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First published April 24, 2013; doi:10.1152/jn.00105.2013.—Neurons
within a small (a few cubic millimeters) region of visual cortex
respond to stimuli within a restricted region of the visual field.
Previous studies have characterized the population response of such
neurons using a model that sums contrast linearly across the visual
field. In this study, we tested linear spatial summation of population
responses using blood oxygenation level-dependent (BOLD) func-
tional MRI. We measured BOLD responses to a systematic set of
contrast patterns and discovered systematic deviation from linearity:
the data are more accurately explained by a model in which a
compressive static nonlinearity is applied after linear spatial summa-
tion. We found that the nonlinearity is present in early visual areas
(e.g., V1, V2) and grows more pronounced in relatively anterior
extrastriate areas (e.g., LO-2, VO-2). We then analyzed the effect of
compressive spatial summation in terms of changes in the position and
size of a viewed object. Compressive spatial summation is consistent
with tolerance to changes in position and size, an important charac-
teristic of object representation.

population receptive field; spatial nonlinearity; spatial summation;
fMRI; human visual cortex

FUNCTIONAL MRI (fMRI) can be used to measure population
receptive field (pRF) size in human visual cortex (Dumoulin
and Wandell 2008; Smith et al. 2001). Previous models of
pRFs have assumed that responses to contrast patterns sum
linearly across the visual field (Dumoulin and Wandell 2008;
Larsson and Heeger 2006; Thirion et al. 2006), i.e., that the
response to a contrast pattern can be predicted as the sum of the
responses to subregions of that pattern (Fig. 1). The validity of
this assumption is important to examine, as it affects the
accuracy of pRF estimates and may reveal insight into response
properties at different stages of the visual map hierarchy.
Assessments of linearity of spatial summation have been con-
ducted in both electrophysiology and fMRI, but these have
provided conflicting conclusions (e.g., Britten and Heuer 1999;
Hansen et al. 2004; Kastner et al. 2001; Pihlaja et al. 2008).
Thus the precise nature of spatial pooling, and how well the
linear approximation describes physiological responses, re-
mains unclear.

In this study, we examine spatial summation using system-
atic measurements of blood oxygenation level-dependent
(BOLD) fMRI responses in human visual cortex to a range of
spatial contrast patterns. We uncover a small nonlinear effect
(subadditive spatial summation) in primary visual cortex and
find that the nonlinear effect is pronounced in extrastriate
maps. To account for the effect, we develop a computational
model in which a compressive static nonlinearity is applied
after linear spatial summation; this model substantially im-

proves cross-validation performance compared with a linear
spatial summation model.

A consequence of compressive spatial summation (CSS) is
that certain stimulus transformations may change BOLD re-
sponses less than one might expect under linear spatial sum-
mation. We explore to what degree CSS accounts for the
observation that responses in extrastriate cortex tend to exhibit
tolerance to changes in the position and size of the retinal
image cast by an object (Desimone et al. 1984; Grill-Spector et
al. 1999; Gross et al. 1972; Ito et al. 1995; Perrett et al. 1982;
Tovee et al. 1994). Specifically, we measure BOLD responses
to objects at different positions and sizes and show that the
CSS model, derived from responses to spatial contrast patterns,
predicts the position and size tolerance observed in the object
responses.

MATERIALS AND METHODS

Subjects

Five experienced fMRI subjects (5 males; age range 28–39 yr;
mean age 32 yr) participated in this study (Supporting Table A; all
supporting tables and figures are located at http://kendrickkay.net/; see
ENDNOTE). All subjects had normal or corrected-to-normal visual
acuity. Informed written consent was obtained from all subjects, and
the experimental protocol was approved by the Stanford University
Institutional Review Board. One subject (J. Winawer) was an author.
Subjects participated in one to three scan sessions to measure spatial
summation. Subjects also participated in one to four separate scan
sessions to identify visual field maps (details in Winawer et al. 2010).
Maps V3A and V3B were combined since they could not be separated
in every subject.

Visual Stimuli

Display. Stimuli were presented using an Optoma EP7155 DLP
projector imaged onto a backprojection screen in the bore of the
magnet. The projector operated at a resolution of 800 � 600 at 60 Hz,
and the luminance response was linearized using a lookup table based
on spectrophotometer measurements (maximum luminance �50 cd/
m2). Stimuli subtended 21–30° of visual angle. A button box recorded
behavioral responses. Subjects viewed the screen via a mirror
mounted on the radiofrequency (RF) coil. An occluding device pre-
vented subjects from seeing the unreflected image of the screen. A
MacBook Pro computer controlled display calibration and stimulus
presentation and recorded button responses using code based on
Psychophysics Toolbox (Brainard 1997; Pelli 1997).

Stimuli were constructed at a resolution of 600 � 600 pixels. In all
experiments, a small dot at the center of the stimulus served as a
fixation point (0.2–0.5° in diameter). The color of the dot changed
randomly between red, green, and blue every 5–9 s. Subjects were
instructed to fixate the dot and to press a button whenever the dot
changed color.

Contrast patterns (data sets 1–3). These stimuli consisted of
full-contrast (100% Michelson contrast) contrast patterns presented at

Address for reprint requests and other correspondence: K. N. Kay, 450 Serra
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different locations in the visual field (Supporting Fig. A). Contrast

patterns were generated by low-pass filtering white noise at a cutoff

frequency of 14 cycles per image and then thresholding the result.

These patterns were designed to elicit responses from a variety of
neurons with different tuning properties. All stimuli were restricted to
a circular region of the display, and regions of the display not
occupied by a contrast pattern were filled with neutral gray.

Three types of spatial apertures controlled the visual field location
of the contrast patterns. Vertical apertures were bounded at either the
right by a vertical cut or the left by a vertical cut or were unbounded.
Horizontal apertures were bounded at either the top by a horizontal cut
or the bottom by a horizontal cut or were unbounded. Circular
apertures were centrally positioned and sized such that the edges of
the apertures coincided with the cuts. Seven cuts were placed in-
between the meridians and the edge of the stimulus, yielding a total of
15 cuts in each direction. To ensure dense sampling near the fovea, the
spacing of the cuts increased linearly with eccentricity (for a 24° field
of view, cuts would be located at 0, 0.3, 0.7, 1.3, 2.3, 3.6, 5.5, and 8.2°
eccentricity). There were a total of 31 vertical � 31 horizontal � 7
circular � 69 apertures.

Aperture edges were smoothly transitioned using half-cosine func-
tions. For edges at the vertical and horizontal cuts, the width of the
transition zone was 2 pixels (0.1°) and the transition zone was
centered on the cut. For edges at the bounds of the stimulus, the width
of the transition zone was 11 pixels (0.4°), and the transition zone
abutted the stimulus bounds.

Note that spatial responses could in principle be measured using
stimuli in which multiple spatial elements are randomly presented
over time (Hansen et al. 2004; Vanni et al. 2005). We chose to use
simple spatial apertures for two reasons: one, aperture stimuli are
simpler to interpret than random stimuli; and two, random stimuli
densely stimulate the visual field on nearly every frame, which is not
optimal for characterizing voxels that exhibit strong subadditive
summation.

Object position and size manipulations (data sets 4–7). These
experiments measured responses to contrast patterns and objects in
the same scan sessions. Models derived from the contrast re-
sponses were used to predict the object responses. For these
experiments, we reduced the number of apertures used for contrast
patterns from 69 to 38. This was achieved by using only 4 cuts
in-between the meridians and the edge of the stimulus and by omitting
circular apertures. We also modified the contrast patterns by flipping
the polarity of a random 5% of the image pixels (grouped into 2- �

2-pixel chunks). The purpose of this modification was to increase
power at high spatial frequencies and thus potentially elicit stronger
neural responses.

To construct object stimuli, we obtained 30 presegmented objects from
a previous study (Kriegeskorte et al. 2008). These objects included fruit,

animals, body parts, and various small items. Objects were converted to

grayscale, placed on samples of pink noise (1/f amplitude spectrum,

random phase spectrum), and resized to fit various spatial apertures.

One experiment (data sets 4 and 5) manipulated object position by
using a 5 � 5 grid of square apertures, each 80 pixels (3.2°) on a side.
Another experiment (data sets 6 and 7) manipulated object size by
using 13 centrally positioned circular apertures. The radii of these
apertures grew quadratically from 11 pixels (0.4°) to 300 pixels (12°)
according to the expression 300x2 where x is evaluated at 13 equally
spaced points between 0.19 and 1. [For example, the 1st radius is
300(0.19)2

� 11 pixels, the 2nd radius is 300(0.2575)2
� 20 pixels,

and so on.] This experiment also included a version of these apertures
in which the objects were omitted, leaving only the pink-noise
background.

Control experiments (data sets 6 and 7). In one control experiment
(data set 7), we tested subadditive spatial summation by presenting
three vertical apertures in a slow event-related experimental design
(Supporting Table A). In another control experiment (data set 7), we
tested whether subadditive summation is due to a response ceiling by
presenting contrast patterns at 5% Michelson contrast (2 runs; only
horizontal apertures). In a 3rd control experiment (data sets 6 and 7),
we again tested whether subadditive summation is due to a response
ceiling, this time by comparing responses to contrast patterns against
responses to a full-field aperture containing objects (1 of the stimuli
used in the object experiments described above).

Alternative contrast patterns (data sets 8–10). In a final set of
control experiments, we used specially designed contrast patterns to
test whether subadditive spatial summation can be explained by
luminance edges between the contrast patterns and the gray back-
ground. For these experiments, stimuli were presented using a Sam-
sung SyncMaster 305T LCD monitor (linearized luminance response;
maximum luminance 117 cd/m2) and subtended 12.5–12.7° of visual
angle (Supporting Table A). The small field of view is adequate for
characterizing responses in V1, V2, and V3 (where pRFs are small),
and results are reported for these visual field maps.

In one experiment (data set 8), summation was measured at a
horizontal cut 1.5° above the horizontal meridian. Six different types
of patterns were used, and summation was measured seven times for
each type of pattern. Noise consisted of the original contrast patterns
(cutoff frequency set to 6.25 cycles per image to compensate for the
smaller display size). Band-Pass Noise consisted of patterns obtained
by band-pass filtering the edges in the Noise contrast patterns (differ-
ence-of-Gaussians filter tuned to 3 cycles per degree). Checkerboard
and Bars consisted of patterns constructed from square-wave gratings
(spatial frequency 6.25 cycles per image); these patterns reversed
contrast on each frame. Checkerboard with Spatial Gap and Bars with
Spatial Gap consisted of patterns identical to Checkerboard and Bars
except that a spatial gap extending between 1.0 and 2.0° above the

V3

V2
V1

Response(Part1) + Response(Part2) =
?

Response(Full)

Fig. 1. Testing spatial summation of contrast. At the left is an inflated cortical surface with sulci and gyri shaded dark and light; the locations of V1, V2, and
V3 are indicated by overlays. At the right is a set of contrast patterns with a depiction of the population receptive field (pRF) of a hypothetical V1 voxel (small
circle) and V3 voxel (larger circle). We test spatial summation of contrast by measuring the blood oxygenation level-dependent (BOLD) response to 2 patterns
that overlap complementary portions of a pRF (partial apertures) and the BOLD response to the sum of these patterns (full aperture). If spatial summation is linear,
the sum of the responses to the partial apertures should equal the response to the full aperture.
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horizontal meridian was included. The transition zone was 0.17° wide

for Band-Pass Noise (corresponding to a spatial frequency of 3 cycles

per degree) and 0° wide for the other types of patterns. We examined
summation for voxels for which the pRFs are located within 0.5-pRF
sizes from the horizontal cut and extend over the spatial gap and for
which at least 50% of the pRF is contained within the bounds of the
stimulus.

In a 2nd experiment (data sets 9 and 10), we repeated the main
experiment (data sets 1-3) using Band-Pass Noise contrast patterns.
This involved measuring responses to the full set of 69 spatial
apertures (resized to the smaller field of view). To control attention,
subjects performed a 1-back task on a small digit (0.25 � 0.25°)
positioned at the center of the stimulus (Hallum et al. 2011). The
identity of the digit (0–9) changed at 1.5 Hz, and, to minimize visual
adaptation, the color of the digit alternated between black and white.

Experimental Design

We used a randomized event-related design to minimize anticipa-
tory and attentional effects and to separate the time course of the
hemodynamic response from aperture response amplitudes. Stimuli
were presented in 8-s trials, one aperture per trial (Supporting Fig. A).
During the 1st 3 s of a trial, the subject viewed contrast patterns (or
objects) through one of the apertures (10-Hz image rate, random
order). Then, for the next 5 s, the subject viewed the neutral-gray
background. This 3-s ON, 5-s OFF trial structure produces robust
BOLD responses, ensures sufficient gaps between apertures such that
adaptation effects are minimized (Boynton and Finney 2003), and
allows a large number of trials to be presented within a scan session.

For the main experiment (data sets 1-3), apertures were divided
into two groups. Vertical apertures were placed in one group, hori-
zontal apertures were placed in the other group, and the remaining
apertures were distributed across these two groups. In each run,
apertures from one of the groups were presented in random order (no
special optimization of stimulus ordering was performed). To estab-
lish the baseline signal level, each run also included null trials in
which no stimuli were presented. Two null trials were inserted at the
beginning and end of each run, and 1 null trial was inserted after every
5 (or, in some cases, 6) stimulus trials. Each run lasted �6 min. In
each scan session, vertical and horizontal runs were alternated until 5
pairs (10 runs) were collected.

MRI Data Acquisition

fMRI data for data sets 1-7 were collected at the Lucas Center at
Stanford University using a GE Signa HDx 3.0T, a Nova 8-channel
RF surface coil, and a Nova quadrature RF surface coil (Supporting
Table A). In each scan session, 21 slices roughly parallel to the
parietooccipital sulcus were defined: slice thickness 2.5 mm, slice gap
0 mm, field of view 160 � 160 mm. A T2*-weighted, single-shot,
gradient-echo spiral-trajectory pulse sequence was used (Glover and
Lai 1998): matrix size 64 � 64, repetition time (TR) 1.323751 s, echo
time (TE) 29.7 ms, flip angle 71°, nominal spatial resolution 2.5 �

2.5 � 2.5 mm3. (The TR was matched to the refresh rate of the display
such that there were exactly 6 TRs for each 8-s trial.) The TE of the
1st volume in each run was increased by 2 ms, and the phase
difference between the 1st 2 volumes was used to estimate a map of
the B0 static magnetic field. To minimize respiratory-related artifacts
in field maps, subjects were instructed to hold their breath for the 1st
10 s of each run. fMRI data for data sets 8-10 were collected at the
Stanford Center for Cognitive and Neurobiological Imaging using a
GE Signa MR750 3.0T scanner and a Nova 32-channel RF head coil.
The protocol in these data sets was the same as that for data sets 1-7
except for the following characteristics: 22 slices, an echoplanar
imaging (EPI) pulse sequence, TR 1.337702 s, TE 28 ms, flip angle
68°, and an alternative B0 mapping procedure.

Data Analysis

A summary of the analysis workflow is provided in Supporting Fig. B.

Data Preprocessing

Field maps were smoothed in space and time using local linear
regression (Hastie et al. 2001) and then used to guide multifrequency
reconstruction of the spiral-based functional volumes (Man et al.
1997) and unwarping of the EPI-based functional volumes (Jezzard
and Balaban 1995). These procedures corrected off-resonance spatial
distortion artifacts and improved the run-to-run stability of the data.
The first five volumes of each run were discarded to allow longitudi-
nal magnetization to reach steady-state. Differences in slice acquisi-
tion times were corrected using sinc interpolation. Finally, automated
motion correction procedures were used to correct for head motion
(SPM5; rigid-body transformations). Motion parameter estimates
were low-pass filtered at 1/90 Hz to remove high-frequency modula-
tions that may have been caused by BOLD activations (Freire and
Mangin 2001). No additional spatial or temporal filtering was per-
formed. Raw scanner units were converted to units of percentage
signal change by dividing by the mean signal intensity in each voxel.

The fMRI data were analyzed in two stages (Kay et al. 2008b),
which we refer to as general linear model (GLM) analysis and pRF
analysis. The GLM analysis deconvolves a hemodynamic response
function (HRF) from the raw time-series data of each voxel to
estimate the voxel response amplitude to each aperture; the pRF
analysis uses these response amplitudes to estimate pRF parameters.
Thus the inputs to the pRF analysis are the outputs of the GLM
analysis rather than the raw time-series data. This two-stage analysis
approach reduces the computational requirements of the pRF analysis
and makes it easier to inspect the accuracy of pRF models. Further-
more, response amplitudes are derived from multiple trials and are
therefore more reliable (less noisy) than the raw time-series data.

GLM Analysis

We fit the time-series data from each voxel using a variant of the
GLM that is commonly used in fMRI analysis (a general review of the
GLM can be found in Monti 2011). The model consists of several
components: 1) an HRF characterizing the shape of the time course of
the BOLD response to an aperture; 2) �-weights characterizing the
amplitude of the BOLD response to each aperture;
3) polynomial regressors (degrees 0 –3) used to estimate the
baseline signal level in each run; and 4) global noise regressors
designed to capture BOLD fluctuations unrelated to the stimulus.

HRF. To ensure accurate GLM fits, we used a flexible model for
the HRF at each voxel (Kay et al. 2008a). Control points were placed
every 2.5 s from 0 to 20 s after trial onset and every 10 s from 20 to
50 s after trial onset. Each control point was allowed to vary freely
except for the control points at 0 and 50 s, which were fixed to 0. The
model of the HRF is computed by performing spline interpolation
between the control points. The specific placement of the control
points was chosen based on HRF measurements in pilot data and
reflects a strategy in which more control points are allocated near the
beginning of the trial where hemodynamic responses change at a
faster rate.

Global noise regressors. To remove the effects of spatially global
BOLD fluctuations, we used a technique inspired by methods intro-
duced by a previous study (Bianciardi et al. 2009). First, we select
voxels for which the time series bear no detectable relationship to the
stimulus (specifically, voxels for which the GLM has less than or
equal to 0 cross-validation accuracy). Then, for each run, we extract
the time series of these voxels, project out (i.e., fit and remove) the
polynomial regressors from each time series, normalize each time
series to have the same variance (to ensure that each time series has
the same influence), and perform principal component (PC) analysis.
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Finally, the top PCs from each run are entered into the GLM as
additional regressors. Cross-validation is used to select the number of
PCs entered (typically 1–5; see Supporting Table A). We find that
using global noise regressors consistently improves the cross-valida-
tion accuracy of the GLM, thus validating the method.

Model fitting. Since the GLM used in this study is nonlinear with
respect to its parameters, we used nonlinear optimization to fit the
model (MATLAB Optimization Toolbox). We fit the GLM using two
different resampling schemes. In GLM cross-validation, we fit the
GLM five times, each time leaving out one pair of runs. In each
iteration, the fitted model was used to predict stimulus-related effects
(i.e., the estimated hemodynamic response to each stimulus, summed
over time) in the left-out runs. Since the absolute signal level in
BOLD time series cannot be accurately predicted due to signal drift
(Smith et al. 1999), we projected out the polynomial regressors from
both the predicted data and the measured data. We then concatenated
results across the five iterations and computed the coefficient of
determination (R2) between the predicted and measured data. The
resulting R2 value quantifies the accuracy of the GLM. In GLM
bootstrapping, we fit the GLM 30 times, each time to a bootstrap
sample drawn from individual runs. (Bootstrapping individual data
points would be improper since noise in BOLD time series is corre-
lated over time; see Friman and Westin 2005.) Each bootstrap sample
was balanced by including exactly 5 vertical and 5 horizontal runs. To
ensure proper handling of noise correlations across voxels, the same
bootstrap samples were used for different voxels. Bootstrap results
were used to estimate standard errors on model parameters.

pRF Analysis

CSS model. A pRF model is an encoding model (Kay 2011;
Naselaris et al. 2011) that characterizes the relationship between a
contrast image (indicating the location of the stimulus) and the
response from a local population of neurons. We used a pRF model
that generates a predicted response by computing a weighted [isotro-
pic 2-dimensional (2-D) Gaussian] sum of the contrast image and then
applying a static power-law nonlinearity. This can be expressed
formally as:

RESP � g � �� S�x, y�G�x, y�dxdy�n

G�x, y� � e�
�x � x '�2��y � y '�2

2�2

where RESP is the predicted response, g is a gain parameter, x and y
represent different positions in the visual field, S is the contrast image,
G is the Gaussian, n is an exponent parameter, x= and y= are param-
eters controlling the position of the Gaussian, and � is a parameter
controlling the standard deviation of the Gaussian. We use a power-
law nonlinearity because it captures a wide range of behaviors using
a single parameter that is easy to interpret. Empirically, we find that
the power-law exponent is consistently �1; thus we refer to the model
as the CSS model.

The CSS model involves two nonlinearities: 1) an implicit initial
nonlinearity that converts luminance to contrast; and 2) the compres-
sive static nonlinearity that is applied after spatial summation. Note
that linearity of spatial summation does not depend on the weighting
function (isotropic 2-D Gaussian) assumed in the model. All linear
pRF models that predict the response as a weighted sum of the
contrast image necessarily imply linear spatial summation; this is the
case even if the weights are anisotropic (Kumano and Uka 2010;
Motter 2009; Palmer et al. 2012; Schall et al. 1986) or if the weights
include a negative surround (Cavanaugh et al. 2002; Kraft et al. 2005;
Nurminen et al. 2009; Zuiderbaan et al. 2012). However, it may be
possible to enhance the performance of the CSS model by incorpo-
rating a different weighting function into the model. Also note that for
the purposes of this study, the compressive static nonlinearity is only
intended to characterize response properties pertaining to spatial

summation. We speculate, however, that the nonlinearity may be a
general mechanism that governs the temporal domain as well: the
nonlinearity might serve as an explanation of adaptation effects where
the response to two successive stimuli is less than the sum of the
responses to the stimuli presented individually (Krekelberg et al.
2006).

Model fitting. We fit the CSS model to each voxel using the
�-weights (BOLD response amplitudes) estimated in the GLM. Model
fitting was performed using nonlinear optimization (MATLAB Opti-
mization Toolbox). The stimulus was prepared by downsampling the
apertures to 100 � 100 pixels. Stimulus values ranged from 0 (no
contrast) to 1 (full contrast). To ensure reasonable model estimates,
we constrained the x= and y= parameters to be within a region three
times the size of the stimulus and the � and n parameters to be
positive. The x= and y= parameters were seeded with 50.5 (the center
of the stimulus), the � parameter was seeded with 100, and the g
parameter was seeded with 1. To avoid local minima, we first
optimized the x=, y=, �, and g parameters with the n parameter fixed at
0.5 and then optimized all parameters simultaneously. A post hoc
linear approximation was used to convert pixel units into degrees of
retinal angle.

The CSS model was fit using 3 different resampling schemes. In
pRF bootstrapping, we fit the CSS model 30 times, once for each set
of �-weights obtained in bootstrapping the GLM model. Bootstrap
results were used to estimate standard errors on model parameters. In
pRF full-fit, we fit the CSS model to a single set of �-weights obtained
by taking the mean across GLM bootstraps. This set of �-weights
reflects the full data set and therefore provides the best estimates of
model parameters. The pRF of a voxel refers to the CSS model
estimated using the full-fit resampling scheme unless otherwise indi-
cated. In pRF cross-validation, we fit the CSS model to the single set
of �-weights using leave-one-out cross-validation. Cross-validation
controls for overfitting and provides unbiased estimates of model
accuracy.

Model accuracy. The accuracy of the CSS model was quantified as
the coefficient of determination (R2) between the cross-validated
predictions of the �-weights and the measured �-weights:

R2 � 100 � �1 �
� �MODEL � DATA�2

� DATA2 �
where MODEL indicates the predicted weights and DATA indicates
the measured weights. This R2 value indicates the percentage of
variance (relative to 0% signal change) that is explained by the CSS
model. R2 provides a more accurate assessment of accuracy than r2

(the square of Pearson’s correlation coefficient) because r2 is not
sensitive to mismatches in offset and gain. Also, note that quantifying
variance with respect to 0 (instead of the mean) makes it easier to
compare the R2 metric across different sets of data (which may differ
in their means).

Linear model. To assess the importance of the static nonlinearity in
the CSS model, we fit a version of the model in which the exponent
parameter is fixed to 1. This modification eliminates the static non-
linearity and reduces the model to a linear model. The linear model
and the CSS model were fit independently to the data. The linear
model is identical to the model used previously by Dumoulin and
Wandell (2008).

Definition of pRF Size

In the CSS model, there is an interaction between the size of the
Gaussian and the static nonlinearity. For example, a model associated
with a small Gaussian can nevertheless respond strongly to stimuli far
from the Gaussian if the static nonlinearity is highly compressive. We
propose to define pRF size in terms of the predicted response to a
point stimulus (spot) placed at different positions in the visual field.

The predicted response of the CSS model to point stimuli has a
Gaussian profile:
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M�x, y� � g � G�x, y�n � e�
�x � x '�2��y � y '�2

2�2
n

� e�
�x � x '�2��y � y '�2

2	 �


n
�2

where M is a map of responses and other variables are as defined
earlier. We define pRF size, �size, to be the standard deviation of the
Gaussian profile:

�size �
�


n
.

Our definition of pRF size is based on input-output characteristics and
could be applied to any pRF model. For a model for which the
predicted response to point stimuli does not have a Gaussian profile,
we could simply stipulate that pRF size is the standard deviation of a
Gaussian function fitted to the actual profile.

Noise Ceiling

The noise ceiling is defined as the maximum accuracy that a model
can be expected to achieve given the level of noise in the data (David
and Gallant 2005; Sahani and Linden 2003). The noise ceiling
depends solely on the signal-to-noise ratio of the data and is indepen-
dent of the specific model being evaluated. In our case, the data of
interest are the �-weights estimated in the GLM and the model of
interest is a pRF model that has been fitted to these �-weights.

We performed Monte Carlo simulations to calculate the noise ceiling.
In these simulations, we generate a known signal and noisy measure-
ments of this signal and then calculate the R2 between the signal and the
measurements. This computational approach directly quantifies the noise
ceiling assuming that both the signal and the noise level are known. For
our data, the signal is not directly known (since the data include both
signal and noise). To carry out the simulations, we make the simplifying
assumptions that the signal and the noise are each distributed according
to a normal distribution and that the noise is zero mean.

The first step in the simulations was to collect the �-weights and
their standard errors. Standard errors on individual �-weights are
relatively noisy given that each stimulus was presented just five times.
We thus calculated the pooled standard error and took this to be the
standard deviation of the normal distribution characterizing the noise:

NOISESD � 
mean���
2�

where NOISESD is the noise standard deviation and �� represents the
standard errors on the �-weights. Next, we calculated the mean of the
�-weights and took this to be the mean of the normal distribution
characterizing the signal:

SIGNALMN � mean����
where SIGNALMN is the signal mean and �� represents the
�-weights. To estimate the standard deviation of the signal distribu-
tion, we subtracted the amount of variance attributable to noise from
the total amount of variance in the data, forced the result to be
nonnegative, and then computed the square root:

SIGNALSD � 
max�0, var���� � NOISESD2�
where SIGNALSD is the signal standard deviation. Finally, we
generated a signal by drawing random values from the signal distri-
bution, generated a noisy measurement of this signal by summing the
signal and random values drawn from the noise distribution, and
calculated the R2 between the signal and the measurement. We
performed 500 simulations (50 signals, 10 measurements per signal)
and took the median R2 value to be the noise ceiling.

The noise ceiling is inherently a stochastic quantity: the accuracy of a
perfect model will vary from data set to data set simply due to random-
ness in the measurement noise. For example, a perfect model could
achieve a cross-validation R2 of 100% if the noise just happens to be 0 for
each data point. The stochasticity of the noise ceiling is reflected in the
variability of the R2 values obtained in the Monte Carlo simulations. The
noise ceiling is taken to be the median R2 value across simulations and
should be interpreted as the accuracy that a perfect model is expected to
achieve on average given the level of noise in the data.

Voxel Selection

Results were restricted to voxels that satisfy the following require-
ments. First, voxels must have a complete set of data, i.e., must not have
moved outside of the imaged volume during the scan session. Second,
voxels must be located in one of the identified visual field maps. Third,
voxels must have positive GLM cross-validation accuracy. Finally, vox-
els must have GLM �-weights that are positive on average. This require-
ment excludes peripheral voxels that typically exhibit negative BOLD
responses to centrally presented stimuli (Shmuel et al. 2006; Smith et al.
2004). Voxels in each visual field map were pooled across subjects.
Unless otherwise indicated, error bars represent �1 SE (68% confidence
intervals) across voxels and were obtained using bootstrapping.

Public Data Sets and Software Code

Example data sets and code implementing the CSS model are
provided at http://kendrickkay.net/socmodel/.

RESULTS

To investigate spatial summation, we measured BOLD re-
sponses in human visual cortex while subjects viewed a series
of spatial contrast patterns. Contrast patterns were high-con-
trast, black-and-white noise patterns seen through a systematic
set of vertical, horizontal, and circular apertures. Sixty-nine
distinct apertures were presented in random order a total of five
times each. The data were preprocessed to estimate the BOLD
response amplitude of each voxel to each aperture.

Subadditive Spatial Summation

The experimental design included apertures that form com-
plementary pairs (e.g., left aperture, right aperture), and we
used these pairs to assess whether responses sum linearly over
space. For each aperture pair, we selected voxels for which the
pRFs are located near the boundary between the two apertures
and computed a summation ratio by dividing the response to a
full aperture covering the entire visual field by the sum of the
responses to the two apertures. If spatial summation is linear,
the summation ratio should equal 1. The summation ratio is �1
in all identified visual field maps, indicating that the response
to the full aperture is smaller than predicted by linear spatial
summation (Fig. 2). The summation ratio is closest to 1 in V1
and is substantially less than 1 in extrastriate maps. We confirmed
the reproducibility of these results with a control experiment in
which subadditive summation can be directly observed in the
measured BOLD time series (Fig. 3A).

A potential explanation of subadditive summation is that the
response to the full aperture is lower than the linear prediction
simply because the response is already at the maximum level.
However, control experiments show that subadditivity is not
due to a response ceiling: subadditivity occurs even at low
contrast (Fig. 3B), and it is possible to evoke responses that are
even higher than the response to the full aperture (Fig. 3C).
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Another potential explanation of subadditive summation is
that the partial apertures contain luminance edges between the
contrast patterns and the gray background, whereas such edges
are not present in the full aperture. Since edges drive neural
responses, this might explain why the response to the full
aperture is lower than expected. To test this possibility, we
measured summation for alternative contrast patterns that min-
imize the edge effect and confirmed that subadditive summa-
tion still occurs (Fig. 4). We also performed a full set of
measurements using alternative contrast patterns and reproduce
the main results of the present paper (Supporting Fig. G).

Edges between the contrast patterns and the gray back-
ground cannot explain subadditive summation, but it is possi-
ble that these edges may contribute to the size of the subaddi-

tive effect. For example, inserting a spatial gap such that the
same luminance edges are present in the partial and full
apertures reduces the level of subadditivity (Fig. 4). However,
this manipulation changes the visual field regions that are
summated, which might also explain the different summation
results. In general, the use of a spatial gap avoids edge effects
but complicates the design of stimuli that systematically sam-
ple different regions of the visual field. The goal of this paper
is not to test summation for one particular case (e.g., a single
location in the visual field, a single gap size, etc.) but rather to
use systematic measurements of spatial responses to develop a
general model of the relationship between the location of the
stimulus and the observed responses. We address this issue
next.
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summation ratio, defined as the response to the full aperture divided by the linear prediction, is 0.78 for the V1 voxel and 0.59 for the V3 voxel. B: median
summation ratio in different visual field maps. We calculated the median summation ratio across aperture pairs located within 0.5-pRF sizes from the pRF center.
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To test whether a response ceiling explains subadditive summation, we presented contrast patterns at low contrast. In all visual field maps, subadditive summation
occurs at low contrast, and the response to the full aperture at low contrast is smaller than the corresponding response at high contrast (Supporting Table B).
Hence, subadditivity at low contrast cannot be explained by a response ceiling. C: object experiment. To test whether subadditivity at high contrast is due to a
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CSS Model

A pRF is the region of the visual field within which stimuli
evoke responses from a local population of neurons (Dumoulin
and Wandell 2008; Victor et al. 1994). Existing models of
pRFs use linear weights applied to the stimulus contrast (Du-
moulin and Wandell 2008; Larsson and Heeger 2006; Thirion
et al. 2006) and therefore predict linear, not subadditive,
summation. Note that linearity is implied even if weights are
arranged in a center-surround configuration with negative
weights in the surround.

To account for subadditive summation, we propose a new
pRF model. In this model, the stimulus is represented as a
contrast image (indicating the location of the stimulus), and the
response is computed as a weighted (isotropic 2-D Gaussian)
sum of the contrast image followed by a static power-law
nonlinearity (Fig. 5). The key component of the model is the
nonlinearity: if the exponent of the power-law nonlinearity is
�1, the nonlinearity is compressive, and small amounts of

overlap between the stimulus and the pRF produce large

responses. This behavior predicts subadditive summation. We

refer to the model as the CSS model.

We evaluated the CSS model by comparing it with a version of

the model in which the power-law exponent is fixed to 1. This

simplified model implies strict linear spatial summation. We

independently fit the CSS model and the linear model to the

responses of each voxel using cross-validation and quantified

model accuracy as the percentage of variance explained (R2).

Although the models are nested, there is no guarantee that the CSS

model will have higher cross-validation accuracy than the linear

model: this will occur only if the effect captured by the exponent

is sufficiently large and there are sufficient data to estimate the

exponent accurately. If the effect of the exponent is small or if

data quality is poor, the exponent parameter in the CSS model
may degrade cross-validation accuracy due to overfitting.

The CSS model outperforms the linear model in all visual
field maps (Fig. 6). In V1, the improvement is modest, indi-
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Fig. 4. Summation for other types of contrast patterns. A trivial explanation for subadditivity is that the partial apertures contain luminance edges at the boundary
between the contrast pattern and the gray background, whereas the full aperture does not. To test this explanation, we measured summation using the original
pattern (Noise), a band-pass pattern that lacks the previously described luminance edges (Band-Pass Noise), patterns for which the previously described
luminance edges are present in both the partial and full apertures (Checkerboard, Bars), and patterns that include a spatial gap such that the same luminance edges
are present in the partial and full apertures (Checkerboard with Spatial Gap, Bars with Spatial Gap). The median summation ratios in V1, V2, and V3 are shown
[error bars indicate standard error across general linear model (GLM) bootstraps]. In all cases, subadditive summation occurs, arguing against the edge
explanation. There appears to be some variation in summation ratio across stimulus types; accounting for these dependencies on stimulus type is a direction for
future research. (For additional experiments ruling out the edge explanation, see Supporting Fig. G.)
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cating that the linear model is a reasonable characterization of
the responses for the range of stimuli tested. In extrastriate
maps, the improvement is substantial, consistent with the
strong subadditive effects found in these maps. Furthermore,
the absolute performance of the CSS model is quite high: on
average, the model predicts 84% of the response variance
(median R2 across voxels). This is only slightly lower than the
maximum performance that can be expected given the level of
noise in the data (noise ceiling), which is 89% of the response
variance (median R2 across voxels). Detailed examination of
the data and model fits confirms the accuracy of the CSS model
(Supporting Figs. D and E).

In V1, the performance improvement provided by the CSS
model is modest, at an increase of 1.3% variance. This may
seem inconsistent with the fact that the summation ratio in V1
is substantially less than 1, at 0.78. The reason for this apparent
discrepancy is that the summation ratio is computed from the
subset of data that specifically tests linearity (aperture pairs
defined by cuts that are located near pRF centers), whereas
model accuracy is a summary metric that reflects the entire data
set. Since V1 pRFs are small, only a few apertures cut through
the pRF for any given V1 voxel, and so the overall perfor-
mance of the linear model is only slightly lower than that of the
CSS model.

Examination of Model Parameters

The CSS model parameters provide a compact summary of
the response properties of individual voxels. One parameter of
interest is pRF size. Consistent with previous studies (Amano
et al. 2009; Dumoulin and Wandell 2008; Kay et al. 2008b;
Larsson and Heeger 2006; Smith et al. 2001; Winawer et al.
2010), pRF size increases with eccentricity and increases in
extrastriate visual field maps (Fig. 7A). However, there are
quantitative differences between the size estimates here and
those of previous studies. One difference is that linear func-
tions relating eccentricity and size pass close to the origin in
our study but not in previous studies. This is likely due to the
fact that the stimuli used in this study sampled the foveal visual

field more finely than the stimuli used in previous studies. The
fact that size scales nearly perfectly with eccentricity is inter-
esting and suggests a fundamental similarity between response
properties at the fovea and those at the periphery. Another
difference is that our size estimates are generally smaller. This
is explained by the fact that previous studies used linear pRF
models, which can overestimate pRF size when the underlying
system exhibits nonlinear, subadditive behavior (for examples,
see Supporting Figs. D and E).

A new parameter introduced by the CSS model is pRF
exponent, which governs the amount of subadditive summation
exhibited by a given voxel. Consistent with the spatial sum-
mation tests, the median exponent is �1 in all visual field maps
and is smaller in extrastriate maps than in V1 (Fig. 7B). Given
that maps with larger pRF sizes tend to have smaller expo-
nents, we wondered whether the change in exponent across
maps could be explained by changes in pRF size. Exploiting
the fact that there exists a range of pRF sizes within individual
visual field maps, we compared exponents across maps while
holding size constant. We find that after controlling for size,
V3 pRFs are still more compressive than V2 pRFs, which in
turn are still more compressive than V1 pRFs (Supporting Fig.
F). This indicates that the change in compression from map to
map is distinct from the change in size.

Implications for Object Stimuli

We developed the CSS model based on responses to simple
spatial contrast patterns. Here, we ask how well the model can
generalize in predicting responses to more natural stimuli. We
were particularly interested in the implications of CSS for the
observation that extrastriate responses exhibit tolerance to
changes in object position and size (Desimone et al. 1984;
Perrett et al. 1982). To explore this connection, we measured
BOLD responses to object stimuli at various positions and
sizes and assessed how well the CSS model accounts for these
data.

Objects were placed on textured backgrounds and viewed
through apertures of different positions and sizes. To generate
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predictions from the CSS model, we simply took the apertures,
which reflect the spatial extent of the objects, and passed these
apertures through the CSS model. Because the CSS model is a
purely spatial model, it does not account for the fact that in
certain extrastriate maps, objects are particularly effective at
driving responses compared with noise patterns (Malach et al.
1995). We therefore included a nonnegative scale factor on the
overall gain of the predicted responses while leaving the
remaining model parameters untouched (location, size, and
exponent). This procedure quantifies the accuracy of the CSS

model in predicting the relative but not the absolute response
amplitudes.

In all visual field maps, the relative responses to objects of
different sizes are well-predicted by the CSS model (Fig. 8). In
particular, the CSS model successfully captures the fact that
responses in anterior maps (e.g., LO-2, VO-2) are relatively
unaffected by the changes in object size that we evaluated. The
performance of the CSS model does not quite reach the noise
ceiling in V1 and V2; this may be due to negative BOLD
responses that are not accounted for by the model (Fig. 8C). In
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additional experiments, we found that the CSS model also
performs well at accounting for relative responses to objects
varying in position (Supporting Fig. H).

DISCUSSION

Potential Sources of Subadditive Spatial Summation

We have shown that the BOLD response to a contrast pattern
is less than the sum of the BOLD responses to individual parts
of the contrast pattern. This subadditive spatial summation may
reflect nonlinearities in neural response properties or might
reflect nonlinearities in the coupling between neural activity
and the hemodynamic response (Cardoso et al. 2012; Heeger
and Ress 2002; Logothetis and Wandell 2004; Magri et al.
2011). In particular, because nearby points in the visual field
are mapped to nearby points on cortex, whether the hemody-
namic response reflects a linear spatial convolution of neural
activity is especially pertinent (Boynton 2011).

We attribute subadditivity primarily to the neural response
for three reasons. First, the amount of subadditivity varies
between visual field maps (Figs. 2B and 7B). If the effect were
entirely explained by hemodynamic coupling, one would not
expect a systematic relationship with visual field map. Second,
similar subadditive effects have been observed in neuronal
responses in MT (Britten and Heuer 1999; Heuer and Britten
2002). Third, we recently performed electrocorticography
(ECoG) in V1–V4 of human visual cortex and have found that
subadditive spatial summation also occurs in these measure-
ments (Winawer et al. 2013). ECoG measures population
activity at the millimeter scale (similar to BOLD fMRI) but is
not influenced by the coupling between neural activity and the
hemodynamic response.

However, we recognize that from BOLD measurements
alone, it is difficult to make inferences regarding the precise
level of CSS in neural signals. First, there is a diverse array of
cell types in cortex. Each may be governed by its own spatial
summation rules and may couple differently to the BOLD
signal. Second, there are different aspects of neural activity
(e.g., synaptic potentials, action potentials), and each may
exhibit different spatial summation properties. Third, there
may be scatter in the receptive field positions of neurons within
a voxel, which tends to produce summation results at the
population level that are more linear than that at the level of
individual neurons (discussed further below). These various
issues should be taken into account when interpreting the CSS
effects found in this paper.

Previous Studies of Spatial Summation

Hansen et al. (2004) reported linear spatial summation of V1
BOLD responses, whereas we find subadditive summation in
V1 (median summation ratio 0.78). This discrepancy may be
due to the difference in voxel sizes used in the two studies.
Hansen et al. (2004) used 3.5- � 3.5- � 4.1-mm3 voxels,
whereas the present study used isotropic 2.5-mm voxels,
smaller in volume by a factor of three. Large voxels are likely
to include neurons responsive to only one of the apertures
being summed, especially in V1 where receptive fields are
small. Thus large voxel size may tend to produce spatial
summation results that are more linear. Another reason for the
discrepancy may be that the summation tests in the present

study were performed using aperture pairs located near pRF

centers, thereby providing more sensitive tests of summation

(Supporting Fig. C). Finally, the use of simultaneously pre-

sented spatial components may have distorted the estimates of

responses to individual components, given the linear regression
analysis used in that study (further discussed below).

Subadditive spatial summation is consistent with the previ-
ous observation that the estimated V1 BOLD response to a
central patch is reduced when using a multifocal design that
involves surrounding patches (Pihlaja et al. 2008). Because
responses to simultaneous patches are smaller than the re-
sponses predicted by linear summation, the estimate of the
response to the central patch is biased downward in the linear
regression analysis of multifocal data. Subadditive summation
is also consistent with the finding that in V1 and more so in
extrastriate maps, the response to simultaneously presented
stimuli is smaller than the response to the stimuli when se-
quentially presented (Kastner et al. 2001). Simultaneous pre-
sentation engages subadditive spatial summation, whereas se-
quential presentation does not. Finally, our summation results
are consistent with recent BOLD measurements of nonlinear
spatial effects throughout visual cortex (Vanni and Rosenstrom
2011). This study also found increasingly nonlinear effects in
anterior visual areas and proposed an alternative, information-
theoretic explanation for the findings. Our study extends these
previous results (see also results from EEG: Vanni et al. 2004)
by performing systematic measurements of spatial summation
for many visual field maps and by developing a computational
model that predicts responses at the level of single voxels.

We examined spatial summation of simple contrast patterns
in this study. However, summation characteristics may vary
depending on the specific type of stimuli that are summed. An
example is summation of two parts of a solid luminance disc:
since cortical responses are primarily driven by contrast (Engel
et al. 1997), the response to the full disc is likely to be quite
small compared with the responses to the partial discs. Another
example is summation of multiple objects, which has been the
focus of a number of studies (e.g., Kastner et al. 2001;
Macevoy and Epstein 2009; Reddy et al. 2009; Reynolds et al.
1999; Zoccolan et al. 2005). These studies typically find that in
certain extrastriate regions, the response to two objects pre-
sented simultaneously is the average of the responses to the
objects presented individually. In particular, the response to an
effective object presented alone is usually reduced when a
less-effective object is presented nearby. The CSS model does
not account for this effect, since stimulating more of the visual
field always produces a higher response from the CSS model.
Expanding the explanatory power of the CSS model is a
direction for future research.

Distinction Between Subadditive Spatial Summation and
Contrast Saturation

Contrast saturation refers to the well-established fact that
responses in visual cortex plateau beyond a certain contrast
level (Albrecht and Hamilton 1982; Boynton et al. 1999; Sclar
et al. 1990; Tootell et al. 1998). There is a parallel between
contrast saturation and subadditive spatial summation: just as a
small amount of contrast is sufficient to evoke a large response,
a small amount of spatial stimulation is also sufficient to evoke
a large response. However, the two phenomena are conceptu-
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ally distinct: in theory, it is possible for responses to exhibit
contrast saturation but linear spatial summation or to exhibit
linear contrast response but subadditive spatial summation.
Consider a receptive field composed of subunits that saturate
with contrast but are summed linearly across space. This
receptive field will exhibit contrast saturation but approxi-
mately linear spatial summation. Thus the fact that responses in
visual cortex exhibit subadditive spatial summation is an em-
pirical finding that is distinct from contrast saturation. Inter-
estingly, we find an increase in subadditivity in anterior visual
field maps, which mirrors the increase in contrast saturation in
anterior maps (Avidan et al. 2002; Kastner et al. 2004; Tootell
et al. 1998). This suggests that the two effects may be tightly
linked and that it may useful to explore and develop a general
model that simultaneously accounts for both contrast saturation
and subadditive spatial summation (e.g., a model that computes
the standard deviation of pixel luminance values over a local
portion of the visual field and then applies a compressive
nonlinearity, a model based on divisive normalization, etc.).

Relationship to Divisive Normalization

Divisive normalization is a nonlinear computation that is
widely used to model neuronal responses (Carandini and
Heeger 2011; Heeger 1992). Here, we link divisive normaliza-
tion to CSS by showing that under certain assumptions, divi-
sive normalization at the neuronal level implies CSS at the
population level. First, consider the following formulation of
divisive normalization:

outputi �
neuroni

� � �
k

neuronk

where outputi is the final output from the ith neuron, neuroni is
the unnormalized response of the ith neuron, � is a semisatu-
ration constant, and k ranges over a local population of neurons
(the normalization pool). Let us assume that the neurons in the
normalization pool mutually inhibit each other. Then, the
pooled activity of the population of neurons in the normaliza-
tion pool is:

pooled activity � �
k

outputk �
�

k

neuronk

� � �
k

neuronk

� f��
k

neuronk� where f�x� �
x

� � x
.

This shows that at the population level, the effect of normal-
ization is to apply a compressive nonlinearity (represented by
f) to the sum of the unnormalized responses of the neurons in
the normalization pool (represented by x).

To connect these theoretical considerations to spatial sum-
mation, we can identify the x term in the previous equation as
representing space, that is, the amount of spatial overlap
between a stimulus and a pRF. As the overlap between the
stimulus and the pRF increases, the pooled activity of the
normalization pool is expected to increase according to a
compressive function. This response behavior is the core of the
CSS model. Thus we can view CSS as a specific instantiation
of the general computation of divisive normalization.

The divisive nonlinearity described above can be approxi-
mated, through suitable choice of parameters, by the power-
law nonlinearity used in the CSS model. However, the approx-
imation is not exact, and we wondered whether some gain in
performance might be achieved by changing the form of the
static nonlinearity in the CSS model. Division and exponenti-
ation are in fact special cases of the general model of neural
computation described by Kouh and Poggio (2008). We there-
fore tested several nonlinearities with different levels of gen-
erality. The median cross-validated R2 for the original power-

law nonlinearity f�x� � xn is 84.3% � 0.2 SE. In contrast, the

pure divisive nonlinearity f�x� �
x

��x
achieves 83.2% � 0.2

SE, the mixed divisive nonlinearity f�x� �
xn

�n�xn
achieves

84.1% � 0.2 SE, and the general nonlinearity f�x� �
xn

�n�xm

achieves 83.5% � 0.2 SE. The fact that alternative nonlineari-
ties do not improve performance indicates that the power-law
nonlinearity is sufficient for the data we have. Further elabo-
rations of the CSS model to account for additional phenomena
(e.g., surround suppression) may require the nonlinearity to be
divisive in form.

Models of Position and Size Tolerance in the Visual System

Compared with posterior visual field maps, anterior maps
have larger pRF sizes and smaller (more compressive) pRF
exponents (Fig. 7B). The combination of these two properties
implies that responses in anterior maps should show reduced
sensitivity to changes in the position and size of a viewed
object, and we have confirmed that this is the case (Fig. 8C and
Supporting Fig. H). The increase in tolerance that we observe
mirrors the results of a recent study that compared neural
responses in macaque V4 and IT to a common set of object
stimuli and demonstrated that IT responses exhibit greater
tolerance to changes in position, size, and context (Rust and
Dicarlo 2010).

A number of object-recognition models that address position
and size tolerance have been proposed (for example, Epshtein
et al. 2008; Fukushima 1980; Perrett and Oram 1993; Pinto et
al. 2009; Rolls and Milward 2000). We discuss here HMAX,
an influential model in both computer and biological vision
(Riesenhuber and Poggio 1999; Serre et al. 2007). The CSS
model is largely compatible with the basic features of the
HMAX model (feedforward model with increasing nonlinear-
ity and spatial pooling at successive stages), but there are
several differences. One difference is that the HMAX model is
explicitly hierarchical such that responses are transformed
through a sequence of computations. In contrast, the CSS
model is designed to predict responses of each voxel directly
from the stimulus. This stimulus-referred approach simplifies
parameter estimation and interpretation of the model. It is
possible, however, to reformulate the CSS model using a
hierarchical architecture similar to that of the HMAX model
(Fig. 9). This reformulation shows how the spatial nonlinearity
of the CSS model can be split into several sequential stages,
each stage implementing the same local computation.

Another difference between the HMAX and CSS models is
the specific way in which tolerance is achieved. The HMAX
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model achieves tolerance by applying the MAX operation to
the responses of model units that encode a specific image
feature at slightly different positions and scales. The CSS
model achieves tolerance by applying a compressive nonlin-
earity after summation of contrast across space. The difference
in nonlinearity is not critically important, as CSS can be
approximated using the MAX operation. However, because the
CSS model addresses only space and not specific image fea-
tures, the model has few free parameters, and this has enabled
us to test the model against experimental measurements di-
rectly. Our data sets are freely available (see MATERIALS AND

METHODS), and we welcome efforts to consider how well alter-
native models of visual processing account for these experi-
mental measurements.

Extending the CSS Model to Account for Stimulus Selectivity

Selectivity is an important concept that is complementary to
tolerance. Theories of object representation (DiCarlo et al.
2012; Riesenhuber and Poggio 1999; Ullman 1996) propose
that visual responses should exhibit not only tolerance to
variation in object format (such as object position, size, and
viewpoint), but also selectivity for certain objects over others.
Examining our data, we find preliminary evidence that voxel

responses indeed conform to the selectivity-tolerance frame-

work, exhibiting tolerance for spatial variation while also
exhibiting selectivity for certain stimulus types (Supporting
Fig. I). This is consistent with the finding that neurons in
macaque inferotemporal cortex maintain object preferences
over changes in position and size (Ito et al. 1995; Tovee et al.
1994).

The CSS model is a simple spatial model, and we have
shown that the response properties of the model are consistent
with the position and size tolerance observed in several extra-
striate visual field maps. However, an important limitation of
the CSS model is that it does not explain selectivity, that is,
why certain stimulus types drive responses more strongly than
others. A complete model of object representation must ad-
dress both selectivity and tolerance, and in future research it
will be fruitful to measure responses to stimuli that vary along
not only the dimension of space (e.g., location and size), but
also other dimensions (e.g., the specific image features at a
given location and size). We will then be in a position to extend
the CSS model to account for stimulus selectivity. One prom-
ising strategy is to integrate the CSS model with filters that
operate on arbitrary images (Kay et al. 2008b); this is a line of
research that we have pursued in a follow-up study (Kay et al.
2013).

Functionally
equivalent to

Functionally
equivalent to

pRF location Static nonlinearity

Functionally
equivalent to

Stimulus (16 x 16)

Layer 1

Layer 2

Layer 3

Hierarchical model Stimulus-referred model

Exponent = 0.50Size = 1.06

Exponent = 0.30Size = 1.85

Exponent = 0.17Size = 2.83

Spatial pooling (σ = 0.75) and
static nonlinearity (n = 0.5)

applied at each layer

Fig. 9. CSS model can be expressed in hierarchical form. We simulated a hierarchical model in which the stimulus (layer 0, resolution 16 � 16) initiates responses
in 3 layers of units (layers 1-3, resolution 16 � 16). The response of a unit at any given layer is computed by projecting responses of the previous layer onto

an isotropic 2-D Gaussian and then transforming the result by a compressive power-law function. This can be expressed formally by Rk�i,j� � ��Rk�1�x,y�G
�x,y�dxdy�n where Rk(i,j) indicates the response of the unit positioned at (i,j) in layer k, x and y represent different positions in the visual field, and G indicates
a 2-D isotropic Gaussian centered at (i,j) (the standard deviation of the Gaussian was set to 0.75, and n was set to 0.5). We computed the response of this model
to a set of contrast patterns and fit the stimulus-referred CSS model to each unit in the hierarchical model. The pRF estimates for 3 example units (black dots)
are shown on the right. These pRFs explain �99.99% of the response variance, demonstrating that the stimulus-referred model and the hierarchical model make
the same predictions. Notice that size and compression increase at higher levels of the hierarchy, mirroring the experimental results (Fig. 7B). Because the local
computations are the same at each layer, the increase in size and compression is due to the hierarchical model architecture.

492 COMPRESSIVE SPATIAL SUMMATION IN HUMAN VISUAL CORTEX

J Neurophysiol • doi:10.1152/jn.00105.2013 • www.jn.org

 a
t S

ta
n
fo

rd
 U

n
iv

e
rs

ity
 o

n
 J

u
ly

 1
7

, 2
0
1

3
h
ttp

://jn
.p

h
y
s
io

lo
g
y
.o

rg
/

D
o

w
n

lo
a

d
e
d
 fro

m
 

http://jn.physiology.org/


ACKNOWLEDGMENTS

We thank R. Kiani and N. Kriegeskorte for providing the object stimuli
used in this study, F. Pestilli for comments on the manuscript, and J. Gallant,
K. Hansen, and R. Prenger for helpful discussions regarding an earlier version
of this work.

GRANTS

This work was supported by National Eye Institute Grants K99-EY-022116
(J. Winawer) and R01-EY-03164 (B. A. Wandell).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

ENDNOTE

At the request of the authors, readers are herein alerted to the fact that
additional materials related to this manuscript may be found at the institutional
web site of the authors, which at the time of publication they indicate is:
http://kendrickkay.net/. These materials are not a part of this manuscript and
have not undergone peer review by the American Physiological Society (APS).
APS and the journal editors take no responsibility for these materials, for the
web site address, or for any links to or from it.

AUTHOR CONTRIBUTIONS

K.N.K. conducted the experiment and analyzed the data; J.W. assisted with
data collection and retinotopic mapping; J.W. and A.M. provided conceptual
guidance; K.N.K. and B.A.W. wrote the paper; K.N.K., J.W., A.M., and
B.A.W. discussed the results and commented on the manuscript.

REFERENCES

Albrecht DG, Hamilton DB. Striate cortex of monkey and cat: contrast
response function. J Neurophysiol 48: 217–237, 1982.

Amano K, Wandell BA, Dumoulin SO. Visual field maps, population
receptive field sizes, and visual field coverage in the human MT� complex.
J Neurophysiol 102: 2704–2718, 2009.

Avidan G, Harel M, Hendler T, Ben-Bashat D, Zohary E, Malach R.

Contrast sensitivity in human visual areas and its relationship to object
recognition. J Neurophysiol 87: 3102–3116, 2002.

Bianciardi M, van Gelderen P, Duyn JH, Fukunaga M, de Zwart JA.

Making the most of fMRI at 7 T by suppressing spontaneous signal
fluctuations. Neuroimage 44: 448–454, 2009.

Boynton GM. Spikes, BOLD, attention, and awareness: a comparison of
electrophysiological and fMRI signals in V1. J Vis 11: 12, 2011.

Boynton GM, Demb JB, Glover GH, Heeger DJ. Neuronal basis of contrast
discrimination. Vision Res 39: 257–269, 1999.

Boynton GM, Finney EM. Orientation-specific adaptation in human visual
cortex. J Neurosci 23: 8781–8787, 2003.

Brainard DH. The Psychophysics Toolbox. Spat Vis 10: 433–436, 1997.
Britten KH, Heuer HW. Spatial summation in the receptive fields of MT

neurons. J Neurosci 19: 5074–5084, 1999.
Buxton RB, Uludag K, Dubowitz DJ, Liu TT. Modeling the hemodynamic

response to brain activation. Neuroimage 23, Suppl 1: S220–S233, 2004.
Carandini M, Heeger DJ. Normalization as a canonical neural computation.

Nat Rev Neurosci 13: 51–62, 2011.
Cardoso MM, Sirotin YB, Lima B, Glushenkova E, Das A. The neuroim-

aging signal is a linear sum of neurally distinct stimulus- and task-related
components. Nat Neurosci 15: 1298–1306, 2012.

Cavanaugh JR, Bair W, Movshon JA. Nature and interaction of signals from
the receptive field center and surround in macaque V1 neurons. J Neuro-

physiol 88: 2530–2546, 2002.
David SV, Gallant JL. Predicting neuronal responses during natural vision.

Network 16: 239–260, 2005.
Desimone R, Albright TD, Gross CG, Bruce C. Stimulus-selective proper-

ties of inferior temporal neurons in the macaque. J Neurosci 4: 2051–2062,
1984.

DiCarlo JJ, Zoccolan D, Rust NC. How does the brain solve visual object
recognition? Neuron 73: 415–434, 2012.

Dumoulin SO, Wandell BA. Population receptive field estimates in human
visual cortex. Neuroimage 39: 647–660, 2008.

Engel SA, Glover GH, Wandell BA. Retinotopic organization in human

visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:

181–192, 1997.

Epshtein B, Lifshitz I, Ullman S. Image interpretation by a single bottom-up

top-down cycle. Proc Natl Acad Sci USA 105: 14298–14303, 2008.

Freire L, Mangin JF. Motion correction algorithms may create spurious brain

activations in the absence of subject motion. Neuroimage 14: 709–722,

2001.

Friman O, Westin CF. Resampling fMRI time series. Neuroimage 25:

859–867, 2005.

Fukushima K. Neocognitron: a self organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position. Biol

Cybern 36: 193–202, 1980.

Glover GH, Lai S. Self-navigated spiral fMRI: interleaved versus single-shot.

Magn Reson Med 39: 361–368, 1998.

Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R.

Differential processing of objects under various viewing conditions in the

human lateral occipital complex. Neuron 24: 187–203, 1999.

Gross CG, Rocha-Miranda CE, Bender DB. Visual properties of neurons in

inferotemporal cortex of the macaque. J Neurophysiol 35: 96–111, 1972.

Hallum LE, Landy MS, Heeger DJ. Human primary visual cortex (V1) is

selective for second-order spatial frequency. J Neurophysiol 105: 2121–

2131, 2011.

Hansen KA, David SV, Gallant JL. Parametric reverse correlation reveals

spatial linearity of retinotopic human V1 BOLD response. Neuroimage 23:

233–241, 2004.

Hastie T, Tibshirani R, Friedman JH. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. New York: Springer, 2001.
Heeger DJ. Normalization of cell responses in cat striate cortex. Vis Neurosci

9: 181–197, 1992.
Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev

Neurosci 3: 142–151, 2002.
Heuer HW, Britten KH. Contrast dependence of response normalization in

area MT of the rhesus macaque. J Neurophysiol 88: 3398–3408, 2002.
Ito M, Tamura H, Fujita I, Tanaka K. Size and position invariance of

neuronal responses in monkey inferotemporal cortex. J Neurophysiol 73:
218–226, 1995.

Jezzard P, Balaban RS. Correction for geometric distortion in echo planar
images from B0 field variations. Magn Reson Med 34: 65–73, 1995.

Kastner S, De Weerd P, Pinsk MA, Elizondo MI, Desimone R, Ungerleider

LG. Modulation of sensory suppression: implications for receptive field
sizes in the human visual cortex. J Neurophysiol 86: 1398–1411, 2001.

Kastner S, O’Connor DH, Fukui MM, Fehd HM, Herwig U, Pinsk MA.

Functional imaging of the human lateral geniculate nucleus and pulvinar. J

Neurophysiol 91: 438–448, 2004.
Kay KN, Winawer J, Rokem A, Mezer A, Wandell BA. A two-stage

cascade model of BOLD responses in human visual cortex. PLoS Comput

Biol. First published 2013; doi:10.1371/journal.pcbi.1003079.
Kay KN. Understanding visual representation by developing receptive-field

models. In: Visual Population Codes: Towards a Common Multivariate

Framework for Cell Recording and Functional Imaging, edited by Krieges-
korte N and Kreiman G. Cambridge, MA: MIT Press, 2011.

Kay KN, David SV, Prenger RJ, Hansen KA, Gallant JL. Modeling
low-frequency fluctuation and hemodynamic response timecourse in event-
related fMRI. Hum Brain Mapp 29: 142–156, 2008a.

Kay KN, Naselaris T, Prenger RJ, Gallant JL. Identifying natural images
from human brain activity. Nature 452: 352–355, 2008b.

Kouh M, Poggio T. A canonical neural circuit for cortical nonlinear opera-
tions. Neural Comput 20: 1427–1451, 2008.

Kraft A, Schira MM, Hagendorf H, Schmidt S, Olma M, Brandt SA. fMRI
localizer technique: efficient acquisition and functional properties of single
retinotopic positions in the human visual cortex. Neuroimage 28: 453–463,
2005.

Krekelberg B, Boynton GM, van Wezel RJ. Adaptation: from single cells to
BOLD signals. Trends Neurosci 29: 250–256, 2006.

Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, Tanaka

K, Bandettini PA. Matching categorical object representations in inferior
temporal cortex of man and monkey. Neuron 60: 1126–1141, 2008.

Kumano H, Uka T. The spatial profile of macaque MT neurons is consistent
with Gaussian sampling of logarithmically coordinated visual representa-
tion. J Neurophysiol 104: 61–75, 2010.

Larsson J, Heeger DJ. Two retinotopic visual areas in human lateral occipital
cortex. J Neurosci 26: 13128–13142, 2006.

493COMPRESSIVE SPATIAL SUMMATION IN HUMAN VISUAL CORTEX

J Neurophysiol • doi:10.1152/jn.00105.2013 • www.jn.org

 a
t S

ta
n
fo

rd
 U

n
iv

e
rs

ity
 o

n
 J

u
ly

 1
7

, 2
0
1

3
h
ttp

://jn
.p

h
y
s
io

lo
g
y
.o

rg
/

D
o

w
n

lo
a

d
e
d
 fro

m
 

http://dx.doi.org/10.1371/journal.pcbi.1003079
http://jn.physiology.org/


Logothetis NK, Wandell BA. Interpreting the BOLD signal. Annu Rev

Physiol 66: 735–769, 2004.
Macevoy SP, Epstein RA. Decoding the representation of multiple simulta-

neous objects in human occipitotemporal cortex. Curr Biol 19: 943–947,
2009.

Magri C, Logothetis NK, Panzeri S. Investigating static nonlinearities in
neurovascular coupling. Magn Reson Imaging 29: 1358–1364, 2011.

Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA,

Ledden PJ, Brady TJ, Rosen BR, Tootell RB. Object-related activity
revealed by functional magnetic resonance imaging in human occipital
cortex. Proc Natl Acad Sci USA 92: 8135–8139, 1995.

Man LC, Pauly JM, Macovski A. Multifrequency interpolation for fast
off-resonance correction. Magn Reson Med 37: 785–792, 1997.

Monti MM. Statistical analysis of fMRI time-series: a critical review of the
GLM approach. Front Hum Neurosci 5: 28, 2011.

Motter BC. Central V4 receptive fields are scaled by the V1 cortical magni-
fication and correspond to a constant-sized sampling of the V1 surface. J

Neurosci 29: 5749–5757, 2009.
Naselaris T, Kay KN, Nishimoto S, Gallant JL. Encoding and decoding in

fMRI. Neuroimage 56: 400–410, 2011.
Nurminen L, Kilpelainen M, Laurinen P, Vanni S. Area summation in

human visual system: psychophysics, fMRI, and modeling. J Neurophysiol

102: 2900–2909, 2009.
Palmer CR, Chen Y, Seidemann E. Uniform spatial spread of population

activity in primate parafoveal V1. J Neurophysiol 107: 1857–1867, 2012.
Pelli DG. The VideoToolbox software for visual psychophysics: transforming

numbers into movies. Spat Vis 10: 437–442, 1997.
Perrett DI, Oram MW. Neurophysiology of shape processing. Image Vis

Comput 11: 317–333, 1993.
Perrett DI, Rolls ET, Caan W. Visual neurones responsive to faces in the

monkey temporal cortex. Exp Brain Res 47: 329–342, 1982.
Pihlaja M, Henriksson L, James AC, Vanni S. Quantitative multifocal fMRI

shows active suppression in human V1. Hum Brain Mapp 29: 1001–1014,
2008.

Pinto N, Doukhan D, DiCarlo JJ, Cox DD. A high-throughput screening
approach to discovering good forms of biologically inspired visual repre-
sentation. PLoS Comput Biol 5: e1000579, 2009.

Reddy L, Kanwisher NG, VanRullen R. Attention and biased competition in
multi-voxel object representations. Proc Natl Acad Sci USA 106: 21447–
21452, 2009.

Reynolds JH, Chelazzi L, Desimone R. Competitive mechanisms subserve
attention in macaque areas V2 and V4. J Neurosci 19: 1736–1753, 1999.

Riesenhuber M, Poggio T. Hierarchical models of object recognition in
cortex. Nat Neurosci 2: 1019–1025, 1999.

Rolls ET, Milward T. A model of invariant object recognition in the visual
system: learning rules, activation functions, lateral inhibition, and informa-
tion-based performance measures. Neural Comput 12: 2547–2572, 2000.

Rust NC, Dicarlo JJ. Selectivity and tolerance (“invariance”) both increase as
visual information propagates from cortical area V4 to IT. J Neurosci 30:
12978–12995, 2010.

Sahani M, Linden JF. How linear are auditory cortical responses? In:

Advances in Neural Information Processing Systems 15, edited by Becker S,
Thrun S, and Obermayer K. Cambridge, MA: MIT Press, 2003, p. 109–116.

Schall JD, Perry VH, Leventhal AG. Retinal ganglion cell dendritic fields in

old-world monkeys are oriented radially. Brain Res 368: 18–23, 1986.

Sclar G, Maunsell JH, Lennie P. Coding of image contrast in central visual

pathways of the macaque monkey. Vision Res 30: 1–10, 1990.

Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T. Robust object

recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach

Intell 29: 411–426, 2007.

Shmuel A, Augath M, Oeltermann A, Logothetis NK. Negative functional

MRI response correlates with decreases in neuronal activity in monkey

visual area V1. Nat Neurosci 9: 569–577, 2006.

Smith AM, Lewis BK, Ruttimann UE, Ye FQ, Sinnwell TM, Yang Y,

Duyn JH, Frank JA. Investigation of low frequency drift in fMRI signal.

Neuroimage 9: 526–533, 1999.

Smith AT, Singh KD, Williams AL, Greenlee MW. Estimating receptive

field size from fMRI data in human striate and extrastriate visual cortex.

Cereb Cortex 11: 1182–1190, 2001.

Smith AT, Williams AL, Singh KD. Negative BOLD in the visual cortex:

evidence against blood stealing. Hum Brain Mapp 21: 213–220, 2004.

Thirion B, Duchesnay E, Hubbard E, Dubois J, Poline JB, Lebihan D,

Dehaene S. Inverse retinotopy: inferring the visual content of images from

brain activation patterns. Neuroimage 33: 1104–1116, 2006.

Tootell RB, Hadjikhani NK, Vanduffel W, Liu AK, Mendola JD, Sereno

MI, Dale AM. Functional analysis of primary visual cortex (V1) in humans.

Proc Natl Acad Sci USA 95: 811–817, 1998.

Tovee MJ, Rolls ET, Azzopardi P. Translation invariance in the responses to

faces of single neurons in the temporal visual cortical areas of the alert

macaque. J Neurophysiol 72: 1049–1060, 1994.

Ullman S. High-Level Vision: Object Recognition and Visual Cognition.

Cambridge, MA: MIT Press, 1996.

Vanni S, Dojat M, Warnking J, Delon-Martin C, Segebarth C, Bullier J.

Timing of interactions across the visual field in the human cortex. Neuro-

image 21: 818–828, 2004.

Vanni S, Henriksson L, James AC. Multifocal fMRI mapping of visual

cortical areas. Neuroimage 27: 95–105, 2005.

Vanni S, Rosenstrom T. Local non-linear interactions in the visual cortex

may reflect global decorrelation. J Comput Neurosci 30: 109 –124, 2011.

Victor JD, Purpura K, Katz E, Mao B. Population encoding of spatial

frequency, orientation, and color in macaque V1. J Neurophysiol 72:

2151–2166, 1994.

Winawer J, Horiguchi H, Sayres RA, Amano K, Wandell BA. Mapping

hV4 and ventral occipital cortex: the venous eclipse. J Vis 10: 1–22, 2010.

Winawer J, Kay KN, Foster B, Rauschecker A, Parvizi J, Wandell BA.

Asynchronous broadband signals are the principal source of the BOLD

response in human visual cortex. Curr Biol. First published 2013; doi:

10.1016/j.cub.2013.05.001.

Zoccolan D, Cox DD, DiCarlo JJ. Multiple object response normalization in

monkey inferotemporal cortex. J Neurosci 25: 8150–8164, 2005.

Zuiderbaan W, Harvey BM, Dumoulin SO. Modeling center-surround

configurations in population receptive fields using fMRI. J Vis 12: 10,

2012.

494 COMPRESSIVE SPATIAL SUMMATION IN HUMAN VISUAL CORTEX

J Neurophysiol • doi:10.1152/jn.00105.2013 • www.jn.org

 a
t S

ta
n
fo

rd
 U

n
iv

e
rs

ity
 o

n
 J

u
ly

 1
7

, 2
0
1

3
h
ttp

://jn
.p

h
y
s
io

lo
g
y
.o

rg
/

D
o

w
n

lo
a

d
e
d
 fro

m
 

http://dx.doi.org/10.1016/j.cub.2013.05.001
http://jn.physiology.org/

