rate 

the signal can still be accurately recovered.  

To illustrate this, consider an EEG signal of interest x 

which is a vector of N digital samples; i.e. x[n] where n =1, 

2 … N. Then assume that this signal can be represented by a 

projection onto a different basis set: 
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(1) 

 

where s is a N×1 basis function vector and � is a N×N basis 

matrix. The matrix s can be calculated from the inner 

product of x and �: 

 �� � ����	� (2) 

 

For example, if � is the Fourier basis set of complex 

exponential functions, s is the Fourier transform of x and 

both s and x represent the signal equivalently, but in 

different domains. In compressive sensing � is chosen so 

that s is sparse – a vector is K-sparse if it has K non-zero 

entries and the remaining N–K entries are all zero. s is thus a 

more compact representation of the signal than the original 

x. Similar to this projection, assume that x can be related to 

another signal y: 

 � � � (3) 

 

where y is a M×1 vector and � is a matrix of dimensions 

M×N where M<N. Thus: 

 � � ��� (4) 

 

Provided that � is correctly chosen so that no significant 

information is lost during the reduction in dimensionality, it 

is possible to use � to sample the sparse signal s, rather than 

the original signal x to give an output vector y which has 

only M entries  rather than the original N. If M<N data 

compression is thus achieved, and the signal y would be 

transmitted from the portable EEG unit. It can be shown [9] 

that this technique is possible if � and � are incoherent; that 

is if the elements of � and � have low correlation.  

Given a compressed measurement y at the receiver, the 

signal x can be reconstructed by solving the L1 problem: 
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which finds the vector s with the lowest L1 norm that 

satisfies the observations made. This is then easily converted 

back into x. In general, the L1 minimization problem is non-

trivial and computationally complex, but there is no need for 

this to run online in the portable EEG unit. The EEG signal x 

will be sampled as signal y, and these samples wirelessly 

transmitted to a base station which will then regenerate x 

from y offline. The fact that compressive sensing based data 

compression has all of its computational complexity in the 

backend, where power and size constraints are not as 

stringent is a major factor motivating this work. 

 

III. PRESERVING PRIVACY THROUGH RANDOMIZATION 

In principle, privacy preservation through random 

perturbation is achieved through modification of data values 

in a random style after which the original data should remain 

recoverable at its legitimate destination. Based on this, there 

are different methods to modify the signal original values. 

An example could be the value distortion method  [10] in 

which the original data xi is distorted to: 

 �� & ' (6) 

 

where z is an arbitrary function. Similarly, in case of 

multiplicative distortion, the original data xi is distorted to: 

 �� ( ' (7) 

 

Uniform and Gaussian distributions with mean 0  have been 

considered for z , out of which the latter has been proven to 

provide considerably higher privacy at superior confidence 

levels [10]. Unfortunately, although these methods can help, 

randomization can also be easily removed using different 

signal processing techniques such as probabilistic analysis.  

In [11] it has been shown that random-data distortion 

preserves little data privacy. Characteristics of random 

processes can easily be revealed, especially when the 

original data has some definite trend, which may lead to 

privacy breach. An advantage of compressive sensing versus 

these techniques is that the original signal does not only 

undergo multiplicative matrix based randomization but 

dimensionality reduction as well. Hence, if compressive 

sensing is performed appropriately- by, for example, 

choosing a Gaussian random measurement matrix in the 

measurement vector- the data will exhibit almost no definite 

trend. 

 Visualization of the level of randomization achieved 

through Compressive Sensing is presented in Fig. 1. These 

plots demonstrate that once the data is compressively sensed 

it changes completely, not only in time but frequency 

domain as well.  
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Fig. 1. (a)  Original EEG Data (b) Compressively  sensed  for transmission 

(c, d) Corresponding Welch Spectrums 

  

IV. MEASURE OF PRIVACY 

Many methods have been proposed in the literature to 

measure the level of privacy. The one used in this paper was 

proposed in [12] and is based on Shannon's information 

theory [13].  The level of privacy is quantified measuring the 

similarity between the original and the modified signals, 

through a metric called mutual information, which is 

analytically defined as: 

 

)*+, -. � ��/*0� 1.2�3* /*0� 1.
/*0./*1..456758


 (8) 

 

where A and B represent the two signals; ),( bap is their 

joint probability function; and )(ap , )(bp  are their 

respective marginal probability density functions. 

Since the mutual information measures common 

information between A and B, if these two variables were 

fully independent their joint probability density would be 

equal to the product of their marginal probability density 

functions, i.e. 

 /*0� 1. � /*0. ( /*1. (9) 

 

and 
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This would imply that 0);( =BAI and hence there is 

nothing in common between A and B. In general, even if 

zero cannot be achieved the closer the mutual information is 

to this value, the higher the level of privacy provided by the 

encryption technique. 

V. ANALYSIS AND RESULTS 

Mutual information was calculated following the 

methods described in [14], some of which were previously 

also used on human and animal EEG signals [15, 16]. Three 

different sets of 21 channel EEG data with 5 minutes per 

channel were used for comparison. Four different privacy 

preservation methods were compared: (i) additive 

randomization, (ii) multiplicative randomization (iii) 

Advanced Encryption Standard (AES) algorithm [17] and 

(iv) compressive sensing. For the AES method, the EEG 

data was formatted, and then encrypted using AES toolbox 

[18]. Mutual information was then estimated between the 

formatted unencrypted and encrypted data. 

The estimated mutual information for all four cases is 

shown in Fig. 2. The average of the estimated mutual 

information over all 21 channels and respective variances 

have been summarized in Table 1. Since this study was 

focused on privacy preservation as opposed to signal 

compression an N×N measurement matrix was used for 

compressive sensing. Note, that any reduction of 

dimensionality leading to compression could only lead to an 

improvement on the results presented here.  

 

 

Table 1 
COMPARISON OF (I) ADDITIVE, (II) MULTIPLICATIVE (III) AES 

ENCRYPTED AND (IV) COMPRESSIVE SENSING BASED DATA 

RANDOMIZATIONS OF REAL EEG DATA 

EEG CHANNELS: C3, C4, CZ, F3, F4, F7, F8, FP1, FP2, FZ, O1, O2 , 

P3, P4, PG1, PG2, PZ, T3, T4, T5, T6 

MUTUAL INFORMATION (Nats) 

Subject 1 

  Additive Multiplicative AES CS 

Average 1.474 0.19 0.008 0.069 

Variance 1.278 0.034 0 0.001 

Subject 2 

  Additive Multiplicative AES CS 

Average 0.937 0.093 0.014 0.08 

Variance 0.309 0.007 0 0.001 

Subject 3 

  Additive Multiplicative AES CS 

Average 1.273 0.141 0.01 0.101 

Variance 0.097 0.003 0 0.001 
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Fig. 2. Level of Privacy Comparison of (i) Additive, (ii) Multiplicative (iii) 

Measurement Matrix(CS based) Randomizations and (iv) AES Encrypted 

EEG data 
 

 

From the results in Table 1 it can be seen that the 

privacy achieved through compressive sensing based data 

randomization is significantly closer to AES encryption than 

to additive and multiplicative randomization. The original 

and compressively sensed measurement vectors render 

almost complete statistical independence hence providing 

high levels of data privacy. 

VI. DISCUSSION AND CONCLUSIONS 

In compressive sensing the original data is not only 

multiplicatively randomized. A dimension reduction is also 

achieved through setting appropriate dimensions of the 

random measurement matrix. This inherent multi-

dimensional projection perturbation feature makes it harder 

to breach the privacy as the information related to the level 

of dimension reduction is not transmitted over the 

intermediary non-secure transmission link. All these features 

of compressive sensing not only help in achieving 

compression, but random encryption while sampling too. 

In this work, secrecy properties of compressive sensing 

for noisy and compressible signals have been explored. 

Further future analysis could be carried out looking at  the 

levels of privacy achievable in case of jointly sparse signals. 

Besides, the manner in which compressive sensing is used in 

a specific application/system is crucial for the level of data 

security achievable. If the random measurement matrix can 

be generated more often instead of just using one random 

measurement matrix the system’s privacy could be 

enhanced. However, this would be at the expense of 

increased computational costs. An appropriate tradeoff  

between security and implementation cost should be found 

taking into account application specific variations to fully 

exploit the characteristics of  compressive sensing. Research 

in this arena can change the way people perceive 

compressive sensing today, viz. "Compressing while 

Sampling" to "Compressing and Securing while sampling". 
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