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as part of the sensing circuity itself.

We implement compressive imaging on the sensor by using
pseudo-random vectors callednoiselets for the measurement
basis. This choice allows us to reconstruct the image from dy
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Following the standard model for imaging, the amount (b)

of data. a sensor mUSt capturg, quanti;e, and .tranSfer ffiﬁ 1: Compressive Sensing System Design (a) Total data maripulat
processing scales linearly with its resolution. As images aand power is reduced in the chain from sensor to transmitteranpling less

typically structured they can be Compressed by signifimmt often instead of just compressing data in the digital domg lllustration
’ of computation integrated into analog sensor interfaceuity. Time varying

tios with very little information being lost, making sto@nd (ow.weightings and paralielized column-weightings areliea according
transmission less costly. But as this compression is tylgicato selected basis functions as summations are performeel. olitput of
implemented on a digital signal processor (or other digit4]e @nalog system is a transformed version of the image. Bging an

. . . . . . incomplete subset of basis functions, fewer sensory-ctatipns and analog-
computing device), its benefits are realized only after tht&@ (4 gigital conversions need to be performed.
image has been converted to a digital representation ardl pip
off of the sensor. of the required pixel read out to perform computatians

In this paper, we present an imaging architecture thatalog. The imager is very flexible: by integrating focal-plane

compresses the image before it is converted to a digitdmputation with peripheral analog computation circylitty
representation, Fig. 1(a), using analog processing topeh® variety of linear transformations can be performed, Fig. 2.
signal, Fig. 1(b). The architecture is based on a compurtakio Here, we configure the sensor to compute a separable trans-
image sensor, which we call tiiansformimager. While most form of the pixelized data, and the computed coefficients are
high-density imager architectures separate the imageoutadthen quantized with an analog-to-digital converter (ADT)e
from the computation, the transform imager takes advantagempression comes from simply limiting the read-out to a

S _ subset of these coefficients.
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almost as good as if we had observed themost important
transform coefficients directly. From a broad perspects,
theory tells us that the amount of data the sensor must @ptur
scales with theinformation content of the image (i.e. its
compressibility) rather than its resolution.

This paper is organized as follows: An overview of compres-
sive sensing is given in Section Il. Several imaging systems
based on compressive sensing are surveyed in Section¢H. Se
tion IV presents the structure of the transform image sensor
the computation of our transform imager, and integratet tes
setup. Section V discusses using the transform image sensor
for compressive sensing, including showing experimergal r
sults for this compressed sensing front end, as well as the
resulting reconstruction. Integrating non-volatile agaimem-
ory and a versatile random access approach enables a variety
of operations like multi-resolution and selective senssame
: of these extesions are discussed in Section VI. Final resnark
Edge Detection 2D DCT are made in Section VII.
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Fig. 2: Separable-Transform Imager Output. This imager ican Il. COMPRESSIVESENSING

plement a veriety of functions depending on how it is pro- The image sensor gives us the freedom to measure the

grammed. Shown here is edge-detection via a convolutidmweictor . . . . . .
[1,2,3,0,—1,—2,—3] in the horizontal and vertical direction andPixelized image using inner products with any sequence of

block DCT. While the orginal image can be recontructed, rofte(Separable) basis functions. We would like to choose these
the transformed result is more useful for processing, amland basis functions so that: 1) the image can be reconstructed

transmission. from the smallest number of measurements, and 2) the re-
off of the sensor array and passed through the ADC, savingnstruction can be computed in an efficient manner. The
time and power. The digital image computations can also Heeory ofcompressed sensing [1]-[4] tells us that if we have a
moved away from the sensor, a feature that is particuladparse representation for images of interest, the measurement
attractive if the camera is part of a distributed wirelesssse functions should be chosen from a complementacgherent
network that utilizes a central processing node, as theosenbasis.
itself will often have strict power and form-factor congtts. Mathematically, the measurements the sensor makes can be
written as a series of inner products:

The question, then, is what type of transform the imager
should ?ake to make the compreyspsion as efficient as poss?ble. n=(0nP) y2=(02, P} ym = (dm, P). (1)
We compare two different sensing strategies. In the firg, thAbove, P is the image we are acquiring and the are the
imager measures a certain number of discrete cosine tramsfgneasurement basis functions. As the computations in (1)
(DCT) coefficients, starting from low spatial frequenciegla happen after the image is captured (but before it is digiize
working outwards. The image is reconstructed — digitally anp and theg;, can be taken as vectors. Even though the image
away from the sensor — by taking an inverse DCT. This choigeis naturally arranged as a 24Dx n array, we will often treat
of transform (and the ordering of the coefficients) is insgir it as a “rasterized’z? x 1 vector for notational convenience.
by the JPEG compression algorithm: it is often the case teat Whe entire measurement process can be written compactly as
can build a reasonable approximation to an image simply lyy = ® P, where® is am x n? matrix,Y is a vector inR™ and
keeping its low (spatial) frequency components and disngrd P is a vector inR™". Reconstructing” from the measurements
its high frequency components. Y is then a linear inverse problem. Since our goal is to take

The second sensing strategy is inspired by the recenthany fewer measurements than there are pixels in the image,
developed theory of compressive sensing (CS) [1]-[4]. C8, < n?, the inverse problem is severely underdetermined. To
which is reviewed in Section I, is based on a more refinembunteract this, we incorporate a priori information abitnet
image model than JPEG: rather than approximating an imagfeucture of the image into the reconstruction.
using a small number of low frequency DCT coefficients, we The y1, ..., ¥y, can be used to calculate a projection onto
use a small number of arbitrarily locatedavelet (or other the subspace ar’ spanned by the, ..., ¢, (this is trivial
sparsifying transform) coefficients. From correlationstio¢ if the ¢, are orthogonal to one another). This points to one
image against pseudo-random “incoherent” basis functiom®ssible acquisition strategy: find a subspace in which we
convex programming — again implemented digitally awalpelieve the energy of the image we are trying to sample
from the sensor — can be used to simultaneously locate fkeconcentrated, and then choose the as a basis for this
important transform coefficients and reconstruct theiugal subspace. A good choice for this subspace, one motivated by
The theory of CS suggests that fram of these correlations, the fact that most of the energy in a typical photograph-like
we can compute an approximation to the image which isage tends to be at low spatial frequencies, is the span of



the firstm 2D DCT coefficients taken in the same “zig-zag” Given the measurements, there are a variety of ways we
order as in the JPEG compression standard [5]. can reconstruct the image. One popular way, which is prgvabl
Projecting the image onto the subspace of low-frequeneffective, is to set up an optimization program that encgesa
sinusoids is an effective way to get a very low-dimensiondhe image to be sparse in tledomain while simultaneously
smoothed-out (“blurry”) approximation to the image. Howexplaining the measurements we have made:
ever, details in the image (sharp edges and localized f&=sgjtur min [¥(X)[; subjectto ®X — V. @)
resolve slowly asm increases — these local features are X
diffused across all spatial frequencies, making them hard this program sorts through all the of images consistent with
represent using the DCT. This type of approximation alseroftyyhat we have observed and returns the one with smallest
suffers from “ringing” around the edges (Gibbs phenomena); norm in the ¥ domain. The/; norm promotes sparsity
We can construct better low-dimensional approximations ta. sparse vectors have smalléf norm than non-sparse
images using the wavelet transform [6], [7]. Wavelets gige Wectors with the same energy. When there is noise or other
a representation for images that is sparse and automwuticagdhcertainties in the measurements, (2) can be relaxed to
adapts to local structure; only a small percentage of the
wavelet coefficients are significant, and they tend to ctuste

around edge contours and other singularities. This Spessen v o is chosen based on the expected noise level.

allovys us FO cpnstruct an accurate_ and sharp approximati_or_w OWhen® is chosen from an incoherent system and the image
medium-size images (one megapixel, say) simply by retginin, \ o 5.0 trying to recover is sparse, the recovery programs

around 2-5% of their most significant wavelet coefficients arzz) (3) come with certain theoretical performance guaesit
throwing away the rest. That such accurate approximatians tbl?lb

Ir}%n l¥(X)|l1 subjectto [|[PX —Y|2 <ek, 3)

be f d iiv is th hat th | toby [2], [4]. From m incoherent measurements, (2) will
e formed so easlly Is the reason that the wavelet ransfof),,ce an approximatioR to P that is as good as a wavelet
lies at the heart of nearly every competitive image compress

) . . i . -approximation using on the order of m/log4n terms.
zlngzdaa:?doig?m’ including the JPEG2000 image compressi merical experiments suggest even more favorable behavio

! _ P is often as good as & m/4 term wavelet approximation
There is a subtle difference between the two types pfy; [11]. The essential message here is that the number of
approximation described above; in the first, we are prajecti ,o5surements we need to faithfully acquitelepends mainly

the image on to a fixed subspace (spanned by low frequeRgy oy well we can compres (i.e. its inherent complexity)
sinusoids), while in the second we adapting the subspace anq not on the number of pixels it has. If the vast majority of

(spanned by the wavelet basis functions corresponding€io e information about the image is contained in 2-5% of the

largest wavelet coefficients) to the image. It is this ada@ia \aelet coefficients, then we can acquire it using a number
that accounts for almost the entire advantage of wavels¢da ¢ 1 easurements which is 8 — 20% of the total number of

approximation over DCT-based approximation. It is als® Ieﬁixels.

straightforward to exploit these advantages in our actioisi -~ There are two extensions to the CS methodology that help

system: we would like to measure only the significant wavelgiq, g ce better image reconstructions in practice. Theigitst

coefficients, but we have no idea which coefficients will bg,5kew a redundant (oundecimated) wavelet transform [12];

significant beforehand. . this choice tends to produce images with fewer local artsfac
The theory of compressive sensing shows us how we CaRother way to boost image reconstruction quality is by gsin

choose a set of;. to take advantage of the fact that the imaggp jterative reweighting scheme [13]. After obtaining an initial

is sparse. One of the central results of CS says that if thgemayg|ytion 7, to (3) (or (2)), we re-solve the program, but
is sparse in an orthonormal bagis(e.g. the wavelet domain), yith a weighted?; norm:

then we should select thg, from an alternative basi$’ that _
is very different than ( oiincoherent with) . Formally, the min [W- ¥(X)[  subjectto [|2X —V];<e
coherence between two image representations is simply
maximum correlation of a basis vector frodn with a basis
vector from®’;

IIt}%ee weighting matrixW is diagonal, and its entries are
inversely proportional to the magnitudes of the corresjpund
entries in¥(Fy)

/
(¥, &) = max|(y, ¢} P
peD | (FPo)| +~

We will always haveu > 1/n, and so we will cally and &' f_or sm.all v > 0. _This rgweighting_ can bg applied mult_iple
“incoherent” if (¥, ®') ~ 1/n. Fortunately, there is a known times in succession, with the welght_s adJuste_d according to
orthogonal system, called thevisdlet transform [9], that is the transform coefficients of the previous solution.

incoherent with the wavelet transform. Examples of noisele

are shown in Fig. 7; they are binary, 2-D separable badld: COMPRESSIVESENSING-INSPIREDIMAGING SYSTEMS
vectors which look like pseudo-random noise. They are also

spread out in the wavelet domain.Uf is a 2-D Daubechies- In this section, we briefly describe other compressive imag-
8 wavelet transform forn = 256 and @' is the noiselet ing architectures that have been proposed in recent years.
transform, thenu (¥, ®') ~ 4.72/n. Generally speaking, in these alternative architectures th



compressive measurements (inner products with measutemeiile our transform imager utilizes analog electronic com-
basis functions as in (1) ) are taken by manipulating thmutations. Another approach using electronic computatien
light field using some type of high-resolution, spatial igha CMOS convolution imager architecture introduced in [21].
modulation or optical dispersion, and then measured usind.ike the transform imager, this convolution imager is based
low-resolution sensor array, the output of which is immeslia a CMOS pixel array which does local, per-pixel computations
converted into the digital domain. In contrast, the optics iAs the analog image data sits on the sensor array, it is
our transform imager are completely standard, and the imaggnvolved with a randombinary pulse sequence af's and
is measured using a high-resolution sensor array. Befare th1’s, and the result is randomly subsampled (convolution with
pixel values are converted to digital, we use low-power @gal a random pulse sequence followed by subsampling comes with
electronic processing to take the compressive measuremetiite same compressive sampling guarantees as sampling in an
and digitize the result. Another imager architecture thetsu incoherent basis, see [22], [23]). Theary weights for the
random electronic modulation is also discussed. random pulse sequence are passed through the array using a
In [14], the concept of a high-resolution SLM followed bycircular shift register initialized with a random sequernitkis
a low-resolution sensor array is taken to the extreme withimager does not rely on a separable basis as our transform
single pixel camera. As light enters the system, it is focusedmager does, but it lacks the ability to use adaptable orognal
with a lens onto a digital micromirror device (DMD). Theweights, perform other computations such as DCT, or tailor
DMD is a large array {024 x 768 in this case) of tiny measurements to extract details from portions of the image
mirrors, each of which can be individually controlled to poi plane.
in one of two directions. In one of these directions lies hrot
lens which focuses the “output” of the DMD onto a single
photodetector. The net effect is that the photodetectosurea
an inner product of the image incident on the DMD with a
single binary (0-1 valued) basis function. The measurement i o
are taken serially, and reconstructed using the same ot | '€ Separable transform image sensor uses a combination
discussed in Section II. Because it uses only uses a singfdocal-plane processing performed directly in the pixaisd
sensor, the single pixel camera is very well-suited for imgg @n ©n-die, analog, computational block to perform compu-

modes where detectors are expensive; see for examplel@on before the analog-to-digital conversion occurslikén
application to low-light imaging with photomultiplier tels tra_dmonal_ imagers, this imager perform_s computauon_on—
[15] and terahertz imaging [16]. chip and in-pixel. The primary computation performed is a

The Compressive Optical MONTAGE Photography |nitia§eparabl_e matrix transformation_. This sensor includesvalno
tive (COMP-I) at Duke University has developed a number @verlapping block scheme allowing® general separable 2-D
compressive imaging architectures [17]-[19] with the gufal COnvolutions and 1616 block transforms.
creating very thin cameras. One such architecture, destrib The fundamental capability of this imager can be described
in detail in [17], compressive imaging is implemented usings & matrix transformy, = A" P, B, where A and B are
a camera with multiple apertures. There, a block transfermtransformation matrices; is the output,P is the image, and
implemented on the focal plane as follows. The incomingtlighhe subscriptr denotes the selected sub-region of the image
meets an array of lenses (or “lenslets”), each of which fesusunder transform. The regionis a 16x16 pixel block starting
the entire image onto a different section of the sensor arr&@ an offset§m, 8n) wherem andn are positive integers. The
Before each image hits its part of the array, it passes ttrougffset increments are smaller than the support region twall
a high-resolution aperture mask. Each section of the pixéansforms that can reduce or eliminate blocking artifacts
array then measures the correlation of the image with the co@iCh as separable convolutions up te8 These separable
determined by the aperture mask; if there are multiple pixégnsform capabilities are demonstrated in hardware tdoke a
sensors per aperture, the inner product is broken up locallyjo perform compressive sensing.

In [20], a camera with a “random lens” is detailed. In this The first computation is performed at the focal plane, in
work, the lens of a camera is replaced with a random reflectitree pixels, using a computational sensor element as depicte
surface. The effect is that a single “pixel” in the input ireagin Fig. 3(a). It uses a differential transistor pair to ceeat
contributes to several different pixels in the measureragaly, differential current output that is proportional to a mpiliti
the locations of which may be completely non-local. Theation of the amount of light falling on the photodiode and
random reflective surface is created in an uncontrolled @y, the differential voltage input. This operation is represented
the camera must be calibrated to discover the sensing matrixFig. 4 as the element for th&, block. The electrical
®. There is a trade-off here, as the sparser the sensing mattixrent outputs from pixels in a column add together, olgyin
® is, the easier it is to discover (by training the camera dfirchhoff’s current law. This aggregation results in a weigd
a relatively small set of randomly generated but known inpstimmation of the pixels in a column, with the weights being
images) and compute with, but the less like a compressiset by the voltages entered into the left of the array. With a
sampling matrix it is—sparse matrices have high coherengwen set of voltage inputs from a selected row Af every
with the wavelet transform (which is also sparse). column of the computational pixel array computes its wedght

The approaches discussed thus far utilize moving passmmation in parallel. This parallel computation is of key
and/or specialized optics to perform optical computationsnportance, reducing the speed requirements of the ingalid

IV. TRANSFORM IMAGE SENSOR
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Fig. 3: Basics of the Transform Imager Approach. (a) Block matrimpatation performed in the analog domain. lllustrated fasran &8 block transform,
both a computational pixel array and an analog vector-matriltiplier are used to perform signal projection beforéada converted into the digital domain.
(b) A daughter card houses the computational image sensafolt@ with supporting components. This card mounts on anA=B@ard through a standard

PCI mezzanine connector. Communication with the PC is dbreugh USB.
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Fig. 4: Separable-Transform Imager IC. (a) Block Diagram of thepCHihe chip enables the computation as well as sensing atite glements. (b)
8 x 1 Pixel Tile Schematic. We connect the pixels in groups of 8 faimize the parasitic leakage currents as well as paralitee capacitance of the
non-photodiode p-n junctions due to transistor sourcé@ideanctions. (c) Die Photograph of the Transform Imager TGe 5 mm x 5 mm IC was fabricated

in a 350 nm CMOS process available through MOSIS.

computational elements.

that it accepts input from all of the columns of the pixel gra

The second computation is performed in an analog vect®r-it can be designed with multiplexing circuity to only apte
matrix multiplier (VMM) [24]. This VMM may be designed so @ time-multiplexed subset of the columns. This decisios set

1The term differential refers to the technique of encodingnais in
the difference of two complimentary signals. The two signale called
a differential pair and the signal encoded in their diffeeens called a
differential signal. The average of the two signals is chtlee common-mode
signal, and is present for practical reasons even thoughniation is usually
not encoded in it. The term differential is also used to denethniques
and circuits that process differential signals, usualpiving complementary
circuit components Differential signaling and processiagnore robust to
system noise that effects the complementary signals gguaitd minimizes
distortion [24].

the support region for the computation. The implementation
used for these experiments uses the time-multiplexed aolum
option. The elements of the VMM use analog floating-gate
transistors to perform multiplication in the analog domain
Each element takes the input from its column and multiplies
it by a unique, reprogrammable coefficient. The result is an
electrical current that is contributed to a shared columm ro
Using the same automatic current summation as the image
sensingP matrix, a parallel set of weighted summations occur,



mounted on a custom PC board, which includes ADCs, DACs, V,
current measurement, and other minor interfacing compsnen

Physically, the imager board is a daughter card of the FPGA
motherboard. The FPGA is configured to implement a soft-
core processor and collection of custom hardware interface V=K Vit Vigrer £ 1
components described in VHDL. The supporting components
handle timing-critical signal flow, allowing for more man- 5

- n n-1
ageable but less timing-sensitive C code to be used on the " %mﬂlﬂlﬁ%ias{%[: v

soft-core processor. A supporting VHDL module also handles ) 0,
interfacing to the external USB IC for communicating with a
computer. The user interface to the system is a set oflMB 1

functions which encapsulate the IC control. The user has the e
ability to program an arbitrary set of coefficients into the
and B matrices. A DCT is an example of such a transformation
matrix. The user can then capture the image, which undergoes )
the on-chip transformation. = 316
CMOS imaging technology can be implemented on stan- (© EFloag?r%-yGateg
dard, relatively low-cost CMOS processes. CMOS implemen- =
tation enables integration of large amounts of computation
circuitry with sensor and interface circuitry. By integraf
circuit components into the image sensor, such as in-pixel
ADCs [25], CMOS technology has become competitive in thigg. 5: Circuitry and Results from our Programmable Analogveé/
high-end camera market. Other aggressive circuit integrat form Generation. (a) Circiut Diagram for a Basic voltageféuf(b)

. . . . o By replacing the input transistor with a selectable analogtfbate
in CMOS imaging technology provide additional COmpum}'ransistors, we transform the buffer circuit into an analzafeform

tionally significant gains, such as random image access [2§nerator. (c) Full Analog Memory Bank. (d) Measured Resuft
dynamic field of view capabilities [27], multi-resolutiomage DCT Programmed as Differential Pairs. The differentiabesrwere

sensing [28], and biologically inspired abilities such age Wwithin 400 .V, approximately our measurement precision.

enhancement [29]. o . pixels’ drain junctions. Furthermore, these parasiticcfions
The system IC, as shown in Fig. 4(a), is composed of tigyoduce unwanted currents to the output line, since they

following: a random-access analog memory, row and columemselves are photo diodes. Therefore, these switcheseed

selection control, a computational pixel array, Iogari_izhm parasitic capacitances and currents to improve SNR.
current-to-voltage (I-V) converter, an analog vector-ixat

multiplier, and a bidirectional I-V converter. Fig. 4(c)cshks
the die photo of the transform imager IC. We will describ8: Random Access Analog Memory

resulting in the second matrix operation.
The setup is shown in Fig. 3(b). The image sensor IC is B&‘ I
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these blocks in the following subsections. A compact analog memory structure was used to implement
_ . a storage for thed matrix, as shown in Fig. 5. It uses analog
A. Light Sensor and Interfacing floating gates to store the coefficients of the transform imatr

Fig. 4(b) shows a schematic of ax & pixel tile. Each pixel which means that no digital memory or DACs are required to
is a photosensor and a differential transistor pair, priogd feed the analog weighting coefficients to the computational
both a sensing capability and a multiply-accumulate opmmat pixel array. The use of several DACs along with digital
The output of each pixel is a differential currérdand it memory would be costly in size and power. Building the
represents a multiplication of the light intensity falliog the memory storage element into the voltage generation streictu
photosensor by a weighting value represented by a voltageids unnecessary signal handling and conversion, saizeg
input. Pixels along a given row of the image plane shareamd power.
single, differential, voltage input, which sets the muitation The basic structure of the analog memory is an amplifier
factor for the row. Pixels along a column share a differéntiaconnected as a follower, Fig. 5(a). However, one of the diffe
current output line. Since the outputs of the pixels areents, ential pair transistors has been replaced with a reprogiasten
and currents onto a node sum together, an addition operatink of selectable analog floating-gate PFETs (FGPFET),
is performed. More specifically, this a weighted summatiofrig. 5(b). Each FGPFET shares the same inpilts, but
also known as a dot product. Within each tile is a switcis programmed to a particular voltage offset that sets the
which selectively allows the pixels in the tile to output teet desired output voltage. The programming procedure inltlgren
column. When deselected, the pixels’ currents are switchadoids issues of voltage offsets due to mismatches in the
off of the column’s output line and onto a separate fixedransistors and in the op-amp itself by directly monitoring
potential line. Since only a sub-portion of the rows of th#éhe output in the programming cycle. The use of floating-gate
imager are read at a time, these switches resultifg¥" re- transistors, which act much like standard transistors hiase
duction of parasitic capacitance introduced by the deafettl a programmable threshold voltage instead of a fixed one, is



Fully Differential

Input Log Amps  Multiplier Cell the drain of the feedback transistor by the gadp, This low
impedance generation is critical to sensing low currents in
I %{H[lLVb{H[lL“{H[lL‘@{H[lL the presence of large capacitance. The amplifiers can even be
matched by programming.
Unfortunately, the power consumption of this topology
VbiH[‘L‘dH[‘L%{H[‘LVJH[‘L is roughly proportional to the dynamic range the circuit is
designed to support. This stems from the need to maintain
stability in the feedback loop [32]. Since the dynamic range
W1H[‘L‘4H[‘L‘4H[‘L%1H[‘L is several orders of magnitude, significant costs are iedurr
in order to support the full range. To alleviate this, an au-
W [‘L tomatic gain control (AGC) amplifier was integrated into the
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feedback loop, reducing power consumption dependence on
dynamic range support. This is also discussed in [32]. Since
subthreshold source conductance scales with input cuthent
Fig. 6: Circuit Diagram of our Floating-Gate Vector-MatiNultiplier — gain A can be allowed to drop with higher input currents while
(VMM) Components. We use this circuit to perform the secondtill maintaining the low input impedance and stability.eTh
matrix multiplication on the image. AGC amplifier lowers its gain at higher output voltages, whic
discussed in [30]. Generating 16 differential outputs, ietthe correspond to larger input currents.
signal is encoded in the difference of two voltages, reguire The log amp plays an integral role in the analog vector-
32 amplifier structures. The storage of axii® differential matrix multiplier (VMM), which performs theB matrix mul-
values requires a total of 32 rows 16 columns of floating tiplication. As shown in Fig. 6, every FGPFET in the array,
gates. Stacking the amplifiers atop each other creates a Zdawpled with the respective row’s log amp, forms a wide range
array of floating-gates in a convenient structure for patallprogrammable gain current mirror. Rather than utilize agét
addressing and fits well into floating-gate array prograngmimrmovement on the gates of transistors, this current mirres us
schemes. changes on of the source voltages of the transistors tomperfo
signal transfer, as in [24], minimizing power law errors sed
. L . by mismatches in gate-to-surface coupling. Each quadrrople
C. Current-Based Vector-Mairix Multiplication Design V)II\/IM FGPFETs c%rresponds to onepcogfficientlg] For 2
The vector-matrix multiplier performs multiplication wgj  fully differential multiplication,w, the programmed gains for
addition on a logarithmic scale. First, the so-called lithar a quadruplet are set to
mic current-to-voltage converters generate voltages #nat
logarithmically proportional to the currents receivednfréhe Lawfz 1 —w/2
pixel plane. These voltages are passed to an array of elsment 1wz 14wv/2

that create output currents that are exponentially refetete  All VMM transistors along a row share the same input signal
the voltages received from the current-to-voltage coevert and perform their respective multiplications. The output-c
These elements have individually programmed referen@s thents are summed along the columns. The resulting diffedent
effectively shift the scales by which the input voltages argurrent output vector is a vector-matrix multiplication3.

interpreted. This scale shift in the voltage domain comesis The work in [33] implements a similar VMM structure used
to multiplication in the current domain. Current can vaneov in a classifier circuit.

several orders of magnitude without saturating or digtgrti

the behavior of the system while voltage range and precision S ]

is limited. Therefore, it is advantageous that the inputd alP- Logarithmic, Bidirectional, Current-to-Voltage Conversion

outputs of this hardware scheme are currents and that th&ince the output of the VMM is a differential current, and

intermediate signal is a voltage on a logarithmic—therefoa single value is required for the final output, a differentia

compressed—scale. to single-ended conversion was required. With the desire to
With these concepts in mind, the back end circuitry of thmaintain the ability to process wide dynamic range sigrals,

imager was designed to handle the large line capacitantegarithmic conversion was sought. Because the resolution

and high dynamic range of the pixel array’s output. Fig. & logarithmic signal is proportional to the signal, it is idalsle

shows logarithmic transimpedance amplifiers on the lef; tlio remove the common-mode component of the signal before

amplifiers sense and logarithmically convert the pixel entr the conversiod.To perform the precursory current subtraction

to a voltage. The logarithmic conversion is made possibikat converts the differential signal to a single-endedaiga

by the subthreshold exponential voltage-to-currentiatahip current mirror, utilizing the source node for signal progégn

of the feedback MOSFET, much like previous BJT or diodas in the VMM, is used to negate one of the currents. Though

implementations [31]. The internal amplifiers, with lalsklea gain error may occur due to threshold voltage mismatch in

gain A,, serve a dual purpose: they buffer the outputs dfie current mirrors, this is accounted for when programming

the converter, providing the current for the load transssto the corresponding column of the VMM. The resulting current

and they create a large loop gain, fixing the input voltagsignal can be positive or negative in direction. Hence, a@ispe

In addition, they lower the effective input impedance seen eonverter was designed to perform logarithmic conversion o

<
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Fig. 8: PSNR of reconstruction vs. percentage of used toamsf
coefficients. Reconstruction from using fewer coefficiezisnpared
to (a) a reconstruction using all coefficients and (b) an lided,
denoised image constructed using all coefficients. As drpece-
taining a small number of DCT coefficients gives better panfnce
than using a similar number of noiselet transform coeffisiesince
the signal is concentrated in the low frequencies. Howeagmore
DCT coefficients are used, the SNR drops in (b) because tHegana
system contributes an equal noise with each additionaficimeft but
less and less additional signal. When more coefficients se€,the
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:[BLBT 77777 noiselet-based reconstruction performed better. It shoelnoted that
- /2”222”2”5;;1 we optimized the representation of the noiselets in ourcansystem
2,,000,50,,0,, utilizing the fact that they consist of only1’s and1’s. The Noiselet-
(e) ' (g) '%%‘5255255 based reconstruction also benefits from a reconstructigarigim
high - éigggi/;ug// that optimizes over the entire image.
frequencies I DCT Basis Set Noiselet Basis Set
Fig. 7. Basis Functions and Selection of Transform Coefiisie No

(@) The 2D basis functions are outer products of pairs of 1-D
basis vectors. The DCT basis functions are structured toelede
with different spatial frequencies in images. (b) A 2D matdf
output coefficeiens representing the inner products wighdifferent

2D DCT basis functions is generally non-uniform, since moft
the energy in images lies in the low frequency componentsl) (c
Skipping 1-D basis vectors eliminates columns and rowsebilitput
matrix. (e) More typical Zig-zag selection of DCT coefficien(f) 23%

The noiselets basis are decorrelated with most image &satamd Compression
with reconstruction basis functions, making each indepandoiselet

basis function statistically significant as any other andingi an even

spread of energy. (g) Random skipping of 1-D basis vectors.

Compression

a negative or positive signal [34]. As the input current déss
from zero, the converter approximates a logarithmic cosyre
sion. This bi-directional converter is very useful in apptions
where support for large dynamic range is essential and small
currents must be sensed at moderate to high bandwidths.

48%
Compression

V. COMPRESSIVEIMAGING AND RECONSTRUCTION

In this section, we compare two different image acquisition  72%
strategies using the transform imager The imager acquires Compression
256 x 256 pixel images; the hardware implementation we
discuss here breaks the image into 2%6x 16 pixel blocks,
and measures a certain number of transform coefficients in

each of these blocks. In principle, the number of coeffigient'd: 9:  Reconstruction results using DCT and noiselet basts
' with various compression levels. The image sensor meadified6

can \{ary frpm block to_block — a useful fea_lture if ther_e alBiocks of the image projected onto DCT and noiselet basistitoims.
certain regions of the image we are more interested in thglbsets of the data were taken and used to reconstruct the éfme
others — but the experiments in this section keep this numksges using a pseudo-inverse for incomplete DCT measursraent
fixed. a nonlinear-total-variance-minimization algorithm foetnoiselets.

The first strategy is based on the discrete cosine transfogBrner; we move toward high frequencies by iteratively addi
In each block, we measurg/ 2D DCT coefficients in the rows and columns to this block. The correspondifg in

manner illustrated in Fig. 7(d). The observation indexes af1) are 2D sinusoids, as shown in Fig. 7(a). After these
in a block with the DC coefficient in the upper left-hand




. . Digital Modulation El t
measurements are off-loaded from the sensor, the image is e econ e

. . . {+1,-1,0}
reconstructed by taking an inverse DCT transform with the F+(col) [Cal - (col)
unobserved coefficients set to zero. The reconstructiohes t Reg.

image with minimum energy whose DCT coefficients match

Single Analog
Pair
<<
T
<
Row Control | =

what we have measured. Sample reconstructions are shown ig . .
A igital Modulation Element
Fig. 9. (+1.-1.0} g
h d is based on the th f ive\: g
The second strategy is based on the theory of compressive'++ Readout Control Frstm) L(sum “E.

sensing discussed in Section Il. Inside of each block, we
measureM 2D noiselet coefficients. The basis functions are v
formed by taking pairwise outer products of the 1D noiselet
basis forR!6; some of these are shown in Fig. 7(a). The noise-. ¥
let coefficients are chosen, as shown in F'g- 7(g) by Se@c“ﬂig. 10: Small additions to the pixel plane periphery circuitry wiém
M, rows andM,. columns at random (with\/ = M, M_), full 256x256 transforms using coefficients of —1, and 0. Negations are
and Observing the 2D noiselet coefficients at the intersactiachieved with differential signals by swapping signalstie pair. Differential
input voltages are nulled by setting the pair of signals te same value

of these rows and columns. Afte_r these_ measurements @f@e currents are best diverted from the summed outpute. dutput pairs
off-loaded from the sensor, the image is reconstructed kignals could have been swapped after an I-V conversion ameedted back
solving (3) with ¥ as an undecimated Daubechies-4 thre& currents.
scale wavelet transforinand ¢ = 0.01 - ||Y|,. Sample
reconstructions are shown in Fig. 9.

Care must be taken in judging the results; as we are worki
from real data, there is no “true” underlying image with whic

toh co_mrl)arﬁ ' Morel())vz\rl, thetﬁxpggr_lr_lentgl se_tU||3 tsuffers_ 'St“ the DCT acquisition scheme essentially saturates after
physical changes between the and noise’et acquis| IOQBserving about 30% of the coefficients, while the noiselet

and as a result the underlying images are slightly differe&tS reconstructions steadily improve
from one another. With this in mind, we measure the accuracy, '

X . . We close this section by mentioning some ways the archi-
of a reconstruction from partial measurements with resfmect o . . . .

) tecture could be modified to realize higher compressionsati
the reconstruction from a full set daf5, 536 measurements

in Fig. 8(a). UsingP™* to denote the image reconstructeJhe first would be to implement a hybrid acquisition scheme

by collecting a full set of noiselet coefficients and apptiyinwhICh f(_)rms a coarse approximation to t_h(_a image by d|rec_tIy
. . - measuring a small number of DCT coefficients, and then fills
the inverse noiselet transform, andy;" to denote thel,

reconstruction fromM coefficients per block, we define the'" thq deta|!s by measuring noiselet coefﬁme_nts and recon-

signal-to-noise ratio as struct_mg usmgé% m|n|m|zat|on_. AIthoggh not implemented
for this paper, this type of hybrid acquisition has outperfed

||P1’i141t _ Pnlt||2> noiselet-only acquisitions in numerical experiments (444).

Diverted
Current

I+(sum) I-(sum)
Single Output Pair

curves look like if compared against a full acquisition that

has been denoised by some mild thresholding in undecimated

Bhubechies-4 wavelet domain (the same transform used for
in the CS reconstructions). We see that the performance

[P Another way to achieve higher compression ratios is to in-
crease the block size of the imager, which would allow us to

We define theSNRI“t, the signal to noise ratio for the pcTlake advantage of the structure of the image at a larger.scale
reconstructions, in the same manner. Fig. 8 pf¥&®<t and As discussed in Section VI, this architectural modification

SNR™* for values of M ranging fromM = 25 (~ 10% of being implemented at the current time.
the measurements, ora90% compression rate) td/ = 210
(~ 82% of the measurements, or=a18% compression rate). Vi
From these plots we can see that in terms of relative
SNR the CS acquisition strategy starts to outperform the
classical DCT coded acquisition at a compression rate aftabo The imaging architecture discussed was born from a gen-
70%. Visually, the CS reconstructed images are much cleareral idea to perform image computations assisted by focal-
starting at compression rates of ab@@ts. plane processing without too much hardware at the pixel-
The CS reconstructions also benefit from the fact that thevel that would sacrifice area and sensitivity. The hardwar
basis functions are binary valueét{) — this created a larger implementation and compressive sensing application ptede
operating signal range in the analog circuitry. This is ewiced thus far represent one realization and application of agéne
by the fact that the full noiselet reconstruction in Fig. 9 iextensible architecture.
noticeably cleaner than the full DCT reconstruction. As a Mathematically, the architecture computes the Frobenius
result, the CS reconstructions compare even more favoraliger product (matrix dot product) of the incoming 2-D image
than the SNR plot, Fig. 8(a), would suggest, as they are bewth any matrix, F, that can be formed as the outer product
judged against a better image. Fig. 8(b) shows what the S¥Rtwo vectors. This is a vector-matrix-vector multipliiat,
which is the basis for matrix operations stemming block-
Iwhile the measurement operatdr acts on eachl6 x 16 block inde- \yise matrix transforms implemented in [30], [35] as well as
pendently, the transformatiol acts on the256 x 256 image as a whole. . . . . . L.
operations like convolutions and image-wide projectionto

This stitches the blocks together very naturally, avoidinglue artifacts in
the reconstruction. subspaces.

SNR™ (M) = —201og;, (

. DISCUSSION ANDEXTENSIONS OF THEIMAGER
ARCHITECTURE
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Medium Detail
Full Detail

Medium Detail m

Low Detail

(e)

(© (d)

Fig. 11: Capture of transform coefficients. (a) Complete sneed DCT Transform Data. (b) Ideal Reconstruction fromdbeplete DCT
Transform Data (c) Complete measured Haar Transform Ddadéal Reconstruction from the complete Haar Transforrtalid) Multiple
resolutions of a scene can be captured in the same frameubimig a DCT capture mode, by capturing fewer coefficientsairispof the
image. This can be adapted temporally, per-frame. Thisvalloapturing of parts of the visual field with different sphtand temporal
resolutions.

Showing that this architectural approach to imaging reachi@ areas of high interest and less detail in other areas. This
beyond traditional block-based image processing, Fig. r@n-uniform sampling approach achieves foviated imagird) a
shows data from an operation performed on this transfommaintains peripheral awareness. Such a result would I&ek li
imager—a convolution implementing an edge-detection fithat in Fig. 11. Looking at the operation on each block, a
ter. Omitting hardware details, it is conceptually enough typical matrix transform is one where the transformationr ma
understand that the previous block-based architecturetdvadrix is constructed from an orthogonal basis set. This igluse
be extended to support operating on overlapping blocks fofr instance, to remap a spatial representation to a frexyuen
the image, rather than strictly adjacent blocks. Elimimati representation. Again, a DCT is one such transformation,
the fixed block boundaries avoids, among other things, thdich does a good job of creating an image representation
associated edge artifacts. which segments high and low frequency components in the

While the traditional block-based processing genre (thigage. Both a block-based DCT and block-based Harr capture
uniform, repeated application of an operation to blockshef t are shown in Fig. 11. Since most image energy is in the
image) is pursued to reduce hardware area and developniewer spatial frequency domain, a DCT does what is called
time, it is not fundamental. In fact one alternative imageav energy compaction. This means for arxN block, a majority
mode of operation was included on this imager for furth&f the image’s energy is represented by less th&hDCT
study. While in the first mode, the kernél is restricted to coefficients. This can be seen by the sparsity of the DCT tresul
be a size of 1616, with elements of analog values in thén Fig. 2. The user can choose to only calculate and capture
range[—1, 1], and it operates on a selectablexii® block the coefficients representing the majority of the image g@ner
of the image—this is the mode of operation described thégplying a subset of the rows ol can be considered math-
far. In another mode, F is restricted to the values, 0, ematically equivalent to zeroing rows of the output, Figc)7(
and 1. In this mode, the inner product is computed on aliut saves time and power by avoiding unnecessary capture,
256x 256 elements; so the imager is capable of performiggnversion, and processing. By deactivating columns of the
full-image transformations. Fig. 10 illustrates the setorode B” matrix and turning off corresponding ADC'’s, Fig. 7(d),

of operation. further savings are achieved.
Even further flexibility in the capture process is available
given our architecture. For one, subregions of the image can VIl. CONCLUSION

be captured instead of the entire image on a per-frame basisve demonstrated a computational sensor IC capable of
This would be motivated by previous information about wherg unique and flexible set of sampling modes applicable to
regions of interest are in the image and the desire for lowesmpressive imaging. The capabilities of the IC to recon-
power or higher frame rates. Coupling predictive algorghnfigurably sense and processes data in the analog domain
into the determination of regions of interest provides #ign provides a versatile platform for compressive sensing op-
cant data reduction opportunities. erations. To demonstrate the platform, images were sensed
Even more interesting is a multiresolution approach whetierough projections onto noiselet basis functions thdizeta

sampling functions are constructed to capture the mostildetainary coefficient set{1, —1}, and DCT basis functions that
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use a range of coefficients. The recent work in the field @fg] D. J. Brady, M. Feldman, N. P. Pitsianis, J. P. Guo, A.tRay, and
compressive sensing enabled effective image reconsiructi

from a subset of the measurements taken. The fundamental

architecture is flexible and extensible to adaptive, fourralg-

ing and adaptive processing in combination with non-adepti

compressive sensing.
We illustrated the critical circuit components necessary t

implement a separable transform image sensor. The finatisp&8!
of the entire system, including image acquisition and pro-
gramming, are in testing, but the newly-designed companent
provide the proper foundation for implementation of a largé?!
separable transform imager. The IC results thus far havershog)
successful system-level current-based sensing and catigut
with wide dynamic range.

We described a flexible hardware platform which we ar[e

[19]

[20]

24]

developing for dynamically capturing and filtering images.

Combining reprogrammable analog processing at the senagf

level with reconfigurable digital control allows system re-
sources to be maximally utilized. A flexible AtLAB interface
allows users to couple image processing with creative a[}g)]
dynamic algorithms for capturing visual information.
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