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Compressive sensing has emerged as an area that opens new perspectives in signal acquisition and processing. It appears as
an alternative to the traditional sampling theory, endeavoring to reduce the required number of samples for successful signal
reconstruction. In practice, compressive sensing aims to provide saving in sensing resources, transmission, and storage capacities
and to facilitate signal processing in the circumstances when certain data are unavailable. To that end, compressive sensing relies
on the mathematical algorithms solving the problem of data reconstruction from a greatly reduced number of measurements by
exploring the properties of sparsity and incoherence.�erefore, this concept includes the optimization procedures aiming to provide
the sparsest solution in a suitable representation domain. �is work, therefore, o�ers a survey of the compressive sensing idea and
prerequisites, together with the commonly used reconstruction methods. Moreover, the compressive sensing problem formulation
is considered in signal processing applications assuming some of the commonly used transformation domains, namely, the Fourier
transform domain, the polynomial Fourier transform domain, Hermite transform domain, and combined time-frequency domain.

1. Introduction

�e fundamental approach for signal reconstruction from its
measurements is de	ned by the Shannon-Nyquist sampling
theorem stating that the sampling rate needs to be at least
twice the maximal signal frequency. In the discrete case, the
number of measurements should be at least equal to the
signal length in order to be exactly reconstructed. However,
this approach may require large storage space, signi	cant
sensing time, heavy power consumption, and large number of
sensors. Compressive sensing (CS) is a novel theory that goes
beyond the traditional approach [1–4]. It shows that a sparse
signal can be reconstructed from much fewer incoherent
measurements. �e basic assumption in CS approach is
that most of the signals in real applications have a concise
representation in a certain transform domain where only
few of them are signi	cant, while the rest are zero or
negligible [5–7].�is requirement is de	ned as signal sparsity.

Another important requirement is the incoherent nature
of measurements (observations) in the signal acquisition
domain. �erefore, the main objective of CS is to provide an
estimate of the original signal from a small number of linear
incoherent measurements by exploiting the sparsity property
[3, 4].

�e CS theory covers not only the signal acquisition
strategy, but also the signal reconstruction possibilities and
di�erent algorithms [8–17]. Several approaches for CS signal
reconstruction have been developed andmost of thembelong
to one of three main approaches: convex optimizations [8–
11] such as basis pursuit, Dantzig selector, and gradient-based
algorithms; greedy algorithms like matching pursuit [14] and
orthogonal matching pursuit [15]; and hybrid methods such
as compressive sampling matching pursuit [16] and stage-
wise OMP [17]. When comparing these algorithms, convex
programming provides the best reconstruction accuracy, but
at the cost of high computational complexity. �e greedy
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algorithms bring about low computation complexity, while
the hybrid methods try to provide a compromise between
these two requirements [18].

�e proposed work provides a survey of the general
compressive sensing concept supplemented with the several
existing approaches and methods for signal reconstruction,
which are brie�y explained and summarized in the form
of algorithms with the aim of providing the readers with
an easier and practical insight into the state of the art in
this 	eld. Apart from the standard CS algorithms, a few
recent solutions have been included as well. Furthermore,
the paper provides an overview of di�erent sparsity domains
and the possibilities of employing them in the CS problem
formulation. Additional contribution is provided through the
examples showing the e�ciency of the presented methods in
practical applications.

�e paper is organized as follows. In Section 2, a brief
review of the general compressive sensing idea is provided
together with the conditions for successful signal recon-
struction from reduced set of measurements and the signal
recovery formulations using minimization approaches. In
Section 3, the commonly used CS algorithms are reviewed.
�e commonly used domains for CS strategy implementation
are given in Section 4, while some of the examples in
real applications are provided in Section 5. �e concluding
remarks are given in Section 6.

2. Compressive Sensing: A General Overview

2.1. Sparsity and Compressibility. Reducing the sampling rate
using CS is possible for the case of sparse signals that can be
represented by a small number of signi	cant coe�cients in
an appropriate transform basis. A signal having K nonzero
coe�cients is called �-sparse. Assume that signal � exhibits
sparsity in certain orthonormal basis Ψ de	ned by the basis
vectors {�1, �2, . . . , ��}.�e signal � can be represented using
its sparse transform domain vector x as follows:

� (�) = �∑
�=1

���� (�) . (1)

In matrix notation, the previous relation can be written as

s = Ψx. (2)

Commonly, the sparsity is measured using the ℓ0-norm,
which represents the cardinality of the support of x:

‖x‖0 = card {supp (x)} = �. (3)

In real applications, the signals are usually not strictly sparse
but only approximately sparse. �erefore, instead of being
sparse, these signals are o�en called compressible, meaning
that the amplitudes of coe�cients decrease rapidly when
arranged in descending order. For instance, if we consider
coe�cients |�1| ≥ |�2| ≥ ⋅ ⋅ ⋅ ≥ |��|, then the magnitude
decays with a power law if there exist constants �1 and � > 0
satisfying [19]

���������� ≤ �1�−�, (4)

where larger � means faster decay and consequently more
compressible signal. �e signal compressibility can be quan-
ti	ed using the minimal error between the original and spar-
si	ed signal (obtained by keeping only� largest coe�cients):

�� (x)� = min
����x − x�

����� . (5)

2.2. Conditions on the CS Matrix: Null Space Property,
Restricted Isometry Property, and Incoherence. Instead of
acquiring a full set of signal samples of length �, in CS
scenario, we deal with a quite reduced set of measurements
y of length �, where � < �. �e measurement procedure
can be modeled by projections of the signal s onto vectors{�1, �2, . . . , ��} constituting the measurement matrixΦ:

y = Φs. (6)

Using the sparse transform domain representation of vector
s given by (2), we have

y = ΦΨx = Ax, (7)

where A will be referred to as CS matrix.
In order to de	ne some requirements for the CS matrix

A, which are important for successful signal reconstruction,
let us introduce the null space of matrix.�e null space of CS
matrix A contains all vectors x that are mapped to 0:

N (A) = {x : Ax = 0} . (8)

In order to provide a unique solution, it is necessary to
provide the notion that two K-sparse vectors x and x	 do not
result in the same measurement vector. In other words, their
di�erence should not be part of the null space of CS matrix
A:

A (x − x
	) ̸= 0. (9)

Since the di�erence between two K-sparse vectors is at most
2K-sparse, then aK-sparse vector x is uniquely de	ned if null
space of A contains no 2K-sparse vectors. �is corresponds
to the condition that any 2K columns of A are linearly
independent; that is,

spark (A) > 2�, (10)

and since spark(A) ∈ [2,�+ 1], we obtain a lower bound on
the number of measurements:

� > 2�. (11)

In the case of strictly sparse signals, the spark can provide
reliable information about the exact reconstruction possi-
bility. However, in the case of approximately sparse signals,
this condition is not su�cient and does not guarantee stable
recovery. Hence, there is another property called null space
property that measures the concentration of the null space
of matrix A. �e null space property is satis	ed if there is a
constant � ∈ (0, 1) such that [19]

����a
����1 = � ����aSc����1 ∀a ∈ N (A) , (12)
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for all sets � ⊂ {1, . . . , �} with cardinality K and their
complements Sc = {1, . . . , �} \ �. If the null space property
is satis	ed, then a strictly �-sparse signal can be perfectly
reconstructed by using ℓ1-minimization. For approximately�-sparse signals, an upper bound of the ℓ1-minimization
error can be de	ned as follows [20]:

‖x − x̂‖1 ≤ 21 + �
1 − ��� (x)1 , (13)

where ��(x)1 is de	ned in (5) for ! = 1 as the minimal error
induced by the best �-sparse approximation.

�e null space property is necessary and su�cient for
establishing guarantees for recovery. A stronger condition is
required in the presence of noise (and approximately sparse
signals). Hence, in [8], the restricted isometry property (RIP)
of CSmatrixA has been introduced.�eCSmatrixA satis	es
the RIP property with constant "� ∈ (0, 1) if

(1 − "�) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + "�) ‖x‖22 , (14)

for every�-sparse vector x.�is property shows howwell the
distances are preserved by a certain linear transformation.We
might now say that if the RIP is satis	ed for 2K with "2� < 1,
then there are no two K-sparse vectors x that can correspond
to the same measurement vector y.

Finally, the incoherence condition mentioned before,
which is also related to the RIP of matrix A, refers to the
incoherence of the projection basis Φ and the sparsifying
basisΨ.�emutual coherence can be simply de	ned by using
the combined CS matrix A as follows [21]:

% (A) = max
� ̸=�,1≤�,�≤�

������������
⟨' �, '�⟩����' �����2 �����'������2

������������
. (15)

�e mutual coherence is related to the restricted isometry
constant using the following bound [22]:

"� = (� − 1) %. (16)

2.3. Signal Recovery Using Minimization Approach. �e sig-
nal recovery problem is de	ned as the reconstruction of
vector x from the measurements y = Ax. �is problem can
be generally seen as a problemof solving an underdetermined
set of linear equations. However, in the circumstances when
x is sparse, the problem can be reduced to the following
minimization:

min ‖x‖0
s.t. y = Ax. (17)

�e ℓ0-minimization requires an exhaustive search over all(�� ) possible sparse combinations, which is computationally
intractable. Hence, the ℓ0-minimization is replaced by convexℓ1-minimization, which will provide the sparse result with
high probability if the measurement matrix satis	es the
previous conditions.�e ℓ1-minimization problem is de	ned
as follows:

min ‖x‖1
s.t. y = Ax, (18)

and it has been known as the basis pursuit.

In the situation when the measurements are corrupted by
the noise of level e: y = ΦΨx + e = Ax + e and ‖e‖2 ≤ -, the
reconstruction problem can be de	ned in a form:

min ‖x‖1
s.t.

����y − Ax
����2 ≤ -, (19)

called basis pursuit denoising. �e error bound for the
solution of (19), where A satis	es the RIP of order 2� with"2� < √2 − 1 and y = Ax + e, is given by

‖x − x̂‖2 ≤ �0�� (x)1 + �12-√1 + 2"2�, (20)

where the constants �0 and �1 are de	ned as [19]

�0 = 21 − (1 − √2) "2�
1 − (1 + √2) "2� ,

�1 = 2 1
1 − (1 + √2) "2� .

(21)

For a particular regularization parameter 4 > 0, the
minimization problem (19) can be de	ned using the uncon-
strained version as follows:

min�
1
2 ����y − Ax

����22 + 4 ‖x‖1 , (22)

which is known as the Lagrangian form of the basis pursuit
denoising. �ese algorithms are commonly solved using
primal-dual interior-point methods [22].

Another form of basis pursuit denoising is solved using
the least absolute shrinkage and selection operator (LASSO),
and it is de	ned as follows:

min�
1
2 ����y − Ax

����22
s.t. ‖x‖1 < 5,

(23)

where 5 is a nonnegative real parameter. �e convex opti-
mization methods usually require high computational com-
plexity and high numerical precision.

When the noise is unbounded, one may apply the convex
program based on Dantzig selector (it is assumed that the

noise variance is �2 per measurement, i.e., the total variance
is��2):

min ‖x‖1
s.t.

����A∗ (y − Ax)����∞ ≤ √2 log��, (24)

which (for enough measurements) reconstructs a signal with
the error bound:

‖x − x̂‖2 ≤ �√2 log (�)�. (25)

�e norm ℓ∞ is in	nite norm called also supreme (maxi-
mum) norm.
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Input:6Measurement matrix A (of size�×�)6Measurement vector y (of length�)
Output:6 A signal estimate x̂ (of length N)
(1) �̂ = 0, 70 ← y, � = 0
(2) while halting criterion false do
(3) � = � + 1
(4) ?� ← argmax�=1,...,�|⟨r�−1, '�⟩| (max correlation column)

(5) x̂� ← ⟨r�−1, ?�⟩ (new signal estimate)
(6) r̂� ← r�−1 − ?�x̂� (update residual)
(7) end while
(8) return x̂ ← x̂�

Algorithm 1: Matching pursuit.

Besides the ℓ1-norm minimization, there exist some
approaches using the ℓ�-normminimization, with 0 < ! < 1:

min ‖x‖�
s.t.

����y − Ax
����2 ≤ -, (26)

or using ℓ2-normminimization, in which case the solution is
not rigorously sparse enough [23]:

min ‖x‖2
s.t.

����y − Ax
����2 ≤ -. (27)

3. Review of Some Signal
Reconstruction Algorithms

�e ℓ1-minimization problems in CS signal reconstruction
are usually solved using the convex optimization methods.
In addition, there exist greedy methods for sparse signal
recovery which allow faster computation compared to ℓ1-
minimization. Greedy algorithms can be divided into two
major groups: greedy pursuit methods and thresholding-
based methods. In practical applications, the widely used
ones are the orthogonal matching pursuit (OMP) and com-
pressive sampling matching pursuit (CoSaMP) from the
group of greedy pursuit methods, while from the threshold-
ing group the iterative hard thresholding (IHT) is commonly
used due to its simplicity, although it may not be always
e�cient in providing an exact solution. Some of these
algorithms are discussed in detail in this section.

3.1. Matching Pursuit. �e matching pursuit algorithm has
been known for its simplicity and was 	rst introduced in [14].
�is is the 	rst algorithm from the class of iterative greedy
methods that decomposes a signal into a linear set of basis
functions.�rough the iterations, this algorithm chooses in a
greedy manner the basis functions that best match the signal.
Also, in each iteration, the algorithm removes the signal
component having the form of the selected basis function
and obtains the residual. �is procedure is repeated until the

norm of the residual becomes lower than a certain prede	ned
threshold value (halting criterion) (Algorithm 1).

�e matching pursuit algorithm however has a slow con-
vergence property and generally does not provide e�ciently
sparse results.

3.2. Orthogonal Matching Pursuit. �e orthogonal matching
pursuit (OMP) has been introduced [15] as an improved
version to overcome the limitations of the matching pursuit
algorithm. OMP is based on principle of orthogonalization.
It computes the inner product of the residue and the mea-
surement matrix and then selects the index of the maximum
correlation column and extracts this column (in each itera-
tion). �e extracted columns are included into the selected
set of atoms.�en, the OMP performs orthogonal projection
over the subspace of previously selected atoms, providing a
new approximation vector used to update the residual. Here,
the residual is always orthogonal to the columns of the CS
matrix, so there will be no columns selected twice and the
set of selected columns is increased through the iterations.
OMP provides better asymptotic convergence compared to
the previous matching pursuit version (Algorithm 2).

3.3. CoSaMP. Compressive sampling matching pursuit
(CoSaMP) is an extended version of the OMP algorithm
[16].

In each iteration, the residual vector r is correlated with
the columns of the CS matrix A, forming a “proxy signal” z.
�en, the algorithm selects 2� columns of A corresponding
to the 2� largest absolute values of z, where � de	nes the
signal sparsity (number of nonzero components). Namely, all
but the largest 2� elements of z are set to zero and the 2�
support Ω is obtained by 	nding the positions of nonzero
elements. �e indices of the selected columns (2� in total)
are then added to the current estimate of the support of
the unknown vector. A�er solving the least squares, a 3�-
sparse estimate of the unknown vector is obtained. �en, the
3�-sparse vector is pruned to obtain the �-sparse estimate
of the unknown vector (by setting all but the � largest
elements to zero). �us, the estimate of the unknown vector
remains �-sparse and all columns that do not correspond
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Input:6 Transform matrixΨ, Measurement matrixΦ6 CS matrix A: A = ΦΨ6Measurement vector y
Output:6 A signal estimate x̂ ← x�6 An approximation to the measurements y by a�6 A residual r� = y − a�.6 A setΩ� with positions of non-zero elements of x̂.
(1) r0 ← y,Ω0 ← ⌀,Θ0 ← []
(2) for � = 1, . . . , �
(3) ?� ← argmax�=1,...,�|⟨r�−1, '�⟩| (max correlation column)

(4) Ω� ← Ω�−1 ∪ ?� (Update set of indices)
(5)Θ� ← [Θ�−1 '�� ] (Update set of atoms)

(6) x� = argmin
x
‖r�−1 −Θ�x‖22

(7) a� ← Θ�x� (new approximation)
(8) r� ← y − a� (update residual)
(9) end for
(10) return x�, a�, r�,Ω�

Algorithm 2: Orthogonal matching pursuit.

to the true signal components are removed, which is an
improvement over the OMP. Namely, if OMP selects in some
iteration a column that does not correspond to the true signal
component, the index of this column will remain in the 	nal
signal support and cannot be removed (Algorithm 3).

�e CoSaMP can be observed through 	ve crucial steps:

(i) Identi�cation (Line 5). It 	nds the largest 2s compo-
nents of the signal proxy.

(ii) Support Merge (Line 6). It merges the support of the
signal proxy with the support of the solution from the
previous iteration.

(iii) Estimation (Line 7). It estimates a solution via least
squares where the solution lies within a support T.

(iv) Pruning (Line 8). It takes the solution estimate and
compresses it to the required support.

(v) Sample Update (Line 9). It updates the “sample,”
meaning the residual as the part of signal that has not
been approximated.

3.4. Iterative Hard resholding Algorithm. Another group
of algorithms for signal reconstruction from a small set of
measurements is based on iterative thresholding. Generally,
these algorithms are composed of two main steps. �e 	rst
one is the optimization of the least squares term, which
is done by solving the optimization problem without ℓ1-
minimization.�e other one is the decreasing of the ℓ1-norm,
which is done by applying the thresholding operator to the
magnitude of entries in x. In each iteration, the sparse vector
x� is estimated by the previous version x�−1 using negative
gradient of the objective function de	ned as

J (x) = 1
2 ����y − Ax

����22 , (28)

while the negative gradient is then

−∇J (x) = A
� (y − Ax) . (29)

Generally, the obtained estimate x� is sparse, and we need
to set all but the K largest components to zero using the
thresholding operator. Here, we distinguish two types of
thresholding. Hard thresholding [24, 25] sets all but the K
largest magnitude values to zero, where the thresholding
operator can be written as

L� (x) = {{{
x (P) , for |x (P)| > Q
0, otherwise, (30)

where Q is the K largest component of x. �e algorithm is
summarized in Algorithm 4.

�e stopping criterion for IHT can be a 	xed number of
iterations or the algorithm terminates when the sparse vector
does not change much between consecutive iterations.

�e so�-thresholding function can be de	ned as

�� (x (P)) =
{{{{{{{{{

x (P) − 5, x > 5
0, |x (P)| < 5
x (P) + 5, x < −5

(31)

and it is applied to each element of x.

3.5. Iterative So� resholding for Solving LASSO. Let us
consider the minimization of the function:

J (x) = ����y − Ax
����2 + 4 ‖x‖1 , (32)

as given by the LASSOminimization problem (22).One of the
algorithms that has been used for solving (32) is the iterated
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Input:6 Transform matrixΨ, Measurement matrixΦ6 CS matrix A: A = ΦΨ6Measurement vector y6 K being the signal sparsity6Halting criterion
Output:6 �-sparse approximation x̂ of the target signal
(1) x0 ← 0, r ← y, � ← 0
(2) while halting condition false do
(3) � ← � + 1
(4) z ← A∗r (signal proxy)

(5)Ω ← supp(z2�) (support of best 2K-sparse approximation)
(6) S ← Ω ∪ supp(x�−1) (merge supports)
(7) x = argmin

x̃:supp(x̃)=�‖Ax̃ − y‖22 (solve least squares)

(8) x� ← x� (Prune: best �-sparse approximation)
(9) r ← y − Ax� (update current sample)
(10) end while
(11) x̂ ← x�
(12) return x̂

Algorithm 3: CoSaMP.

Input:6 Transform matrixΨ, Measurement matrixΦ6 CS matrix A: A = ΦΨ6Measurement vector y6 K being the signal sparsity
Output:6 �-sparse approximation x̂
(1) x0 ← 0
(2) while stopping criterion do
(3) � ← � + 1
(4) x� ← L�(x�−1 + A�(y − Ax�−1))
(5) end while
(6) x̂ ← x�
(7) return x̂

Algorithm 4: Iterative hard thresholding.

so�-thresholding algorithm (ISTA), also called the thresh-
olded Landweber algorithm. In order to provide an iterative
procedure for solving the considered minimization problem,
we use the minimization-maximization [26] approach to
minimize J(x). Hence, we should create a function U�(x)
that is equal to J(x) at x�; otherwise, it upper-bounds J(x).
Minimizing a majorizer U�(x) is easier and avoids solving a
system of equations. Hence [27],

U� (x) = J (x) + nonnegative function of x,
U� (x) = J (x) + (x − x�)� (VI − A

�
A) (x − x�)

= ����y − Ax
����2 + 4 ‖x‖1

+ (x − x�)� (VI − A
�
A) (x − x�) ,

(33)

andV is such that the added function is nonnegative,meaning
that V must be equal to or greater than the maximum

eigenvalue of A�A:

V > max eig {A�A} . (34)

In order to minimize U�(x), the gradient of U�(x) should be
zero:

YU� (x)Yx� = 0 Z⇒
− 2A�y + 2A�Ax + 4 sign (x)

+ 2 (VI − A
�
A) (x − x�) = 0.

(35)

�e solution is

x + 4
2V sign (x) = 1

VΑ� (y − Ax�) + x�. (36)

�e solution of the linear equation

_ + 4
2V sign (_) = ` (37)

is obtained using the so�-thresholding approach:

_ = �� (`) =
{{{{{{{{{

` − 4, ` > 4
0, |`| < 4
` + 4, ` < −4.

(38)

Hence, we may write the so�-thresholding-based solution of
(36) as follows:

x = ��/2� ( 1
VΑ� (y − Ax�) + x�) . (39)
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In terms of iteration P + 1, the previous relation can be
rewritten as

x�+1 = ��/2� ( 1
VΑ� (y − Ax�) + x�) . (40)

3.6. Automatedreshold Based Iterative Solution. �is algo-
rithm (see [12, 13]) starts from the assumption that the miss-
ing samples, modeled by zero values in the signal domain,
produce noise in the transform domain. Namely, the zero
values at the positions of missing samples can be observed as
a result of adding noise to these samples, where the noise at
the unavailable positions has values of original signal samples
with opposite sign. For instance, let us observe the signals that
are sparse in the Fourier transform domain. �e variance of
the mentioned noise when observed in the discrete Fourier
transform (DFT) domain can be calculated as

�2�
 ←c �� −�
� − 1

�∑
�=1

����y (�)����2� , (41)

whereM is the number of available andN is the total number
of samples and y is a measurement vector. Consequently,
using the variance of noise, it is possible to de	ne a threshold
to separate signal components from the nonsignal compo-
nents in the DFT domain.

For a desired probability d(S), the threshold is derived as
S = √−�2�
 log (1 − d (S)1/�). (42)

�e automated threshold based algorithm, in each iteration,
detects a certain number of DFT components above the
threshold. A set of positions k� corresponding to the detected
components is selected and the contribution of these compo-
nents is removed from the signal’s DFT. �is will reveal the
remaining components that are below the noise level. Further,
it is necessary to update the noise variance and threshold
value for the new iteration. Since the algorithmdetects a set of
components in each iteration, it usually needs just a couple of
iterations to recover the entire signal. In the case that all signal
components are above the noise level in DFT, the component
detection and reconstruction are achieved in single iteration.

3.7. Adaptive Gradient-Based Algorithm. �is algorithm
belongs to the group of convexminimization approaches [11].
Unlike other convex minimization approaches, this method
starts from some initial values of unavailable samples (initial
state) which are changed through the iterations in a way to
constantly improve the concentration in sparsity domain. In
general, it does not require the signal to be strictly sparse
in certain transform domain, which is an advantage over
other methods. Particularly, themissing samples in the signal
domain can be considered as zero values. In each iteration,
the missing samples are changed for +Δ and for −Δ. �en,
for both changes, the concentration is measured as ℓ1-norm
of the transform domain vectors x+ (for +Δ change) and x−

(for −Δ change), while the gradient is determined using their
di�erence (lines 8, 9, and 10). Finally, the gradient is used to
update the values of missing samples. Here, it is important to

note that each sample is observed separately in this algorithm
and one iteration is 	nished when all samples are processed.

When the algorithm reaches the vicinity of the sparsity
measureminimum, the gradient changes direction for almost
180 degrees (line 16), meaning that the step Δ needs to be
decreased (line 17).

�e precision of the result in this iterative algorithm is
estimated based on the change of the result in the last iteration
(lines 18 and 19).

4. Exploring Different Transform Domains for
CS Signal Reconstruction

4.1. CS in the Standard Fourier Transform Domain. As the
simplest case of CS scenario, we will assume a multicompo-
nent signal that consists of K sinusoids that are sparse in the
DFT domain:

� (�) = �∑
�=1

' �f�2����/�, (43)

where the sparsity level is � ≪ �, where � is total signal
length, while' � and P� denote amplitudes and frequencies of
signal components, respectively. Since s is sparse in the DFT
domain, then we can write

s = ΨF = F
−1
F, (44)

where F is a vector of DFT coe�cients where at most K
coe�cients are nonzero, while F

−1 is the inverse Fourier
transform matrix of size� ×�.

If s is a signal in compressive sensing application, then
only the random measurements y ⊂ s are available and these
are de	ned by the set of M positions {�1, �2, ��}. �erefore,
the measurement process can be modeled by matrixΦ:

y = ΦF−1
F = AF. (45)

�e CS matrix A represents a partial random inverse Fourier
transform matrix obtained by omitting rows from F

−1 that
corresponds to unavailable samples positions:

A =
[[[[[[
[

�0 (�1) �1 (�1) ⋅ ⋅ ⋅ ��−1 (�1)
�0 (�2) �1 (�2) ⋅ ⋅ ⋅ ��−1 (�2)

... ... d
...

�0 (��) �1 (��) ⋅ ⋅ ⋅ ��−1 (��)

]]]]]]
]
, (46)

with the Fourier basis functions:

�� (�) = f�2���/�. (47)

�e CS problem formulation is now given as

min ‖F‖1
s.t. y = AF. (48)
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4.2. CS in the Polynomial Fourier Transform Domain. In this
section, we consider the possibility of CS reconstruction of
polynomial phase signals [28]. Observe the multicomponent
polynomial phase signal vector s, with elements s(n):

� (�) = �∑
�=1

�� (�) =
�∑
�=1

7�f�(2�/�)(��1�+�2�2�/2+⋅⋅⋅+�����/�!), (49)

where the polynomial coe�cients are assumed to be bounded
integers. �e assumption is that the signal can be considered
as sparse in the polynomial Fourier transform (PFT) domain.
Hence, the discrete PFT form is given by

n(P1�, . . . , P��)
= �−1∑
�=0

�∑
�=1

7�f�(2�/�)(��1�+�2�2�/2+⋅⋅⋅+�����/�!)

× f−�(2�/�)(�2�2�/2+⋅⋅⋅+�����/�!)f−�(2�/�)��1 .
(50)

If we choose a set of parameters (P2�, P3�, . . . , P��) that match
the polynomial phase coe�cients (_2�, _3�, . . . , _��)

(P2�, P3�, . . . , P��) = (_2�, _3�, . . . , _��) , (51)

then the �th signal component is demodulated and becomes

a sinusoid: 7�f�(2�/�)(��1�) which is dominant in the PFT. In
other words, the spectrum is highly concentrated at P = _1�.
�erefore, we might say that if (51) is satis	ed then the PFT
is compressible with the dominant �th component. Note that
the sparsity (compressibility) in the PFT domain is observed
with respect to the single demodulated component.

In order to de	ne the CS problem in the PFT domain,
instead of the signal s itself, we will consider amodi	ed signal
form obtained a�er the multiplication with the exponential
term:

Q (�) = f−�(2�/�)(�2�2�/2+⋅⋅⋅+�����/�!), (52)

given in the PFT de	nition (50). �e new signal form is
obtained as

o (�) = � (�) Q (�) = �∑
�=1

7�
⋅ f�(2�/�)(��1�+�2�2�/2+⋅⋅⋅+�����/�!)f−�(2�/�)(�2�2�/2+⋅⋅⋅+�����/�!)

(53)

or in the vector form:

z = s�. (54)

�en, the PFT de	nition given by (50) can be rewritten in
the vector form as follows:

X = Fz, (55)

whereF is the discrete Fourier transform matrix (� ×�).
For a chosen set of parameters (P2�, P3�, . . . , P��) in � that is

equal to the set (_2�, _3�, . . . , _��) in s, X = X� is characterized
by one dominant sinusoidal component at the frequency _1�.

4.2.1. CS Scenario. Now, assume that z is incomplete in the
compressive sensing sense, and instead of z we are dealing
with� available measurements de	ned by vector y�, and

y� = A�X, (56)

where A� is the partial random Fourier matrix obtained by
omitting rows from F that correspond to the unavailable
samples. When (P2�, P3�, . . . , P��) = (_2�, _3�, . . . , _��), then X
can be observed as a demodulated version of the �th signal
component X�, having the dominant �th component in the
spectrum with the support P1�. �e rest of the components
in spectrum are much lower than X� and could be observed
as noise. Hence, we may write the minimization problem in
the form

min
����X�����1

s.t.
����y� − A�X�

����2 < S, (57)

where T is certain threshold. �e dominant components
can be detected using the threshold based algorithm (Algo-
rithm 5) described in the previous section. Using an iter-
ative procedure, one may change the values of parametersP2�, . . . , P�� between Pmin and Pmax, ∀�. �e algorithm will
detect the support P1� when the set (P2�, P3�, . . . , P��) matches
the set (_2�, _3�, . . . , _��); otherwise, no component support is
detected. Hence, as a result of this phase, we have identi	ed
the sets of signal phase parameters: k� = (P1�, P2�, . . . , P��) =(_1�, _2�, . . . , _��).
4.2.2. Reconstruction of Exact Components Amplitudes. �e
next phase is reconstruction of components amplitudes.
Denote the set of measurements positions by (�1, �2, . . . , ��),
such that [y(1), y(2), . . . , y(�)] = [s(�1), s(�2), . . . , s(��)],
while the detected sets of signal phase parameters are k� =(P1�, P2�, . . . , P��) = (_1�, _2�, . . . , _��).

In order to calculate the exact amplitudes 71, 72, . . . , 7� of
signal components, we observe the set of equations in the
form

[[[[
[

� (�1)
...

� (��)
]]]]
]

=
[[[[[[[[
[

f�(2�/�)(�1�11+⋅⋅⋅+��1��1) ⋅ ⋅ ⋅ f�(2�/�)(�1�1�+⋅⋅⋅+��1 ���)
f�(2�/�)(�2�11+⋅⋅⋅+��2��1) ⋅ ⋅ ⋅ f�(2�/�)(�2�1�+⋅⋅⋅+��2 ���)

... ...
f�(2�/�)(���11+⋅⋅⋅+�����1) ⋅ ⋅ ⋅ f�(2�/�)(���1�+⋅⋅⋅+������)

]]]]]]]]
]

[[[[
[

71
...
7�

]]]]
]

(58)

or in other words we have another system of equations given
by

y = AR, (59)
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Input:6 Transform matrixΨ, Measurement matrixΦ6 N� = {�1, �2, . . . , ��},� –number of available samples,�-original signal length6Matrix A: A = ΦΨ (A is obtained as a partial random Fourier matrix: A =ΦΨ =Ψ{p},p = {��1 , ��2 , . . . , ���}6Measurement vector y = Φf
Output:
(1) � = 1, N� = {�1, �2, . . . , ��}
(2) p = ⌀.
(3) d ← 0.99 (Set desired probability d)
(4) �2�
 ← �((� −�)/(� − 1))∑��=1(|y(�)|2/�) (Calculate variance)

(5) S� ← √−�2�
 log(1 − d(S)1/�) (Calculate threshold)

(6) X� ← A−1y (Calculate initial DFT of y)

(7) k� ← arg{|X�| > S�/�} (Find comp. in X� above the S�)
(8) Update p ← p ∪ k�
(9) A��� ← A(k�) (CS matrix)

(10) X̃� ← (A����A���)−1A����y
(11) for ∀! ∈ p:

(12) y ← y − (�/�)X�(!) exp(t2u!N�/�); (Update y)
(13)Update �2�
← (�(� −�)/(� − 1))∑ |y|2/�
(14) If ∑ |y|2/� < " break; Else
(15) Set � = � + 1, and go to (5).
(16) return X̃

�
, k

Algorithm 5: Automated threshold based iterative algorithm.

where R = [71, . . . , 7�]� contains the desired � signal
amplitudes. �e matrix A of size� × � is based on the PFT:

A

=
[[[[[[[[
[

f�(2�/�)(�1�11+⋅⋅⋅+��1 ��1) ⋅ ⋅ ⋅ f�(2�/�)(�1�1�+⋅⋅⋅+��1 ���)
f�(2�/�)(�2�11+⋅⋅⋅+��2 ��1) ⋅ ⋅ ⋅ f�(2�/�)(�2�1�+⋅⋅⋅+��2 ���)

... ...
f�(2�/�)(���11+⋅⋅⋅+�����1) ⋅ ⋅ ⋅ f�(2�/�)(���1�+⋅⋅⋅+������)

]]]]]]]]
]

. (60)

�e rows of A correspond to positions of measurements(�1, �2, . . . , ��), and columns correspond to phase parame-
ters k� = (P1�, P2�, . . . , P��) = (_1�, _2�, . . . , _��), for � = 1, . . . , �.
�e solution of the observed problem can be obtained in the
least squares sense as follows:

X = (A∗A)−1 A∗y. (61)

�e resulting reconstructed signal is obtained as

� (�) = 71f−�(2�/�)(��11+⋅⋅⋅+����1/�!) + ⋅ ⋅ ⋅
+ 7�f−�(2�/�)(��1�+⋅⋅⋅+�����/�!).

(62)

4.3. CS in the Hermite Transform Domain. �e Hermite
expansion using�Hermite functions can be written in terms

of the Hermite transform matrix. First, let us de	ne the
Hermite transform matrixH (of size� ×�) [29, 30]:

H = 1
�

⋅

[[[[[[[[[[[[
[

�0 (1)
(��−1 (1))2

�0 (2)
(��−1 (2))2 ⋅ ⋅ ⋅ �0 (�)

(��−1 (�))2�1 (1)
(��−1 (1))2

�1 (2)
(��−1 (2))2 ⋅ ⋅ ⋅ �1 (�)

(��−1 (�))2... ... d
...

��−1 (1)
(��−1 (1))2

��−1 (2)
(��−1 (2))2 ⋅ ⋅ ⋅ ��−1 (�)

(��−1 (�))2

]]]]]]]]]]]]
]

.
(63)

Here, the !th order Hermite basis function is de	ned using
the !th order Hermite polynomial as follows:

�� (�) = (�2�!!√u)−1/2 f−�2/2L� (�
�) , (64)

where � is the scaling factor used to “stretch” or “compress”
Hermite functions, in order to match the signal.

�e Hermite functions are usually calculated using the
following fast recursive realization:

�0 (�) = 1
4√uf−�2/2�2 ,

�1 (�) = √2�
4√u f−�2/2�2 ,

�� (�) = �√2
� Ψ�−1 (�) − √ � − 1

� Ψ�−2 (�) , ∀� ≥ 2.

(65)
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�e Hermite transform coe�cients can be calculated in the
matrix form as follows:

c = Hs, (66)

where the vector of Hermite transform coe�cients is c =[y0, y1, . . . , y�−1]�, while the vector of signal samples is s =[�(1), �(2), . . . , �(�)]�.
Following the Gauss-Hermite approximation, the inverse

matrixΨ = H−1 contains�Hermite functions and it is given
by

Ψ =
[[[[[[
[

�1 (1) �2 (1) ⋅ ⋅ ⋅ �� (1)
�1 (2) �2 (2) ⋅ ⋅ ⋅ �� (2)

... ... d
...

�1 (�) �2 (�) ⋅ ⋅ ⋅ �� (�)

]]]]]]
]
. (67)

Now, in the context of CS, let us assume that a signal s is K-
sparse in the Hermite transform domain, meaning that it can
be represented by a small set of nonzero Hermite coe�cients
c:

� (�) = ��∑
�=�1

y��� (�) , (68)

where y� is the !th element from the vector c of Hermite
expansion coe�cients. In the matrix form we may write

s = Ψc, (69)

such thatmost of the coe�cients in c are zero values. Further-
more, assume that only the compressive sensing is done using
random selection of M signal values [�1, �2, . . . , ��]. �en,
the CS matrix A can be de	ned as random partial inverse
Hermite transform matrix:

A =
[[[[[[
[

�0 (�1) �1 (�1) ⋅ ⋅ ⋅ ��−1 (�1)
�0 (�2) �1 (�2) ⋅ ⋅ ⋅ ��−1 (�2)

... ... d
...

�0 (��) �1 (��) ⋅ ⋅ ⋅ ��−1 (��)

]]]]]]
]
. (70)

For a vector of available measurements vector
y = (s(�1), s(�2), . . . , s(��)), the linear system of equations
(undetermined system of M linear equations and �
unknowns) can be written as

y = Ac. (71)

Since c has only � nonzero components, the reconstruction
problem can be de	ned as

min ‖c‖1
s.t. y = Ac. (72)

If we identify the signal support in the Hermite transform
domain by the set of indices [P1, P2, . . . , P�], then the problem
can be solved in the least squares sense as

ĉ = (Θ∗��Θ��)−1Θ∗��y, (73)

where (∗) denotes the conjugate transpose operation, while

Θ�� =
[[[[[[[
[

��1 (�1) ��1 (�2) . . . ��1 (��)
��2 (�1) ��2 (�2) ⋅ ⋅ ⋅ ��2 (��)

... ... d
...

��� (�1) ��� (�2) ⋅ ⋅ ⋅ ��� (��)

]]]]]]]
]
, (74)

and ĉ = [y�1 , y�2 , . . . , y��]�. �e estimated signal s can be now
obtained according to (68).

4.4. CS in the Time-Frequency Domain. Starting from the
de	nition of the short-time Fourier transform

STFT (�, P) = �−1∑
�=0

� (� + ~) f−�2���/�, (75)

we can de	ne the following STFT vector and signal vector:

STFT� (�) = [STFT (�, 0) , . . . , STFT (�,� − 1)]� ,
x (�) = [� (�) , � (� + 1) , . . . , � (� +� − 1)]� , (76)

respectively. �e STFT at an instant n can be now rewritten
in the matrix form:

STFT� (�) = F�x (�) , (77)

where F� is the standard Fourier transform matrix of size�×� with elements

F� (~, P) = f−�2���/�. (78)

If we consider the nonoverlapping signal segments for the
STFT calculation, then � takes the values from the set{0,�, 2�, . . . , � −�}, where� is the window length while� is the total signal length. �e STFT vector, for � ∈{0,�, 2�, . . . , � −�}, is given by

STFT =
[[[[[[
[

STFT� (0)
STFT� (�)

...
STFT� (� −�)

]]]]]]
]
. (79)

Consequently, (77) can be extended to the entire STFT for all
considered values of � ∈ {0,�, 2�, . . . , � − �} as follows
[31, 32]:

[[[[[[
[

STFT� (0)
STFT� (�)

...
STFT� (� −�)

]]]]]]
]

=
[[[[[
[

F� 0� ⋅ ⋅ ⋅ 0�
0� F� ⋅ ⋅ ⋅ 0�
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0� 0� ⋅ ⋅ ⋅ F�

]]]]]
]

[[[[[[
[

x (0)
x (�)

...
x (� −�)

]]]]]]
]
,

(80)
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Figure 1: (a) Hermite transform coe�cients of the selected QRS complex (� = 6.8038) and (b) Fourier transform coe�cients (absolute
values).

or in the compact form

STFT = Fx. (81)

In the case of time-varying windows with lengths {�1,�2, . . . ,� }, the previous system of equations becomes

[[[[[[[
[

STFT�0 (0)
STFT�1 (�0)

...
STFT�� (� −� )

]]]]]]]
]

=
[[[[[
[

F�0 0 ⋅ ⋅ ⋅ 0
0� F�1 ⋅ ⋅ ⋅ 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 ⋅ ⋅ ⋅ F��

]]]]]
]

[[[[[[
[

x (0)
x (�)

...
x (� −�)

]]]]]]
]
.

(82)

Note that the signal vector is x = [x(0)�, x(�)�, . . . , x(� −�)�]� = [�(0), �(1), . . . , �(� − 1)]� and can be expressed
using the�-point inverse Fourier transform as follows:

x = F
−1
�X, (83)

where X is a sparse vector of DFT coe�cients. By combining
(81) and (83), we obtain [31]

STFT = FF
−1
�X. (84)

Furthermore, if we assume that STFT vector is not completely
available but has only a small percent of available samples,
then we are dealing with the CS problem in the form

ySTFT = AX, (85)

where ySTFT is a vector of available measurements from
STFT, whileA is the CS matrix obtained as partial combined

transform matrix Ψ = FF
−1
� with rows corresponding to

the available samples ySTFT. In order to reconstruct the entire
STFT, we can de	ne the minimization problem in the form

min ‖X‖1
s.t. ySTFT = AX, (86)

which can be solved using any of the algorithms provided in
the previous section.

5. Experimental Evaluation

Example 1. Let us observe the QRS complex extracted from
the real ECG signal. It has been known that these types of
signals are sparse in the Hermite transform (HT) domain
[33, 34]. As an illustration, we present the Hermite transform
and discrete Fourier transform (DFT) in Figure 1, fromwhich
it can be observed that HT provides sparse representation
while DFT is dense. �e analyzed signal is obtained from
the MIT-ECG Compression Test Database [35], originally
sampled uniformly with S = 1/250 [s] being the sampling
period, with amplitude gain 1/400. Extracted QRS is of length� = 51, centered at the � peak. Note that, in order to
provide the sparsest HT representation, the scaling factor �
should be set to the optimal value [33, 34], which is 6.8038 in
this example, that is, �Δ� = 0.027 in seconds, proportional
to the scaling factor 0.017 presented in [34] for signal with
27 samples, when it is scaled with the signal lengths ratio.
Also, the QRS signal is resampled at the zeros of Hermite
polynomial using sinc interpolation functions as described in
[33].

�e QRS signal is subject to compressed sensing
approach, meaning that it is represented by 50% of available
measurements. �e available measurements and the corre-
sponding HT (which is not sparse in the CS conditions) are
shown in Figure 2.

In order to reconstruct the entire QRS signal from
available measurements, two of the presented algorithms
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Figure 2: (a) Measurements of the selected QRS complex (50% of the total samples number) and (b) Hermite transform of measurements
vector.
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Figure 3: Results of signal reconstruction using gradient-based algorithms: (a) original signal (solid line) and reconstructed signal (dash
line) and (b) Hermite coe�cients of the original signal (solid line) and the reconstructed signal (squares). Reconstruction results using OMP
algorithm: (c) original signal (solid) and reconstructed signal (dash) in time domain and (d) Hermite coe�cients of original signal (solid
line) and reconstructed signal (squares).

are employed, namely, the OMP and gradient-based recon-
struction algorithm.

�e reconstruction results are shown in Figure 3 in
both time and transform domain. It can be observed that
both algorithms provide quite successful reconstruction

performance, which is certainly better in the case of gradient-
based approach. In order to measure and compare the
reconstruction performance of these two algorithms, the
mean square error (MSE) is calculated, showing that the
gradient-based algorithm in the considered case provides
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Input:6 Available samples position N� = {�1, �2, . . . , ��}6Missing samples position N \ N�, where N = {1, 2, . . . , �}6 Available samples f(�), � ∈ N�6Measurement vector: y(�) = {f(�), for � ∈ N�; 0, for � ∈ N \ N�}
Output:

(1) Set � = 0, y(0)(�) ← y(�), Δ ← max |y(0)(�)|
(2) repeat

(3) Set y�(�) = y(�)(�)
(4) repeat
(5) � ← � + 1
(6) for �� ← 0 to � − 1 do
(7) if �� ∈ N \ N�
(8) x+(P) ← I{y(�)(�) + Δ"(� − ��)}
(9) x−(P) ← I{y(�)(�) − Δ"(� − ��)}
(10) G(�)(��) ← (1/�)(‖x+‖1 − ‖x−‖1)
(11) else G(�)(��) ← 0
(12) end if

(13) y(�+1)(��) ← y(�)(��) − G(�)(��)
(14) end for

(15) �� = arcos(⟨G�−1G�⟩/‖G�−1‖22‖G�‖22)
(16) until �� < 170∘
(17) Δ ← Δ/√10;
(18) Ξ = 10 log10(∑� ∈N\N� |y�(�) − y(�)(�)|2/∑� ∈N\N� |y(�)(�)|2)
(19) until Ξ < Ξmax

(20) return y(i)(�)
Reconstructed signal x$(�) = y(�)(�)

Algorithm 6: Adaptive gradient-based algorithm.

MSE = 13.85, much lower than MSE = 31.64 for the OMP
algorithm.

Example 2. In this example, the reconstruction of images
using adaptive gradient-based algorithm (Algorithm 6) is
considered. �e images are generally not strictly sparse in
any domain and as such could be quite demanding for
reconstruction. For that reason, as stated in Section 3.7,
the adaptive gradient-based algorithm is employed, since it
does not require the strict sparsity condition. As a suitable
transform domain representation for natural image, the two-
dimensional DCT (I → 2DDCT) is used. We might say
that the image can be observed as approximately sparse in the
2DDCT domain.

�e image with missing pixels is divided into 16 × 16
blocks, where 40% of the pixels are missing in each block
(missing pixels are denoted in white in Figures 4(a), 4(c),
and 4(e)). Hence, the algorithm is applied on a block-by-
block basis where the measurement vector y is created for
each observed image block using the available block pixels.
�e value of gradient step Δ = 128 is used. �e resulting
reconstructed images are shown in Figures 4(b), 4(d), and
4(f).

�e quality of the reconstructed image is measured using
the structural similarity index (SSIM) [36] between the
original image (with full set of pixels) and reconstructed
image.�e SSIM ranges between 0 and 1, 1 being identical and

0 being not similar. It is designed to improve the traditional
metrics such as peak signal-to-noise ratio (PSNR) in order to
be more consistent with the perception of the human visual
system. �e achieved values of SSIM for the test images in
Figure 4 are SSIM = 0.9, SSIM = 0.94, and SSIM = 0.95.

Example 3. Let us assume that a radar signal consists of
stationary (sinusoidal) components belonging to the rigid
body and nonstationary components belonging to the distur-
bances caused by rotating target parts and noise. �e Fourier
transform and the STFT of the considered radar signal type
are given in Figure 5.

�e total signal length is 4096 samples. �e STFT is
calculated for the window width � = 64 samples (STFT is of
size 64×64).�e aim of this experiment is to extract the rigid
body components which are presented as a set of stationary
sinusoids.

�e STFT values of the original full signal along columns
and then the 75% of the largest values (possibly belonging
to rotating components and noise) are set to zero or in
other words discarded from the STFT plane. Also, a small
percentage of the smallest values along the sorted columns
are also set to zero with the aim of discarding small values
belonging to noise. �e remaining STFT values are unsorted
andplaced to their original positions in the STFTplane.�ese
values represent a small amount of availablemeasurements in
the STFT domain and we are faced with the CS problem. In
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Figure 4: ((a), (c), and (e)) Available measurements/pixels (missing values are denoted by white pixels). ((b), (d), and (f)) Reconstructed
images.
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Figure 5: (a) STFT of the observed signal; (b) DFT of the observed signal.
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Figure 6: (a) STFT of the observed signal; (b) DFT of the observed signal.

Figure 6, we show the available measurements from the STFT
a�er discarding all unwanted components.

In order to reconstruct the stationary rigid body com-
ponents from the available measurements, the CS matrix is
de	ned as partial combined transformmatrix with rows cor-
responding to the available samples in the STFT (according
to the procedure described in Section 4.4). �e STFT of the
reconstructed stationary components is given in Figure 6(a),
while the corresponding DFT is given in Figure 6(b).

6. Conclusion

�e paper reviews the fundamental concepts of compressive
sensing theory, comprising the main requirements, con-
ditions, and common optimization problem formulations.
Several algorithms for signal reconstruction from incomplete
measurements are summarized, allowing an insight into the
diversity of approaches, the related complexity, assumptions,
and e�ciency. As a special contribution, the paper presents
some interesting compressive sensing formulations for dif-
ferent types of signals and sparsity domains, such as the

Fourier transform domain, polynomial Fourier transform
domain, Hermite transform, and time-frequency domain.
Particularly, this part aims to reveal the possibilities and
perspectives of using compressive sensing in di�erent signal
processing scenarios.
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