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Compressive Sensing on a CMOS
Separable-Transform Image Sensor
Ryan Robucci, Jordan Gray, Leung Kin Chiu, Justin Romberg, Paul Hasler

Abstract—This paper demonstrates a computational image
sensor capable of implementing compressive sensing operations.
Instead of sensing raw pixel data, this image sensor projects
the image onto a separable 2-D basis set and measures the
corresponding expansion coefficients. The inner products are
computed in the analog domain using a computational focal-
plane and an analog vector-matrix multiplier. This is more than
mere post-processing, as the the processing circuity is integrated
as part of the sensing circuity itself.

We implement compressive imaging on the sensor by using
pseudo-random vectors callednoiselets for the measurement
basis. This choice allows us to reconstruct the image from only
a small percentage of the transform coefficients. This effectively
compresses the image without any digital computation, reduces
the throughput of the analog-to-digital converter. The reduction
in throughput has the potential to reduce power consumption
and increase the frame rate.

The general architecture and a detailed circuit implementation
of the image sensor are discussed. We also present experimental
results that demonstrate the advantages of using the sensorfor
compressive imaging rather than more traditional coded imaging
strategies.

Index Terms—imaging, image sensors, image sampling, intel-
ligent sensors

I. HARDWARE FOR COMPRESSIVEIMAGE SENSING

Following the standard model for imaging, the amount
of data a sensor must capture, quantize, and transfer for
processing scales linearly with its resolution. As images are
typically structured, they can be compressed by significantra-
tios with very little information being lost, making storage and
transmission less costly. But as this compression is typically
implemented on a digital signal processor (or other digital
computing device), its benefits are realized only after the entire
image has been converted to a digital representation and piped
off of the sensor.

In this paper, we present an imaging architecture that
compresses the image before it is converted to a digital
representation, Fig. 1(a), using analog processing to remap the
signal, Fig. 1(b). The architecture is based on a computational
image sensor, which we call thetransform imager. While most
high-density imager architectures separate the image readout
from the computation, the transform imager takes advantage
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Fig. 1: Compressive Sensing System Design (a) Total data manipulation
and power is reduced in the chain from sensor to transmitter by sampling less
often instead of just compressing data in the digital domain. (b) Illustration
of computation integrated into analog sensor interface circuity. Time varying
row-weightings and parallelized column-weightings are applied according
to selected basis functions as summations are performed. The output of
the analog system is a transformed version of the image. By utilizing an
incomplete subset of basis functions, fewer sensory-computations and analog-
to-digital conversions need to be performed.

of the required pixel read out to perform computationsin
analog. The imager is very flexible: by integrating focal-plane
computation with peripheral analog computation circuitry, a
variety of linear transformations can be performed, Fig. 2.
Here, we configure the sensor to compute a separable trans-
form of the pixelized data, and the computed coefficients are
then quantized with an analog-to-digital converter (ADC).The
compression comes from simply limiting the read-out to a
subset of these coefficients.

The imager is fabricated using a 0.35-µm CMOS process.
The current design has a 256×256 sensor array using a pixel
size of 8×8 µm2 implemented in 22.75 mm2 area. Since the
data compression is integrated into the sensor array at the
front end of the system, all subsequent stages can receive the
benefits of compression. Fewer numbers have to be transferred
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Fig. 2: Separable-Transform Imager Output. This imager canim-
plement a veriety of functions depending on how it is pro-
grammed. Shown here is edge-detection via a convolution with vector
[1, 2, 3, 0,−1,−2,−3] in the horizontal and vertical direction and
block DCT. While the orginal image can be recontructed, often
the transformed result is more useful for processing, analysis, and
transmission.

off of the sensor array and passed through the ADC, saving
time and power. The digital image computations can also be
moved away from the sensor, a feature that is particularly
attractive if the camera is part of a distributed wireless sensor
network that utilizes a central processing node, as the sensor
itself will often have strict power and form-factor constraints.

The question, then, is what type of transform the imager
should take to make the compression as efficient as possible.
We compare two different sensing strategies. In the first, the
imager measures a certain number of discrete cosine transform
(DCT) coefficients, starting from low spatial frequencies and
working outwards. The image is reconstructed — digitally and
away from the sensor — by taking an inverse DCT. This choice
of transform (and the ordering of the coefficients) is inspired
by the JPEG compression algorithm: it is often the case that we
can build a reasonable approximation to an image simply by
keeping its low (spatial) frequency components and discarding
its high frequency components.

The second sensing strategy is inspired by the recently
developed theory of compressive sensing (CS) [1]–[4]. CS,
which is reviewed in Section II, is based on a more refined
image model than JPEG: rather than approximating an image
using a small number of low frequency DCT coefficients, we
use a small number of arbitrarily locatedwavelet (or other
sparsifying transform) coefficients. From correlations ofthe
image against pseudo-random “incoherent” basis functions,
convex programming — again implemented digitally away
from the sensor — can be used to simultaneously locate the
important transform coefficients and reconstruct their values.
The theory of CS suggests that fromm of these correlations,
we can compute an approximation to the image which is

almost as good as if we had observed them most important
transform coefficients directly. From a broad perspective,CS
theory tells us that the amount of data the sensor must capture
scales with theinformation content of the image (i.e. its
compressibility) rather than its resolution.

This paper is organized as follows: An overview of compres-
sive sensing is given in Section II. Several imaging systems
based on compressive sensing are surveyed in Section III. Sec-
tion IV presents the structure of the transform image sensor,
the computation of our transform imager, and integrated test
setup. Section V discusses using the transform image sensor
for compressive sensing, including showing experimental re-
sults for this compressed sensing front end, as well as the
resulting reconstruction. Integrating non-volatile analog mem-
ory and a versatile random access approach enables a variety
of operations like multi-resolution and selective sensing; some
of these extesions are discussed in Section VI. Final remarks
are made in Section VII.

II. COMPRESSIVESENSING

The image sensor gives us the freedom to measure the
pixelized image using inner products with any sequence of
(separable) basis functions. We would like to choose these
basis functions so that: 1) the image can be reconstructed
from the smallest number of measurements, and 2) the re-
construction can be computed in an efficient manner. The
theory ofcompressed sensing [1]–[4] tells us that if we have a
sparse representation for images of interest, the measurement
functions should be chosen from a complementaryincoherent
basis.

Mathematically, the measurements the sensor makes can be
written as a series of inner products:

y1 = 〈φ1, P 〉, y2 = 〈φ2, P 〉, . . . , ym = 〈φm, P 〉. (1)

Above,P is the image we are acquiring and theφk are the
measurement basis functions. As the computations in (1)
happen after the image is captured (but before it is digitized),
P and theφk can be taken as vectors. Even though the image
P is naturally arranged as a 2-Dn×n array, we will often treat
it as a “rasterized”n2 × 1 vector for notational convenience.
The entire measurement process can be written compactly as
Y = ΦP , whereΦ is am×n2 matrix,Y is a vector inRm and
P is a vector inRn

2

. ReconstructingP from the measurements
Y is then a linear inverse problem. Since our goal is to take
many fewer measurements than there are pixels in the image,
m≪ n2, the inverse problem is severely underdetermined. To
counteract this, we incorporate a priori information aboutthe
structure of the image into the reconstruction.

The y1, . . . , ym can be used to calculate a projection onto
the subspace ofRn

2

spanned by theφ1, . . . , φm (this is trivial
if the φk are orthogonal to one another). This points to one
possible acquisition strategy: find a subspace in which we
believe the energy of the image we are trying to sample
is concentrated, and then choose theφk as a basis for this
subspace. A good choice for this subspace, one motivated by
the fact that most of the energy in a typical photograph-like
image tends to be at low spatial frequencies, is the span of
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the firstm 2D DCT coefficients taken in the same “zig-zag”
order as in the JPEG compression standard [5].

Projecting the image onto the subspace of low-frequency
sinusoids is an effective way to get a very low-dimensional,
smoothed-out (“blurry”) approximation to the image. How-
ever, details in the image (sharp edges and localized features)
resolve slowly asm increases — these local features are
diffused across all spatial frequencies, making them hard to
represent using the DCT. This type of approximation also often
suffers from “ringing” around the edges (Gibbs phenomena).

We can construct better low-dimensional approximations to
images using the wavelet transform [6], [7]. Wavelets give us
a representation for images that is sparse and automatically
adapts to local structure; only a small percentage of the
wavelet coefficients are significant, and they tend to cluster
around edge contours and other singularities. This sparseness
allows us to construct an accurate and sharp approximation of
medium-size images (one megapixel, say) simply by retaining
around 2–5% of their most significant wavelet coefficients and
throwing away the rest. That such accurate approximations can
be formed so easily is the reason that the wavelet transform
lies at the heart of nearly every competitive image compres-
sion algorithm, including the JPEG2000 image compression
standard [8].

There is a subtle difference between the two types of
approximation described above; in the first, we are projecting
the image on to a fixed subspace (spanned by low frequency
sinusoids), while in the second we areadapting the subspace
(spanned by the wavelet basis functions corresponding to the
largest wavelet coefficients) to the image. It is this adaptation
that accounts for almost the entire advantage of wavelet-based
approximation over DCT-based approximation. It is also less
straightforward to exploit these advantages in our acquisition
system: we would like to measure only the significant wavelet
coefficients, but we have no idea which coefficients will be
significant beforehand.

The theory of compressive sensing shows us how we can
choose a set ofφk to take advantage of the fact that the image
is sparse. One of the central results of CS says that if the image
is sparse in an orthonormal basisΨ (e.g. the wavelet domain),
then we should select theφk from an alternative basisΦ′ that
is very different than ( orincoherent with) Ψ. Formally, the
coherence between two image representations is simply the
maximum correlation of a basis vector fromΨ with a basis
vector fromΦ′:

µ(Ψ,Φ′) = max
ψ∈Ψ

φ∈Φ

|〈ψ, φ〉|.

We will always haveµ ≥ 1/n, and so we will callΨ andΦ′

“incoherent” if µ(Ψ,Φ′) ≈ 1/n. Fortunately, there is a known
orthogonal system, called thenoiselet transform [9], that is
incoherent with the wavelet transform. Examples of noiselets
are shown in Fig. 7; they are binary, 2-D separable basis
vectors which look like pseudo-random noise. They are also
spread out in the wavelet domain. IfΨ is a 2-D Daubechies-
8 wavelet transform forn = 256 and Φ′ is the noiselet
transform, thenµ(Ψ,Φ′) ≈ 4.72/n.

Given the measurementsY , there are a variety of ways we
can reconstruct the image. One popular way, which is provably
effective, is to set up an optimization program that encourages
the image to be sparse in theΨ domain while simultaneously
explaining the measurements we have made:

min
X

‖Ψ(X)‖1 subject to ΦX = Y. (2)

This program sorts through all the of images consistent with
what we have observed and returns the one with smallest
ℓ1 norm in theΨ domain. Theℓ1 norm promotes sparsity
— sparse vectors have smallerℓ1 norm than non-sparse
vectors with the same energy. When there is noise or other
uncertainties in the measurements, (2) can be relaxed to

min
X

‖Ψ(X)‖1 subject to ‖ΦX − Y ‖2 ≤ ǫ, (3)

whereǫ is chosen based on the expected noise level.
WhenΦ is chosen from an incoherent system and the image

P we are trying to recover is sparse, the recovery programs
(2) , (3) come with certain theoretical performance guarantees
[1], [2], [4]. From m incoherent measurements, (2) will
produce an approximation̂P to P that is as good as a wavelet
approximation using on the order of∼ m/ log4 n terms.
Numerical experiments suggest even more favorable behavior;
P̂ is often as good as a≈ m/4 term wavelet approximation
[10], [11]. The essential message here is that the number of
measurements we need to faithfully acquireP depends mainly
on how well we can compressP (i.e. its inherent complexity)
and not on the number of pixels it has. If the vast majority of
the information about the image is contained in 2-5% of the
wavelet coefficients, then we can acquire it using a number
of measurements which is≈ 8 − 20% of the total number of
pixels.

There are two extensions to the CS methodology that help
produce better image reconstructions in practice. The firstis to
makeΨ a redundant (orundecimated) wavelet transform [12];
this choice tends to produce images with fewer local artifacts.
Another way to boost image reconstruction quality is by using
an iterative reweighting scheme [13]. After obtaining an initial
solution P̂0 to (3) (or (2) ), we re-solve the program, but
with a weightedℓ1 norm:

min
X

‖W · Ψ(X)‖1 subject to ‖ΦX − Y ‖2 ≤ ǫ

The weighting matrixW is diagonal, and its entries are
inversely proportional to the magnitudes of the corresponding
entries inΨ(P̂0)

Wii =
1

|Ψ(P̂0)i| + γ
,

for small γ > 0. This reweighting can be applied multiple
times in succession, with the weights adjusted according to
the transform coefficients of the previous solution.

III. C OMPRESSIVESENSING-INSPIREDIMAGING SYSTEMS

In this section, we briefly describe other compressive imag-
ing architectures that have been proposed in recent years.
Generally speaking, in these alternative architectures the
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compressive measurements (inner products with measurement
basis functions as in (1) ) are taken by manipulating the
light field using some type of high-resolution, spatial light
modulation or optical dispersion, and then measured using a
low-resolution sensor array, the output of which is immediately
converted into the digital domain. In contrast, the optics in
our transform imager are completely standard, and the image
is measured using a high-resolution sensor array. Before the
pixel values are converted to digital, we use low-power analog
electronic processing to take the compressive measurements,
and digitize the result. Another imager architecture that uses
random electronic modulation is also discussed.

In [14], the concept of a high-resolution SLM followed by
a low-resolution sensor array is taken to the extreme with a
single pixel camera. As light enters the system, it is focused
with a lens onto a digital micromirror device (DMD). The
DMD is a large array (1024 × 768 in this case) of tiny
mirrors, each of which can be individually controlled to point
in one of two directions. In one of these directions lies another
lens which focuses the “output” of the DMD onto a single
photodetector. The net effect is that the photodetector measures
an inner product of the image incident on the DMD with a
single binary (0-1 valued) basis function. The measurements
are taken serially, and reconstructed using the same techniques
discussed in Section II. Because it uses only uses a single
sensor, the single pixel camera is very well-suited for imaging
modes where detectors are expensive; see for example its
application to low-light imaging with photomultiplier tubes
[15] and terahertz imaging [16].

The Compressive Optical MONTAGE Photography Initia-
tive (COMP-I) at Duke University has developed a number of
compressive imaging architectures [17]–[19] with the goalof
creating very thin cameras. One such architecture, described
in detail in [17], compressive imaging is implemented using
a camera with multiple apertures. There, a block transform is
implemented on the focal plane as follows. The incoming light
meets an array of lenses (or “lenslets”), each of which focuses
the entire image onto a different section of the sensor array.
Before each image hits its part of the array, it passes through
a high-resolution aperture mask. Each section of the pixel
array then measures the correlation of the image with the code
determined by the aperture mask; if there are multiple pixel
sensors per aperture, the inner product is broken up locally.

In [20], a camera with a “random lens” is detailed. In this
work, the lens of a camera is replaced with a random reflective
surface. The effect is that a single “pixel” in the input image
contributes to several different pixels in the measurementarray,
the locations of which may be completely non-local. The
random reflective surface is created in an uncontrolled way,so
the camera must be calibrated to discover the sensing matrix
Φ. There is a trade-off here, as the sparser the sensing matrix
Φ is, the easier it is to discover (by training the camera on
a relatively small set of randomly generated but known input
images) and compute with, but the less like a compressive
sampling matrix it is—sparse matrices have high coherence
with the wavelet transform (which is also sparse).

The approaches discussed thus far utilize moving parts
and/or specialized optics to perform optical computations,

while our transform imager utilizes analog electronic com-
putations. Another approach using electronic computations is
a CMOS convolution imager architecture introduced in [21].
Like the transform imager, this convolution imager is basedon
a CMOS pixel array which does local, per-pixel computations.
As the analog image data sits on the sensor array, it is
convolved with a random,binary pulse sequence of1’s and
−1’s, and the result is randomly subsampled (convolution with
a random pulse sequence followed by subsampling comes with
the same compressive sampling guarantees as sampling in an
incoherent basis, see [22], [23]). Thebinary weights for the
random pulse sequence are passed through the array using a
circular shift register initialized with a random sequence. This
imager does not rely on a separable basis as our transform
imager does, but it lacks the ability to use adaptable or analog
weights, perform other computations such as DCT, or tailor
measurements to extract details from portions of the image
plane.

IV. T RANSFORM IMAGE SENSOR

The separable transform image sensor uses a combination
of focal-plane processing performed directly in the pixels, and
an on-die, analog, computational block to perform compu-
tation before the analog-to-digital conversion occurs. Unlike
traditional imagers, this imager performs computation on-
chip and in-pixel. The primary computation performed is a
separable matrix transformation. This sensor includes a novel
overlapping block scheme allowing 8×8 general separable 2-D
convolutions and 16×16 block transforms.

The fundamental capability of this imager can be described
as a matrix transform:Yσ = ATPσB, whereA andB are
transformation matrices,Y is the output,P is the image, and
the subscriptσ denotes the selected sub-region of the image
under transform. The regionσ is a 16×16 pixel block starting
at an offset (8m,8n) wherem andn are positive integers. The
offset increments are smaller than the support region to allow
transforms that can reduce or eliminate blocking artifacts,
such as separable convolutions up to 8×8. These separable
transform capabilities are demonstrated in hardware to be able
to perform compressive sensing.

The first computation is performed at the focal plane, in
the pixels, using a computational sensor element as depicted
in Fig. 3(a). It uses a differential transistor pair to create a
differential current output that is proportional to a multipli-
cation of the amount of light falling on the photodiode and
the differential voltage input.1 This operation is represented
in Fig. 4 as the element for thePσ block. The electrical
current outputs from pixels in a column add together, obeying
Kirchhoff’s current law. This aggregation results in a weighted
summation of the pixels in a column, with the weights being
set by the voltages entered into the left of the array. With a
given set of voltage inputs from a selected row ofA, every
column of the computational pixel array computes its weighted
summation in parallel. This parallel computation is of key
importance, reducing the speed requirements of the individual
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computational elements.
The second computation is performed in an analog vector-

matrix multiplier (VMM) [24]. This VMM may be designed so

1The term differential refers to the technique of encoding signals in
the difference of two complimentary signals. The two signals are called
a differential pair and the signal encoded in their difference is called a
differential signal. The average of the two signals is called the common-mode
signal, and is present for practical reasons even though information is usually
not encoded in it. The term differential is also used to denote techniques
and circuits that process differential signals, usually involving complementary
circuit components Differential signaling and processingis more robust to
system noise that effects the complementary signals equally, and minimizes
distortion [24].

that it accepts input from all of the columns of the pixel array,
or it can be designed with multiplexing circuity to only accept
a time-multiplexed subset of the columns. This decision sets
the support region for the computation. The implementation
used for these experiments uses the time-multiplexed column
option. The elements of the VMM use analog floating-gate
transistors to perform multiplication in the analog domain.
Each element takes the input from its column and multiplies
it by a unique, reprogrammable coefficient. The result is an
electrical current that is contributed to a shared column row.
Using the same automatic current summation as the image
sensingP matrix, a parallel set of weighted summations occur,
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resulting in the second matrix operation.
The setup is shown in Fig. 3(b). The image sensor IC is

mounted on a custom PC board, which includes ADCs, DACs,
current measurement, and other minor interfacing components.
Physically, the imager board is a daughter card of the FPGA
motherboard. The FPGA is configured to implement a soft-
core processor and collection of custom hardware interface
components described in VHDL. The supporting components
handle timing-critical signal flow, allowing for more man-
ageable but less timing-sensitive C code to be used on the
soft-core processor. A supporting VHDL module also handles
interfacing to the external USB IC for communicating with a
computer. The user interface to the system is a set of MATLAB

functions which encapsulate the IC control. The user has the
ability to program an arbitrary set of coefficients into theA
andB matrices. A DCT is an example of such a transformation
matrix. The user can then capture the image, which undergoes
the on-chip transformation.

CMOS imaging technology can be implemented on stan-
dard, relatively low-cost CMOS processes. CMOS implemen-
tation enables integration of large amounts of computational
circuitry with sensor and interface circuitry. By integrating
circuit components into the image sensor, such as in-pixel
ADCs [25], CMOS technology has become competitive in the
high-end camera market. Other aggressive circuit integrations
in CMOS imaging technology provide additional computa-
tionally significant gains, such as random image access [26],
dynamic field of view capabilities [27], multi-resolution image
sensing [28], and biologically inspired abilities such as edge
enhancement [29].

The system IC, as shown in Fig. 4(a), is composed of the
following: a random-access analog memory, row and column
selection control, a computational pixel array, logarithmic
current-to-voltage (I-V) converter, an analog vector-matrix
multiplier, and a bidirectional I-V converter. Fig. 4(c) shows
the die photo of the transform imager IC. We will describe
these blocks in the following subsections.

A. Light Sensor and Interfacing

Fig. 4(b) shows a schematic of an 8×1 pixel tile. Each pixel
is a photosensor and a differential transistor pair, providing
both a sensing capability and a multiply-accumulate operation.
The output of each pixel is a differential current1 and it
represents a multiplication of the light intensity fallingon the
photosensor by a weighting value represented by a voltage
input. Pixels along a given row of the image plane share a
single, differential, voltage input, which sets the multiplication
factor for the row. Pixels along a column share a differential-
current output line. Since the outputs of the pixels are currents,
and currents onto a node sum together, an addition operation
is performed. More specifically, this a weighted summation,
also known as a dot product. Within each tile is a switch
which selectively allows the pixels in the tile to output to the
column. When deselected, the pixels’ currents are switched
off of the column’s output line and onto a separate fixed-
potential line. Since only a sub-portion of the rows of the
imager are read at a time, these switches result in a1/8th re-
duction of parasitic capacitance introduced by the deactivated
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Fig. 5: Circuitry and Results from our Programmable Analog Wave-
form Generation. (a) Circiut Diagram for a Basic voltage buffer. (b)
By replacing the input transistor with a selectable analog float-gate
transistors, we transform the buffer circuit into an analogwafeform
generator. (c) Full Analog Memory Bank. (d) Measured Results of
DCT Programmed as Differential Pairs. The differential errors were
within 400 µV, approximately our measurement precision.

pixels’ drain junctions. Furthermore, these parasitic junctions
introduce unwanted currents to the output line, since they
themselves are photo diodes. Therefore, these switches reduce
parasitic capacitances and currents to improve SNR.

B. Random Access Analog Memory

A compact analog memory structure was used to implement
a storage for theA matrix, as shown in Fig. 5. It uses analog
floating gates to store the coefficients of the transform matrix,
which means that no digital memory or DACs are required to
feed the analog weighting coefficients to the computational
pixel array. The use of several DACs along with digital
memory would be costly in size and power. Building the
memory storage element into the voltage generation structure
avoids unnecessary signal handling and conversion, savingsize
and power.

The basic structure of the analog memory is an amplifier
connected as a follower, Fig. 5(a). However, one of the differ-
ential pair transistors has been replaced with a reprogrammable
bank of selectable analog floating-gate PFETs (FGPFET),
Fig. 5(b). Each FGPFET shares the same inputVbias, but
is programmed to a particular voltage offset that sets the
desired output voltage. The programming procedure inherently
avoids issues of voltage offsets due to mismatches in the
transistors and in the op-amp itself by directly monitoring
the output in the programming cycle. The use of floating-gate
transistors, which act much like standard transistors thathave
a programmable threshold voltage instead of a fixed one, is



7

Vref

Vref

Vref

Vref I+
out0 I-

out0 I+
out1 I-

out1

A

A

A

A

Input Log Amps
Fully Differential

Multiplier Cell

C
in

C
in

C
in

C
in

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

I+
in0

I-
in0

I+
in1

I-
in1

Fig. 6: Circuit Diagram of our Floating-Gate Vector-MatrixMultiplier
(VMM) Components. We use this circuit to perform the second
matrix multiplication on the image.

discussed in [30]. Generating 16 differential outputs, where the
signal is encoded in the difference of two voltages, requires
32 amplifier structures. The storage of a 16×16 differential
values requires a total of 32 rows× 16 columns of floating
gates. Stacking the amplifiers atop each other creates a 2-D
array of floating-gates in a convenient structure for parallel
addressing and fits well into floating-gate array programming
schemes.

C. Current-Based Vector-Matrix Multiplication Design

The vector-matrix multiplier performs multiplication using
addition on a logarithmic scale. First, the so-called logarith-
mic current-to-voltage converters generate voltages thatare
logarithmically proportional to the currents received from the
pixel plane. These voltages are passed to an array of elements
that create output currents that are exponentially relatedto the
the voltages received from the current-to-voltage converters.
These elements have individually programmed references that
effectively shift the scales by which the input voltages are
interpreted. This scale shift in the voltage domain corresponds
to multiplication in the current domain. Current can vary over
several orders of magnitude without saturating or distorting
the behavior of the system while voltage range and precision
is limited. Therefore, it is advantageous that the inputs and
outputs of this hardware scheme are currents and that the
intermediate signal is a voltage on a logarithmic—therefore
compressed—scale.

With these concepts in mind, the back end circuitry of the
imager was designed to handle the large line capacitances
and high dynamic range of the pixel array’s output. Fig. 6
shows logarithmic transimpedance amplifiers on the left; the
amplifiers sense and logarithmically convert the pixel current
to a voltage. The logarithmic conversion is made possible
by the subthreshold exponential voltage-to-current relationship
of the feedback MOSFET, much like previous BJT or diode
implementations [31]. The internal amplifiers, with labeled
gain Av, serve a dual purpose: they buffer the outputs of
the converter, providing the current for the load transistors,
and they create a large loop gain, fixing the input voltage.
In addition, they lower the effective input impedance seen at

the drain of the feedback transistor by the gain,Av. This low
impedance generation is critical to sensing low currents in
the presence of large capacitance. The amplifiers can even be
matched by programming.

Unfortunately, the power consumption of this topology
is roughly proportional to the dynamic range the circuit is
designed to support. This stems from the need to maintain
stability in the feedback loop [32]. Since the dynamic range
is several orders of magnitude, significant costs are incurred
in order to support the full range. To alleviate this, an au-
tomatic gain control (AGC) amplifier was integrated into the
feedback loop, reducing power consumption dependence on
dynamic range support. This is also discussed in [32]. Since
subthreshold source conductance scales with input current, the
gainA can be allowed to drop with higher input currents while
still maintaining the low input impedance and stability. The
AGC amplifier lowers its gain at higher output voltages, which
correspond to larger input currents.

The log amp plays an integral role in the analog vector-
matrix multiplier (VMM), which performs theB matrix mul-
tiplication. As shown in Fig. 6, every FGPFET in the array,
coupled with the respective row’s log amp, forms a wide range,
programmable gain current mirror. Rather than utilize voltage
movement on the gates of transistors, this current mirror uses
changes on of the source voltages of the transistors to perform
signal transfer, as in [24], minimizing power law errors caused
by mismatches in gate-to-surface coupling. Each quadruplet of
VMM FGPFETs corresponds to one coefficient inB. For a
fully differential multiplication,w, the programmed gains for
a quadruplet are set to

[

1 + w/2 1 − w/2
1 − w/2 1 + w/2

]

.

All VMM transistors along a row share the same input signal
and perform their respective multiplications. The output cur-
rents are summed along the columns. The resulting differential
current output vector is a vector-matrix multiplication,vB.
The work in [33] implements a similar VMM structure used
in a classifier circuit.

D. Logarithmic, Bidirectional, Current-to-Voltage Conversion

Since the output of the VMM is a differential current, and
a single value is required for the final output, a differential
to single-ended conversion was required. With the desire to
maintain the ability to process wide dynamic range signals,a
logarithmic conversion was sought. Because the resolutionof
a logarithmic signal is proportional to the signal, it is desirable
to remove the common-mode component of the signal before
the conversion.1 To perform the precursory current subtraction
that converts the differential signal to a single-ended signal, a
current mirror, utilizing the source node for signal propagation
as in the VMM, is used to negate one of the currents. Though
a gain error may occur due to threshold voltage mismatch in
the current mirrors, this is accounted for when programming
the corresponding column of the VMM. The resulting current
signal can be positive or negative in direction. Hence, a special
converter was designed to perform logarithmic conversion on
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Fig. 7: Basis Functions and Selection of Transform Coefficients.
(a) The 2D basis functions are outer products of pairs of 1-D
basis vectors. The DCT basis functions are structured to correlate
with different spatial frequencies in images. (b) A 2D matrix of
output coefficeiens representing the inner products with the different
2D DCT basis functions is generally non-uniform, since mostof
the energy in images lies in the low frequency components. (c,d)
Skipping 1-D basis vectors eliminates columns and rows of the output
matrix. (e) More typical Zig-zag selection of DCT coefficients. (f)
The noiselets basis are decorrelated with most image features and
with reconstruction basis functions, making each independant noiselet
basis function statistically significant as any other and giving an even
spread of energy. (g) Random skipping of 1-D basis vectors.

a negative or positive signal [34]. As the input current deviates
from zero, the converter approximates a logarithmic compres-
sion. This bi-directional converter is very useful in applications
where support for large dynamic range is essential and small
currents must be sensed at moderate to high bandwidths.

V. COMPRESSIVEIMAGING AND RECONSTRUCTION

In this section, we compare two different image acquisition
strategies using the transform imager The imager acquires
256 × 256 pixel images; the hardware implementation we
discuss here breaks the image into 25616 × 16 pixel blocks,
and measures a certain number of transform coefficients in
each of these blocks. In principle, the number of coefficients
can vary from block to block — a useful feature if there are
certain regions of the image we are more interested in than
others — but the experiments in this section keep this number
fixed.

The first strategy is based on the discrete cosine transform.
In each block, we measureM 2D DCT coefficients in the
manner illustrated in Fig. 7(d). The observation indexes are
in a block with the DC coefficient in the upper left-hand
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Fig. 8: PSNR of reconstruction vs. percentage of used transform
coefficients. Reconstruction from using fewer coefficientscompared
to (a) a reconstruction using all coefficients and (b) an idealized,
denoised image constructed using all coefficients. As expected, re-
taining a small number of DCT coefficients gives better performance
than using a similar number of noiselet transform coefficients since
the signal is concentrated in the low frequencies. However,as more
DCT coefficients are used, the SNR drops in (b) because the analog
system contributes an equal noise with each additional coefficient but
less and less additional signal. When more coefficients are used, the
noiselet-based reconstruction performed better. It should be noted that
we optimized the representation of the noiselets in our analog system
utilizing the fact that they consist of only−1′

s and1′
s. The Noiselet-

based reconstruction also benefits from a reconstruction algorithm
that optimizes over the entire image.

DCT Basis Set Noiselet Basis Set

No

Compression

23%

Compression

48%

Compression

72%

Compression

Fig. 9: Reconstruction results using DCT and noiselet basissets
with various compression levels. The image sensor measured16×16
blocks of the image projected onto DCT and noiselet basis functions.
Subsets of the data were taken and used to reconstruct the shown im-
ages using a pseudo-inverse for incomplete DCT measurements and
a nonlinear-total-variance-minimization algorithm for the noiselets.

corner; we move toward high frequencies by iteratively adding
rows and columns to this block. The correspondingφk in
(1) are 2D sinusoids, as shown in Fig. 7(a). After these
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measurements are off-loaded from the sensor, the image is
reconstructed by taking an inverse DCT transform with the
unobserved coefficients set to zero. The reconstruction is the
image with minimum energy whose DCT coefficients match
what we have measured. Sample reconstructions are shown in
Fig. 9.

The second strategy is based on the theory of compressive
sensing discussed in Section II. Inside of each block, we
measureM 2D noiselet coefficients. The basis functions are
formed by taking pairwise outer products of the 1D noiselet
basis forR16; some of these are shown in Fig. 7(a). The noise-
let coefficients are chosen, as shown in Fig. 7(g) by selecting
Mr rows andMc columns at random (withM = MrMc),
and observing the 2D noiselet coefficients at the intersection
of these rows and columns. After these measurements are
off-loaded from the sensor, the image is reconstructed by
solving (3) with Ψ as an undecimated Daubechies-4 three-
scale wavelet transform1 and ǫ = 0.01 · ‖Y ‖2. Sample
reconstructions are shown in Fig. 9.

Care must be taken in judging the results; as we are working
from real data, there is no “true” underlying image with which
to compare. Moreover, the experimental setup suffers slight
physical changes between the DCT and noiselet acquisitions,
and as a result the underlying images are slightly different
from one another. With this in mind, we measure the accuracy
of a reconstruction from partial measurements with respectto
the reconstruction from a full set of65, 536 measurements
in Fig. 8(a). UsingP nlt to denote the image reconstructed
by collecting a full set of noiselet coefficients and applying
the inverse noiselet transform, and̂P nlt

M to denote theℓ1
reconstruction fromM coefficients per block, we define the
signal-to-noise ratio as

SNRnlt(M) = −20 log10

(

‖P̂ nlt

M − P nlt‖2

‖P nlt‖2

)

.

We define theSNRdct, the signal to noise ratio for the DCT
reconstructions, in the same manner. Fig. 8 plotsSNRdct and
SNRnlt for values ofM ranging fromM = 25 (≈ 10% of
the measurements, or a≈ 90% compression rate) toM = 210
(≈ 82% of the measurements, or a≈ 18% compression rate).

From these plots we can see that in terms of relative
SNR the CS acquisition strategy starts to outperform the
classical DCT coded acquisition at a compression rate of about
70%. Visually, the CS reconstructed images are much cleaner
starting at compression rates of about75%.

The CS reconstructions also benefit from the fact that the
basis functions are binary valued (±1) — this created a larger
operating signal range in the analog circuitry. This is evidenced
by the fact that the full noiselet reconstruction in Fig. 9 is
noticeably cleaner than the full DCT reconstruction. As a
result, the CS reconstructions compare even more favorable
than the SNR plot, Fig. 8(a), would suggest, as they are being
judged against a better image. Fig. 8(b) shows what the SNR

1While the measurement operatorΦ acts on each16 × 16 block inde-
pendently, the transformationΨ acts on the256 × 256 image as a whole.
This stitches the blocks together very naturally, avoidingundue artifacts in
the reconstruction.
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Fig. 10: Small additions to the pixel plane periphery circuitry allowed
full 256×256 transforms using coefficients of1, −1, and 0. Negations are
achieved with differential signals by swapping signals in the pair. Differential
input voltages are nulled by setting the pair of signals to the same value
while currents are best diverted from the summed outputs. The output pairs
signals could have been swapped after an I-V conversion and converted back
to currents.

curves look like if compared against a full acquisition that
has been denoised by some mild thresholding in undecimated
Daubechies-4 wavelet domain (the same transform used for
Ψ in the CS reconstructions). We see that the performance
of the DCT acquisition scheme essentially saturates after
observing about 30% of the coefficients, while the noiselet
CS reconstructions steadily improve.

We close this section by mentioning some ways the archi-
tecture could be modified to realize higher compression ratios.
The first would be to implement a hybrid acquisition scheme
which forms a coarse approximation to the image by directly
measuring a small number of DCT coefficients, and then fills
in the details by measuring noiselet coefficients and recon-
structing usingℓ1 minimization. Although not implemented
for this paper, this type of hybrid acquisition has outperformed
noiselet-only acquisitions in numerical experiments (see[11]).
Another way to achieve higher compression ratios is to in-
crease the block size of the imager, which would allow us to
take advantage of the structure of the image at a larger scale.
As discussed in Section VI, this architectural modificationis
being implemented at the current time.

VI. D ISCUSSION ANDEXTENSIONS OF THEIMAGER

ARCHITECTURE

The imaging architecture discussed was born from a gen-
eral idea to perform image computations assisted by focal-
plane processing without too much hardware at the pixel-
level that would sacrifice area and sensitivity. The hardware
implementation and compressive sensing application presented
thus far represent one realization and application of a general,
extensible architecture.

Mathematically, the architecture computes the Frobenius
inner product (matrix dot product) of the incoming 2-D image
with any matrix,F , that can be formed as the outer product
of two vectors. This is a vector-matrix-vector multiplication,
which is the basis for matrix operations stemming block-
wise matrix transforms implemented in [30], [35] as well as
operations like convolutions and image-wide projections onto
subspaces.
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Fig. 11: Capture of transform coefficients. (a) Complete measured DCT Transform Data. (b) Ideal Reconstruction from thecomplete DCT
Transform Data (c) Complete measured Haar Transform Data. (d) Ideal Reconstruction from the complete Haar Transform Data (d) Multiple
resolutions of a scene can be captured in the same frame, hereusing a DCT capture mode, by capturing fewer coefficients in parts of the
image. This can be adapted temporally, per-frame. This allows capturing of parts of the visual field with different spatial and temporal
resolutions.

Showing that this architectural approach to imaging reaches
beyond traditional block-based image processing, Fig. 2
shows data from an operation performed on this transform
imager—a convolution implementing an edge-detection fil-
ter. Omitting hardware details, it is conceptually enough to
understand that the previous block-based architecture hadto
be extended to support operating on overlapping blocks of
the image, rather than strictly adjacent blocks. Eliminating
the fixed block boundaries avoids, among other things, the
associated edge artifacts.

While the traditional block-based processing genre (the
uniform, repeated application of an operation to blocks of the
image) is pursued to reduce hardware area and development
time, it is not fundamental. In fact one alternative image-wide
mode of operation was included on this imager for further
study. While in the first mode, the kernelF is restricted to
be a size of 16×16, with elements of analog values in the
range [−1, 1], and it operates on a selectable 16×16 block
of the image—this is the mode of operation described thus
far. In another mode, F is restricted to the values−1, 0,
and 1. In this mode, the inner product is computed on all
256×256 elements; so the imager is capable of performing
full-image transformations. Fig. 10 illustrates the second mode
of operation.

Even further flexibility in the capture process is available
given our architecture. For one, subregions of the image can
be captured instead of the entire image on a per-frame basis.
This would be motivated by previous information about where
regions of interest are in the image and the desire for lower
power or higher frame rates. Coupling predictive algorithms
into the determination of regions of interest provides signifi-
cant data reduction opportunities.

Even more interesting is a multiresolution approach where
sampling functions are constructed to capture the most detail

in areas of high interest and less detail in other areas. This
non-uniform sampling approach achieves foviated imaging and
maintains peripheral awareness. Such a result would look like
that in Fig. 11. Looking at the operation on each block, a
typical matrix transform is one where the transformation ma-
trix is constructed from an orthogonal basis set. This is used,
for instance, to remap a spatial representation to a frequency
representation. Again, a DCT is one such transformation,
which does a good job of creating an image representation
which segments high and low frequency components in the
image. Both a block-based DCT and block-based Harr capture
are shown in Fig. 11. Since most image energy is in the
lower spatial frequency domain, a DCT does what is called
energy compaction. This means for an N×N block, a majority
of the image’s energy is represented by less thanN2 DCT
coefficients. This can be seen by the sparsity of the DCT result
in Fig. 2. The user can choose to only calculate and capture
the coefficients representing the majority of the image energy.
Applying a subset of the rows ofA can be considered math-
ematically equivalent to zeroing rows of the output, Fig. 7(c),
but saves time and power by avoiding unnecessary capture,
conversion, and processing. By deactivating columns of the
BT matrix and turning off corresponding ADC’s, Fig. 7(d),
further savings are achieved.

VII. C ONCLUSION

We demonstrated a computational sensor IC capable of
a unique and flexible set of sampling modes applicable to
compressive imaging. The capabilities of the IC to recon-
figurably sense and processes data in the analog domain
provides a versatile platform for compressive sensing op-
erations. To demonstrate the platform, images were sensed
through projections onto noiselet basis functions that utilize a
binary coefficient set,{1,−1}, and DCT basis functions that
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use a range of coefficients. The recent work in the field of
compressive sensing enabled effective image reconstruction
from a subset of the measurements taken. The fundamental
architecture is flexible and extensible to adaptive, fovealimag-
ing and adaptive processing in combination with non-adaptive
compressive sensing.

We illustrated the critical circuit components necessary to
implement a separable transform image sensor. The final speed
of the entire system, including image acquisition and pro-
gramming, are in testing, but the newly-designed components
provide the proper foundation for implementation of a large
separable transform imager. The IC results thus far have shown
successful system-level current-based sensing and computation
with wide dynamic range.

We described a flexible hardware platform which we are
developing for dynamically capturing and filtering images.
Combining reprogrammable analog processing at the sensor
level with reconfigurable digital control allows system re-
sources to be maximally utilized. A flexible MATLAB interface
allows users to couple image processing with creative and
dynamic algorithms for capturing visual information.
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