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Abstract— Estimating the spectral characteristics of a non-
stationary random process is an important but challenging task,
which can be facilitated by exploiting structural properties of
the process. In certain applications, the observed processes are
underspread, i.e., their time and frequency correlations exhibit a
reasonably fast decay, and approximately time-frequency sparse,
i.e., a reasonably large percentage of the spectral values are small.
For this class of processes, we propose a compressive estimator
of the discrete Rihaczek spectrum (RS). This estimator combines
a minimum variance unbiased estimator of the RS (which is a
smoothed Rihaczek distribution using an appropriately designed
smoothing kernel) with a compressed sensing technique that
exploits the approximate time-frequency sparsity. As a result of
the compression stage, the number of measurements required
for good estimation performance can be significantly reduced.
The measurements are values of the ambiguity function of the
observed signal at randomly chosen time and frequency lag
positions. We provide bounds on the mean-square estimation
error of both the minimum variance unbiased RS estimator
and the compressive RS estimator, and we demonstrate the
performance of the compressive estimator by means of simulation
results. The proposed compressive RS estimator can also be used
for estimating other time-dependent spectra (e.g., the Wigner-
Ville spectrum) since for an underspread process most spectra
are almost equal.

Index Terms— Nonstationary random process, nonstationary
spectral estimation, time-dependent power spectrum, Rihaczek
spectrum, Wigner-Ville spectrum, compressed sensing, basis
pursuit, cognitive radio.

I. INTRODUCTION

Estimating the spectral characteristics of a random process

is an important task in many signal analysis and processing

problems. Conventional spectral estimation based on the power
spectral density is restricted to wide-sense stationary and,

by extension, wide-sense cyclostationary processes [1], [2].

However, in many applications—including speech and audio,

communications, image processing, computer vision, biomed-

ical engineering, and machine monitoring—the signals of in-

terest cannot be well modeled as wide-sense (cyclo)stationary

processes. For example, in cognitive radio systems [3]–[5],

the receiver has to infer from the received signal the location
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of unoccupied frequency bands (“spectral holes”) that can be

used for data transmission. Here, modeling the received signal

as a nonstationary process can be advantageous because it

potentially allows a faster estimation of time-varying changes

in band occupation [3].

For a general nonstationary process, a “power spectral

density” that is nonnegative and extends all the essential

properties of the conventional power spectral density is not

available [6]–[10]. Several different definitions of a “time-

dependent (or time-varying) power spectrum” have been pro-

posed in the literature, see [6]–[26] and references therein.

However, it has been shown [10], [24] that in the practically

important case of nonstationary processes with fast decay-

ing time-frequency (TF) correlations—so-called underspread
processes [10], [24]–[30]—all major spectra yield effectively

identical results, are (at least approximately) real-valued and

nonnegative, and satisfy several other desirable properties at

least approximately. Thus, in the underspread case, the specific

choice of a spectrum is of secondary theoretical importance

and can hence be guided by practical considerations such as

computational complexity.

Once a specific definition of time-dependent spectrum

has been adopted, an important problem is the estimation

of the spectrum from a single observed realization of the

process. This nonstationary spectral estimation problem is

fundamentally more difficult than spectral estimation in the

(cyclo)stationary case, because long-term averaging cannot be

used to reduce the mean-square error (MSE) of the estimate.

Formally, any estimator of a nonparametric time-dependent

spectrum can also be viewed as a TF representation of the

observed signal [7], [26], [31], [32]. Estimators have been

previously proposed for several spectra including the Wigner-

Ville spectrum and the Rihaczek spectrum (RS) (e.g., [7]–[9],

[21], [26], [33]–[41]).

In this paper, extending our work in [42], we propose

a “compressive” estimator of the RS that uses the recently

introduced methodology of compressed sensing (CS) [43],

[44]. The proposed estimator is suited to underspread pro-

cesses that are approximately TF sparse. The latter property

means that only a moderate percentage of the values of the

discrete RS are significantly nonzero. Both assumptions—

underspreadness and TF sparsity—are reasonably well satis-

fied in many applications, including, e.g., cognitive radio. We

consider the RS because it is the simplest time-dependent spec-

trum from a computational viewpoint, especially in the discrete

setting used. The proposed compressive estimator of the RS

is obtained by augmenting a basic noncompressive estimator
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(a smoothed version of the Rihaczek distribution (RD), cf.

[7], [14], [26], [32], [33], [35], [38]–[41]) with a CS com-

pression-reconstruction stage. Algorithmically, our estimator

is similar to the compressive TF representation proposed in

[45], [46]. In fact, both our estimator and the TF representation

of [45], [46] are essentially based on a sparsity-regularized

inversion of the Fourier transform relationship between a TF

distribution and the values of the ambiguity function (AF)

taken at randomly chosen time lag/frequency lag locations.

The sparsity-regularization is achieved by requiring a small

ℓ1-norm of the resulting TF distribution. However, the set-

ting of [45], [46] is that of deterministic TF signal analysis

(more specifically, the goal is to improve the TF localization

properties of the Wigner distribution), whereas we consider a

stochastic setting, namely, spectral estimation for underspread,

approximately TF sparse, nonstationary random processes.

Compressive spectral estimation methods have been pro-

posed previously, also in the context of cognitive radio [47]–

[50]. However, these methods are restricted to the estimation of

the power spectral density of stationary or cyclostationary pro-

cesses. Furthermore, they perform CS directly on the observed

signal (process realization), whereas our method performs CS

on an estimate of a TF autocorrelation function known as the

expected ambiguity function (EAF). This EAF estimate is a

quadratic time lag/frequency lag representation of the observed

signal that is based on the signal’s AF. It is an intermediate

step in the calculation of the spectral estimator, somewhat

similar to a sufficient statistic. In some sense, we perform

a twofold compression, first by using only an EAF estimate

(instead of the raw observed signal) for spectral estimation and

secondly by “compressing” that estimate. This approach can be

advantageous if dedicated hardware units for computing values

of the EAF estimate (i.e., AF) from an observed continuous-

time signal are employed [51]–[54], because fewer such units

are required. It can also be advantageous if the values of the

EAF estimate have to be transmitted over low-rate links—

e.g., in wireless sensor networks [55]—or stored in a memory,

because fewer such values need to be transmitted or stored.

The fact that we perform CS in the AF domain and not

directly on the signal is a somewhat nonorthodox aspect of

our method. Indeed, the objective of this paper is not to

develop a sub-Nyquist sampling scheme in the spirit of, e.g.,

spectrum-blind sampling [56], [57]. Our work is based on

the assumption that the original signal of interest is mod-

eled as a continuous-time random process X(t) that can be

(approximately) represented by a finite-length, discrete-time

random process X [n]. This discrete-time random process itself

is not used in a practical application of our method; it is

only used for the theoretical development of the method. A

second assumption is that values of the AF of a continuous-

time process realization x(t) can be computed efficiently.

The computation of the AF values from x(t) using dedicated

hardware is described in [51]–[54].

A major focus of our work is an analysis of the estimation

accuracy of the proposed compressive estimator. Because

finding a closed-form expression of the MSE is intractable, we

derive upper bounds on the MSE. These bounds depend on two

components: the first component is determined by the degree

of “underspreadness,” corresponding to the concentration of

the EAF of the observed process; the second component is

related to the TF sparsity properties of the observed process.

As we will see below, there is a tradeoff between these

components, since a well concentrated EAF of an underspread

process tends to imply a poorly concentrated RS, which is

disadvantageous in terms of TF sparsity.

The remainder of this paper is organized as follows. In

Section II, we state our general setting and review some

fundamentals of nonstationary random processes and their

TF representation. In Section III, we describe a basic non-

compressive estimator of the RS. In Section IV, we develop

a compressive estimator by augmenting the noncompressive

estimator with a CS compression-reconstruction stage. Bounds

on the MSE of both the noncompressive and compressive

estimators are derived in Section V. Finally, numerical results

are presented in Section VI.

Notation. The modulus, complex conjugate, real part, and

imaginary part of a complex number a∈C are denoted by |a|,
a∗, ℜ{a}, and ℑ{a}, respectively. Boldface lowercase letters

denote column vectors and boldface uppercase letters denote

matrices. The kth entry of a vector a is denoted by (a)k,

and the entry of a matrix A in the ith row and jth column

by (A)i,j . The superscripts T , ∗, and H denote the transpose,

conjugate, and Hermitian transpose, respectively, of a vector or

matrix. The ℓ1-norm of a vector a ∈ CL is denoted by ‖a‖1 ,∑L

k=1 |(a)k|, and the ℓ2-norm by ‖a‖2 ,
√
aHa. The number

of nonzero entries is denoted by ‖a‖0. The trace of a square

matrix A ∈ C
M×M is denoted by tr{A} ,

∑M

k=1 (A)k,k.

Given a matrix A ∈ CM×N , we denote by vec{A} ∈ CMN

the vector obtained by stacking all columns of A. Given two

matrices A∈CM1×N1 and B∈CM2×N2 , we denote by A ⊗
B ∈ C

M1M2×N1N2 their Kronecker product [58]. The inner

product of two square matrices A,B ∈ CM×M is defined

as 〈A,B〉 , tr{AB
H}. The Kronecker delta is denoted by

δ[m], i.e., δ[m]=1 if m=0 and δ[m]=0 otherwise. Finally,

[N ] , {0, 1, . . . , N−1}.

II. EAF AND RS

In this section, we state our setting and review some funda-

mentals of the TF representation of nonstationary random pro-

cesses. Let X(t) be a bandlimited nonstationary continuous-

time random process that can be equivalently represented by a

nonstationary discrete-time random process X [n]. We assume

that X [n] is zero-mean, circularly symmetric complex, and

defined for n ∈ [N ]. (As mentioned above, the proposed

compressive estimator does not presuppose that the discrete-

time samplesX [n] are actually computed.) The autocorrelation

function of the process X [n] is given by γX [n1, n2] ,
E{X [n1]X

∗[n2]}, where E{·} denotes expectation. Since

X [n] is only defined for n∈ [N ], we consider γX [n1, n2] only

for n1, n2 ∈ [N ]. This is justified for a process that is well

concentrated in the interval [N ]. An equivalent representation

of γX [n1, n2] is the correlation matrix ΓX , E{xxH},

where x , (X [0] X [1] · · · X [N − 1])T ∈ CN ; note that

(ΓX)n1+1,n2+1 = γX [n1, n2] for n1, n2 ∈ [N ].
We assume that X [n] is an underspread process [10], [24]–

[30], which means that its correlation in time and frequency



3

decays reasonably fast. The underspread property is phrased

mathematically in terms of the discrete EAF, which is defined

as the following discrete Fourier transform (DFT) of the

autocorrelation function [10], [24]–[27], [29], [59]:

ĀX [m, l] ,
∑

n∈[N ]

γX [n, n−m]N e
−j 2π

N
ln . (1)

Here, m and l denote discrete time lag and discrete frequency

lag, respectively, and1 [n1, n2]N , [n1 mod N,n2 mod N ].
Note that this definition of ĀX [m, l] is N -periodic in both

m and l. The EAF ĀX [m, l] is a TF-lag representation of

the second-order statistics of X [n] that describes the TF

correlation structure of X [n]. A nonstationary process X [n] is

said to be underspread if its EAF is well concentrated around

the origin in the (m, l)-plane, i.e.,

ĀX [m, l] ≈ 0 , ∀(m, l) 6∈ A , with A , {−M, . . . ,M}N
× {−L, . . . , L}N ,

where 0 ≤M <

⌊
N

2

⌋
, 0 ≤ L <

⌊
N

2

⌋
, and ML≪N .

(2)

Here, e.g., {−M, . . . ,M}N denotes the N -periodic continu-

ation of the interval {−M, . . . ,M}. The concentration of the

EAF around the origin can be measured by the EAF moment
defined in Section V-A (see (47)). For later reference, we note

that the EAF is the expectation of the AF [7], [31], [32]

AX [m, l] ,
∑

n∈[N ]

X [n]X∗[n−m]N e
−j 2π

N
ln , (3)

i.e., ĀX [m, l] = E
{
AX [m, l]

}
.

Nonstationary spectral estimation is the problem of es-

timating a “time-dependent power spectrum” of the nonsta-

tionary process X [n] from a single realization x[n] observed

for n ∈ [N ]. As mentioned earlier, there is no definition of

a “time-dependent power spectrum” that satisfies all desir-

able properties [6]–[10]. However, in the underspread case

considered, most reasonable definitions of a time-dependent

power spectrum are approximately equal, represent the mean

energy distribution of the process over time and frequency,

and approximately satisfy all desirable properties [10], [24].

Therefore, we use the simplest such definition, which is the RS

[7], [9], [14], [36]. The discrete RS is defined as the following

DFT of the autocorrelation function:

R̄X [n, k] ,
∑

m∈[N ]

γX [n, n−m]N e
−j 2π

N
km . (4)

Just as the EAF and AF, the RS R̄X [n, k] is N -periodic in

both its variables. Furthermore, the RS is complex-valued in

general, but it is approximately real-valued and nonnegative

in the underspread case [10], [24]. The RS is related to the

EAF via a symplectic two-dimensional (2D) DFT:

1It will be convenient to consider length-N functions as periodic functions
with period N .

R̄X [n, k] =
1

N

∑

m,l∈[N ]

ĀX [m, l] e−j
2π
N

(km−nl) , (5)

ĀX [m, l] =
1

N

∑

n,k∈[N ]

R̄X [n, k] ej
2π
N

(mk−ln) . (6)

Relation (5) extends the Fourier transform relation between the

power spectral density and the autocorrelation function of a

stationary process [1], [2] to the nonstationary case. It follows

from (5) that the RS of an underspread process is a smooth

function. Furthermore, the RS is the expectation of the RD

defined as [7], [14], [31], [32], [36]

RX [n, k] ,
∑

m∈[N ]

X [n]NX
∗[n−m]N e

−j 2π
N
km

= X [n]N X̂
∗[k]N e

−j 2π
N
nk ,

where X̂ [k] ,
∑
n∈[N ]X [n]e−j

2π
N
kn is the DFT of X [n].

That is, R̄X [n, k] = E
{
RX [n, k]

}
. The 2D DFT relations (5),

(6) hold also for the RD and AF, i.e.,

RX [n, k] =
1

N

∑

m,l∈[N ]

AX [m, l] e−j
2π
N

(km−nl) , (7)

AX [m, l] =
1

N

∑

n,k∈[N ]

RX [n, k] ej
2π
N

(mk−ln) .

Our central assumption, besides the underspread property,

is that the nonstationary process X [n] is “approximately

TF sparse” in the sense that only a moderate percentage

of the RS values R̄X [n, k] within the fundamental (n, k)-
region [N ]2 = [N ] × [N ] are significantly nonzero. For

such approximately TF sparse processes, we will develop a

compressive estimator of the RS by augmenting a basic RS

estimator with a compression-reconstruction stage. We present

the basic estimator first.

III. BASIC RS ESTIMATOR

In analogy to well-known estimators of the Wigner-Ville

spectrum [7]–[9], [21], [26], [37], [38], a basic (noncompres-

sive) estimator of the RS R̄X [n, k] is given by the following

smoothed version of the RD [36], [38]:

R̂X [n, k] ,
1

N

∑

n′,k′∈[N ]

Φ[n−n′, k−k′]RX [n′, k′] . (8)

Here, Φ[n, k] is a smoothing function that is N -periodic in

both arguments. Because of (6), the symplectic 2D inverse

DFT of R̂X [n, k],

ÂX [m, l] ,
1

N

∑

n,k∈[N ]

R̂X [n, k] ej
2π
N

(mk−ln) , (9)

can be viewed as an estimator of the EAF ĀX [m, l]. Using

(8) and (7) in (9), we obtain

ÂX [m, l] = φ[m, l]AX [m, l] , (10)

where the 2D window (weighting, taper) function φ[m, l] is

related to the smoothing function Φ[n, k] through a 2D DFT,
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i.e.,

φ[m, l] ,
1

N

∑

n,k∈[N ]

Φ[n, k] ej
2π
N

(mk−ln) . (11)

Note that φ[m, l] and ÂX [m, l] are N -periodic in both m and

l.
We now consider the choice of the smoothing function

Φ[n, k] or, equivalently, of the window function φ[m, l]. Our

performance criterion is the MSE

ε , E
{∥∥R̂X−R̄X

∥∥2
2

}
=

∑

n,k∈[N ]

E
{∣∣R̂X [n, k]−R̄X [n, k]

∣∣2} .

The MSE can be decomposed as ε = B2 + V with the

squared bias term B2 ,
∥∥E{R̂X} − R̄X

∥∥2
2

and the variance

V , E
{∥∥R̂X − E{R̂X}

∥∥2
2

}
. We will consider a minimum

variance unbiased (MVU) design2 of Φ[n, k]. This means

that R̂X [n, k] is required to be unbiased, i.e., B = 0, and

the variance V is minimized under this constraint. More

specifically, we will adopt the MVU design proposed in [26],

[38], which is based on the idealizing assumption that the EAF

ĀX [m, l] is supported on a periodized rectangular region A =
{−M, . . . ,M}N × {−L, . . . , L}N , i.e., ĀX [m, l] = 0 for all

(m, l) 6∈ A, with 0 ≤M < ⌊N/2⌋ and 0 ≤ L < ⌊N/2⌋. This

is somewhat similar to the underspread property (2); however,

it is an exact, rather than approximate, support constraint. As

a further difference from the underspread property, we do not

require that ML ≪ N . We note that this idealizing exact

support constraint is only needed for the MVU interpretation

of our design of Φ[n, k]; in particular, it will not be used

for our performance analysis in Section V. The size of A—

i.e., the choice of L and M—is a design parameter that

can be chosen freely in principle. The resulting estimator

R̂X,MVU[n, k] (cf. (17)) can be applied to any process X [n],
including, in particular, processes whose EAF ĀX [m, l] is not

exactly supported on A.

We briefly review the derivation of the MVU smooth-

ing function presented in [26], [38]. Using (10) and

E
{
AX [m, l]

}
= ĀX [m, l], the bias term B2 =

∥∥E{R̂X} −
R̄X

∥∥2

2
=

∥∥E{ÂX}− ĀX
∥∥2
2

can be expressed as

B2 =
∑

m,l∈[N ]

∣∣(φ[m, l]− 1) ĀX [m, l]
∣∣2. (12)

Thus, B2 = 0 if and only if φ[m, l] = 1 on the support

of ĀX [m, l], i.e., for all (m, l) ∈ A. Under the constraint

B2 = 0, minimizing the variance of R̂X [n, k] is equivalent

to minimizing the mean power

P , E
{∥∥R̂X

∥∥2

2

}

(9)
= E

{∥∥ÂX
∥∥2
2

}

(10)
= E

{∥∥φ[m, l]AX [m, l]
∥∥2
2

}

=
∑

m,l∈[N ]

|φ[m, l]|2 E
{∣∣AX [m, l]

∣∣2} .

2The MVU design is analytically tractable and well established in TF
spectrum estimation [26], [38]. An alternative design of Φ[n, k] could be
based on the minimax rationale [60]; however, there does not seem to exist
a simple solution to the minimax design problem.

Splitting this sum into a sum over [N ]2∩A (where φ[m, l] = 1)

and a sum over [N ]2 ∩ A (here, A denotes the complement

of A), it is clear that P is minimized if and only if the

latter sum is zero. This means that φ[m, l] must be zero for

(m, l) ∈ [N ]
2 ∩ A, and further, due to the periodicity of

φ[m, l], for (m, l) ∈ A. Thus, we conclude that the MVU

window function (DFT of the MVU smoothing function) is

the indicator function IA[m, l] of the EAF support A =
{−M, . . . ,M}N × {−L, . . . , L}N :

φMVU[m, l] = IA[m, l] ,

{
1, (m, l)∈A
0, otherwise.

(13)

The corresponding EAF estimator in (10) is obtained as

ÂX,MVU[m, l] = φMVU[m, l]AX [m, l]

= IA[m, l]AX [m, l] (14)

=

{
AX [m, l], (m, l)∈A
0, otherwise.

(15)

Therefore, the MVU estimator of the RS is given by (see (9))

R̂X,MVU[n, k] =
1

N

∑

m,l∈[N ]

ÂX,MVU[m, l] e
−j 2π

N
(km−nl)

(16)

=
1

N

M∑

m=−M

L∑

l=−L
AX [m, l] e−j

2π
N

(km−nl) ,

(17)

where the periodicity of the summand with respect to m and

l has been exploited in the last step.

IV. COMPRESSIVE RS ESTIMATOR

Next, we will augment the basic RS estimator presented in

the previous section with a compression-reconstruction stage.

A. Basic DFT Relation

The proposed compressive RS estimator is based on a 2D

DFT relation that will now be derived. We recall from (15)

that the EAF estimate ÂX,MVU[m, l] is exactly zero outside the

effective EAF support A = {−M, . . . ,M}N×{−L, . . . , L}N ,

where 0 ≤M < ⌊N/2⌋ and 0 ≤ L < ⌊N/2⌋. In what follows,

we will denote by

S ,
∣∣[N ]2 ∩ A

∣∣ = (2M +1)(2L+1) (18)

the size of one period of A. Because 2M +1 and 2L+1 do

not necessarily divide N , we furthermore define an “extended

effective EAF support” as the periodized rectangular region

A′ , {−M, . . . ,−M +∆M − 1}N ×{−L, . . . ,−L+∆L−
1}N . Here, ∆M and ∆L are chosen as the smallest integers

such that ∆M ≥ 2M + 1 and ∆L ≥ 2L+ 1 and, moreover,

∆M and ∆L divide N , i.e, there are integers ∆n, ∆k such

that ∆n∆L = ∆k∆M = N or, equivalently,

∆n =
N

∆L
, ∆k =

N

∆M
. (19)

The size of one period of A′ is

S′ ,
∣∣[N ]

2 ∩ A′∣∣ = ∆M∆L .
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Note that

A ⊆ A′ , S ≤ S′, (20)

although typically S ≈ S′. Let us arrange the values of one

period of ÂX,MVU[m, l] that are located within A′ into a matrix

A ∈ C∆M×∆L, i.e.,

(A)m+1,l+1 , ÂX,MVU[m−M, l−L] ,

m ∈ [∆M ] , l ∈ [∆L] . (21)

Alternatively, we can represent ÂX,MVU[m, l] by the matrix

R ∈ C∆L×∆M whose entries are given by the following 2D

DFT of dimension ∆L ×∆M :

(R)p+1,q+1 ,
∑

m∈[∆M ]

∑

l∈[∆L]

(A)m+1,l+1

× e−j2π
(

q(m−M)
∆M

− p(l−L)
∆L

)
(22)

(21)
=

−M+∆M−1∑

m=−M

−L+∆L−1∑

l=−L
ÂX,MVU[m, l]

× e−j2π
(

qm
∆M

− pl
∆L

)

(15)
=

M∑

m=−M

L∑

l=−L
AX [m, l] e−j2π

(
qm
∆M

− pl
∆L

)
,

p ∈ [∆L], q ∈ [∆M ] . (23)

It can be seen by comparing (23) and (17) that the matrix en-

tries (R)p+1,q+1 equal (up to a constant factor) a subsampled

version of R̂X,MVU[n, k], i.e.,

(R)p+1,q+1 = NR̂X,MVU[p∆n, q∆k] ,

p ∈ [∆L], q ∈ [∆M ] , (24)

with ∆n = N/∆L and ∆k = N/∆M as in (19). This

subsampling does not cause a loss of information because

ÂX,MVU[m, l] is supported in A, and therefore, by (20), also

in A′ = {−M, . . . ,−M+∆M−1}N×{−L, . . . ,−L+∆L−
1}N .

Inverting (22), we obtain

(A)m+1,l+1

=
1

S′

∑

p∈[∆L]

∑

q∈[∆M ]

(R)p+1,q+1 e
j2π

(
(m−M)q

∆M
− (l−L)p

∆L

)
,

m ∈ [∆M ], l ∈ [∆L] . (25)

This 2D DFT relation will constitute an important basis for

our compressive RS estimator. It can be compactly written as

Ur = a , (26)

where r , vec{R} ∈ CS
′

, a , vec{AT } ∈ CS
′

, and

U ,
1

S′ F
∗
∆M ⊗ F∆L ∈ C

S′×S′

, (27)

with F∆M defined as (F∆M )q+1,m+1 , e−j2π
q(m−M)

∆M , q,m ∈
[∆M ] and F∆L defined as (F∆L)p+1,l+1 , e−j2π

p(l−L)
∆L ,

p, l ∈ [∆L].

Furthermore, using (21) in (16), we obtain

R̂X,MVU[n, k] =
1

N

∑

m∈[∆M ]

∑

l∈[∆L]

(A)m+1,l+1

× e−j
2π
N

[k(m−M)−n(l−L)] .

Inserting (25), we see that the basic RS estimate R̂X,MVU[n, k]
can be calculated from r (or, equivalently, from R) according

to

R̂X,MVU[n, k] = L{r}[n, k]

,
1

NS′

∑

m∈[∆M ]

∑

l∈[∆L]

[
∑

p∈[∆L]

∑

q∈[∆M ]

(R)p+1,q+1

× ej2π
(

(m−M)q
∆M

− (l−L)p
∆L

)]
e−j

2π
N

[k(m−M)−n(l−L)] . (28)

B. Measurement Equation and Sparse Reconstruction

The compressive RS estimator can be obtained by combin-

ing the results of the previous subsection with standard results

from CS theory [44], [61]. To motivate our development, we

assume that R̂X,MVU[p∆n, q∆k] is approximately K-sparse

for some K< S′, i.e., at most K of the S′ values of the basic

RS estimator R̂X,MVU[n, k] on the subsampled grid (n, k) =
(p∆n, q∆k) are significantly nonzero. (Because R̂X,MVU[n, k]
is an estimator of the RS, this assumption is consistent with our

basic assumption that the RS R̄X [n, k] itself is approximately

sparse.) Due to (24), it follows that the matrix R and,

equivalently, the vector r ≡ vec{R} are approximately K-

sparse. Furthermore, according to (26), r ∈ CS
′

is related to

the EAF estimate a ≡ vec{AT } ∈ CS
′

as Ur = a, where U

(see (27)) is an orthogonal (up to a factor) and equimodular

matrix of size S′× S′, i.e., UH
U = 1

S′ I and |(U)i,j | = 1
S′ .

Let us define a
(P ) ∈ CP as the vector made up of P

randomly selected entries of a, for some P < S′ (typically,

P ≪ S′). Thus, recalling (21) and (14), the entries of a
(P )

are P values of the masked AF IA[m, l]AX [m, l] randomly

located within the region [N ]
2∩A′ or, equivalently,3 the values

of IA[m, l]AX [m, l] at P randomly chosen TF lag positions

(m, l) ∈ {−M, . . . ,−M +∆M −1}×{−L, . . . ,−L+∆L−
1}. We have then from (26)

Mr = a
(P ) , (29)

where the matrix M ∈ CP×S′

is obtained by randomly

selecting P rows from U; the indices of these rows equal

the indices of the entries selected from a.

Equation (29) is an instance of a measurement equation as

considered in CS theory. Because the “measurement matrix”

M is formed by randomly selecting P rows from U, and U is

a unitary (up to a factor) and equimodular matrix, CS theory

[44], [61] provides the following result: For

P ≥ C (logS′)4K = C
[
log(∆M) + log(∆L)

]4
K, (30)

3Typically, the region [N ]2 ∩ A′ is only slightly larger than the effective

EAF support [N ]2 ∩ A. Thus, most of the P entries of a
(P ) are values

of AX [m, l] randomly located within [N ]2 ∩ A or, equivalently, within

{−M, . . . ,M} × {−L, . . . , L}. The remaining entries of a(P ) are zero.
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where C is a positive constant that does not depend on r, the

result of Basis Pursuit [62] operating on a
(P ), i.e.,

r̂ , argmin
r′:Mr′=a(P)

‖r′‖1 , (31)

satisfies with overwhelming probability4

‖r̂− r‖2 ≤ D√
K

‖r− r
G‖1 . (32)

Here, D is another positive constant that does not depend

on r, and r
G denotes the vector that is obtained by zeroing

all entries of r except the K entries whose indices are in a

given index set G ⊆ {1, . . . , S′} of size |G|=K . Since r is

approximately K-sparse, the index set G can be chosen such

that the corresponding entries {(r)k}k∈G comprise, with high

probability,5 the significantly nonzero entries of r, implying

a small norm ‖r− r
G‖1. The bound (32) then shows that the

Basis Pursuit is capable of reconstructing r—and, thus, the

subsampled basic RS estimator R̂X,MVU[p∆n, q∆k]—from

the compressed AF vector a
(P ) with a small reconstruction

error ‖r̂− r‖2. (We recall, at this point, that the entries of r

equal the values of R̂X,MVU[p∆n, q∆k].) The minimization

in (31) can be implemented numerically using standard tools,

e.g., the MATLAB toolbox CVX [63].

C. The Compressive RS Estimator

From the Basis Pursuit reconstruction result r̂ in (31),

a compressive approximation of the basic RS estimator

R̂X,MVU[n, k] in (17) is finally obtained by substituting r̂ for

r in (28):

R̂X,CS[n, k] = L{r̂}[n, k]

=
1

NS′

∑

m∈[∆M ]

∑

l∈[∆L]

[
∑

p∈[∆L]

∑

q∈[∆M ]

(R̂)p+1,q+1

× ej2π
(

(m−M)q
∆M

− (l−L)p
∆L

)]
e−j

2π
N

[k(m−M)−n(l−L)] , (33)

where R̂ = unvec{r̂} ∈ C∆L×∆M is the matrix correspond-

ing to r̂. This defines the compressive RS estimator.

To summarize, the proposed compressive RS estimator

R̂X,CS[n, k] is calculated by the following steps.

1) Choose K < S′ such that it reflects the prior intu-

ition about the effective sparsity of the subsampled RS

R̄X [p∆n, q∆k], (p, q) ∈ [∆L] × [∆M ]. (Equivalently,

KN2/S′ reflects the prior intuition about the effective

sparsity of the RS R̄X [n, k], (n, k) ∈ [N ]2.)

2) Acquire P ≥ C
[
log(∆M) + log(∆L)

]4
K values of

the masked AF IA[m, l]AX [m, l] at randomly chosen

4That is, the probability of (32) not being true decreases exponentially with
P .

5Note that the index set G is deterministic and fixed, whereas the indices of
the largest entries of r may vary with each realization of the random process.
However, for the performance analysis in Section V, it is sufficient to assume
that the index set G approximately contains the indices of the largest entries
of r for each realization.

TF lag positions6 (m, l) ∈ {−M, . . . ,−M + ∆M −
1} × {−L, . . . ,−L + ∆L − 1}. Let a

(P ) denote the

vector containing these “compressive measurements.” A

compression has been achieved if P < S′ ≡ ∆M∆L;

the “compression factor” is S′/P ≥ 1. It is important

to note that the AF values AX [m, l] can be equivalently

obtained (up to small aliasing errors that are typically

negligible) from the continuous-TF-lag AF of the under-

lying continuous-time process X(t).7

3) Form the “measurement matrix” M ∈ C
P×S′

compris-

ing those rows of U ∈ CS
′×S′

(see (27)) whose indices

correspond to the TF lag positions (m, l) chosen in Step

2.

4) Compute an estimate r̂ of r from a
(P ) by means of the

Basis Pursuit (31), i.e., r̂ = argminr′:Mr′=a(P) ‖r′‖1.

5) From r̂, calculate R̂X,CS[n, k] = L{r̂}[n, k] according

to (33). This step can be implemented efficiently by two

successive 2D FFT operations.

Based on the error bound (32) (with the index set G
chosen as described below (32)), the compressive RS estimator

R̂X,CS[n, k] can be expected to be close to the noncompressive

basic RS estimator R̂X,MVU[n, k] in (17) if the subsampled

RS estimate R̂X,MVU[p∆n, q∆k] is approximately K-sparse.

In Section V, we will derive an upper bound on the approx-

imation error (MSE) that is formulated in terms of certain

parameters depending on second-order statistics of the process

X [n], including the RS, R̄X [n, k].

As previously mentioned in Section I, from an algorithmic

viewpoint, our compressive RS estimator R̂X,CS[n, k] is simi-

lar to the compressive TF representation proposed in [45], [46].

However, the setting of [45], [46] is that of deterministic TF

signal analysis (improving the TF localization of the Wigner

distribution), rather than spectral estimation for nonstationary

random processes.

D. An Improved Compressive RS Estimator

The compressive RS estimator R̂X,CS[n, k] in (33) is re-

lated to the compressive EAF estimator ÂX,CS[m, l] defined

6More precisely, we choose uniformly at random a size-P subset of
{−M, . . . ,−M + ∆M − 1} × {−L, . . . ,−L + ∆L − 1}, containing P
different TF lag positions (m, l).

7The continuous-TF-lag AF is defined as AX(τ, ν) ,
∫

∞

−∞
X(t)X∗(t−

τ)e−j2πνtdt. If the process X(t) is bandlimited to the frequency band
[0, 1/(2Ts)] and effectively localized within the time interval [0, NTs/2],
we can use the approximation

AX [m, l]
(3)
=

∑

n∈[N]

X[n]X∗[n−m]N e−j 2π
N

ln

≈
∑

n∈[N]

X(nTs)X
∗((n−m)Ts)e

−j 2π
N

ln

≈
1

Ts

AX

(

mTs,
l

NTs

)

, for m, l ∈ [⌊N/2⌋] .

Here, X[n] is obtained from the continuous-time process X(t) by regular
sampling with period Ts, i.e., X[n] = X(nTs) for n ∈ [N ]. Thus, AX [m, l]
can be approximately calculated from the AF AX(τ, ν) of the continuous-
time process X(t).
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as

ÂX,CS[m, l] ,






1

S′

∑

p∈[∆L]

∑

q∈[∆M ]

(R̂)p+1,q+1 e
j2π

(
mq
∆M

− lp
∆L

)
,

(m, l) ∈ {−M, . . . ,−M +∆M − 1}N
×{−L, . . . ,−L+∆L− 1}N

0 , otherwise.
(34)

This relation is given by the 2D DFT

R̂X,CS[n, k] =
1

N

−M+∆M−1∑

m=−M

−L+∆L−1∑

l=−L
ÂX,CS[m, l]

× e−j
2π
N

(km−nl) . (35)

Now, although the AF and EAF satisfy the following symme-

try property:

A∗
X [−m,−l] e−j 2π

N
ml = AX [m, l] (36a)

Ā∗
X [−m,−l] e−j 2π

N
ml = ĀX [m, l], (36b)

the EAF estimator ÂX,CS[m, l] does not exhibit this symmetry

property in general. This fact suggests the following simple

symmetrization modification (postprocessing) of the EAF es-

timator:

Â
(s)
X,CS[m, l] ,

1

2

[
ÂX,CS[m, l] + Â∗

X,CS[−m,−l] e−j
2π
N
ml

]
.

(37)

This, in turn, naturally leads to the definition of a “sym-

metrized” RS estimator R̂
(s)
X,CS[n, k] via the 2D DFT transform

in (35), i.e.,

R̂
(s)
X,CS[n, k] ,

1

N

−M+∆M−1∑

m=−M

−L+∆L−1∑

l=−L
Â

(s)
X,CS[m, l]

× e−j
2π
N

(km−nl) .

The following explicit expression of the symmetrized RS

estimator is easily shown:

R̂
(s)
X,CS[n, k]

=
1

2NS′

∑

m∈[∆M ]

∑

l∈[∆L]

[
∑

p∈[∆L]

∑

q∈[∆M ]

[
(R̂)p+1,q+1

+ (R̂)
∗
p+1,q+1e

−j 2π
N

(m−M)(l−L)
]
ej2π

(
(m−M)q

∆M
− (l−L)p

∆L

)]

× e−j
2π
N

[k(m−M)−n(l−L)] . (38)

This expression replaces (33). In Appendix A, we show that

the MSE of the symmetrized RS estimator R̂
(s)
X,CS[n, k] is

always smaller than (or equal to) that of the original RS

estimator R̂X,CS[n, k], i.e.,

E
{∥∥R̂(s)

X,CS − R̄X
∥∥2
2

}
≤ E

{∥∥R̂X,CS − R̄X
∥∥2
2

}
. (39)

Thus, the upper bound on the MSE of R̂X,CS[n, k] to be de-

rived in Section V also applies to the MSE of R̂
(s)
X,CS[n, k]. To

summarize, by using instead of the compressive RS estimator

in (33) the symmetrized compressive RS estimator R̂
(s)
X,CS[n, k]

given by (38), we can typically reduce the MSE.

Finally, we mention that in the case where no com-

pression is performed, i.e., S′/P = 1, the basic (noncom-

pressive) estimator R̂X,MVU[n, k], the compressive estima-

tor R̂X,CS[n, k], and the symmetrized compressive estimator

R̂
(s)
X,CS[n, k] all coincide, i.e., R̂X,MVU[n, k] ≡ R̂X,CS[n, k] ≡

R̂
(s)
X,CS[n, k]. The equivalence R̂X,MVU[n, k] ≡ R̂X,CS[n, k]

can be verified by observing that for S′/P = 1, the mea-

surement matrix M in (29) coincides with the invertible

matrix U in (26). Therefore, the vectors r = vec{R} in

(26) and r̂ = vec{R̂} in (31) coincide, and so do the

corresponding RS estimators R̂X,MVU[n, k] and R̂X,CS[n, k]

(cf. (28) and (33)). To verify that R̂
(s)
X,CS[n, k] ≡ R̂X,MVU[n, k]

for S′/P = 1, note that because of (25) and (34),

R̂X,CS[n, k] ≡ R̂X,MVU[n, k] is equivalent to ÂX,CS[m, l] ≡
ÂX,MVU[m, l]. Since A = {−M, . . . ,M}N × {−L, . . . , L}N
is symmetric, it follows from expression (15) that the ba-

sic EAF estimator ÂX,MVU[m, l] satisfies the symmetry re-

lation (36), and hence Â
(s)
X,MVU[m, l] , 1

2

[
ÂX,MVU[m, l] +

Â∗
X,MVU[−m,−l] e−j

2π
N
ml

]
= ÂX,MVU[m, l]. Thus, for S′/P

= 1, we have Â
(s)
X,CS[m, l] = Â

(s)
X,MVU[m, l] = ÂX,MVU[m, l],

and in turn R̂
(s)
X,CS[n, k] = R̂X,MVU[n, k].

V. MSE BOUNDS

In this section, we derive an upper bound on the MSE of

the proposed compressive RS estimator R̂X,CS[n, k],

εCS , E
{∥∥R̂X,CS − R̄X

∥∥2
2

}

=
∑

n,k∈[N ]

E
{∣∣R̂X,CS[n, k]− R̄X [n, k]

∣∣2} ,

under the assumption that X [n] is a circularly symmetric

complex Gaussian nonstationary process. We do not assume

that the EAF ĀX [m, l] is exactly supported on some periodic

lag rectangle A = {−M, . . . ,M}N × {−L, . . . , L}N with

0 ≤M < ⌊N/2⌋ and 0 ≤ L < ⌊N/2⌋.

A. Parameters

Our MSE bound depends on three parameters of the

second-order statistics of the process X [n], which will be

defined first.

1) As a measure (in the broad sense) of the sparsity of

R̄X [n, k], we define the TF sparsity moment

σ
(w)
X ,

1

‖R̄X‖22

[
∑

n,k∈[N ]

w[n, k]
∣∣R̄X [n, k]

∣∣
]2

, (40)

where w[n, k] ≥ 0 is a suitably chosen weighting

function and ‖R̄X‖22 ,
∑

n,k∈[N ]

∣∣R̄X [n, k]
∣∣2 (i.e., the

norm is taken over one period of R̄X [n, k]). In particular,

for w[n, k] ≡ 1, σ
(w)
X = ‖R̄X‖21/‖R̄X‖

2

2 .
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2) For another way to measure the TF sparsity, let us first

denote by

R̃X,MVU[n, k] , E
{
R̂X,MVU[n, k]

}
(41)

the expectation of the basic RS estimator R̂X,MVU[n, k]

in (17). It follows from (8) that R̃X,MVU[n, k] is a

smoothed version of the RS, i.e.,

R̃X,MVU[n, k]

=
1

N

∑

n′,k′∈[N ]

ΦMVU[n−n′, k−k′] E
{
RX [n′, k′]

}

=
1

N

∑

n′,k′∈[N ]

ΦMVU[n−n′, k−k′] R̄X [n′, k′] , (42)

where E
{
RX [n, k]

}
= R̄X [n, k] has been used in the

last step. Due to (11), the smoothing kernel is given by

ΦMVU[n, k] ,
1

N

∑

m,l∈[N ]

φMVU[m, l] e
−j 2π

N
(km−nl)

(13)
=

1

N

∑

m,l∈[N ]

IA[m, l] e
−j 2π

N
(km−nl) (43)

=
1

N

M∑

m=−M

L∑

m=−L
e−j

2π
N

(km−nl) .

Because of the smoothing, the number of significantly

nonzero values of R̃X,MVU[n, k] may be larger than

the number of significantly nonzero values of the RS

R̄X [n, k]. However, for an underspread process, the RS

is inherently smooth, which implies that the smoothed

RS is close to the RS. Therefore, for an underspread

process with a small number of significantly nonzero RS

values, we can expect that also the smoothed RS consists

of only a small number of significantly nonzero values.

Let us denote by G(K) the set of indices (p, q) ∈ [∆L]×
[∆M ] of the K largest (in magnitude) values of the sub-

sampled expected RS estimator, R̃X,MVU[p∆n, q∆k].
Let G(K) , ([∆L]× [∆M ]) \ G(K), and note that∣∣G(K)

∣∣ = S′−K . We then define the TF sparsity profile8

σ̃X(K) ,
1

‖R̄X‖22

∑

(p,q)∈G(K)

hp,q , (44)

with

hp,q , E
{∣∣(R)p+1,q+1

∣∣2}

(24)
= N2E

{∣∣R̂X,MVU[p∆n, q∆k]
∣∣2} . (45)

For later use, we note that

∑

(p,q)∈G(K)

hp,q = E
{∥∥rG(K)

∥∥2
2

}
= E

{∥∥r−r
G(K)

∥∥2
2

}
,

(46)

8We note that this definition is different from that in [64].

where r
G(K) (resp. r

G(K)) denotes the vector that is

obtained from r ≡ vec{R} by zeroing all entries except

the S′−K (resp. K) entries whose indices correspond

to the indices9 (p, q) ∈ G(K) (resp. (p, q) ∈ G(K)).

3) The “TF correlation width” of X [n] can be measured

by the EAF moment [10], [24]

m
(ψ)
X ,

1

‖ĀX‖22

∑

m,l∈[N ]

ψ[m, l]
∣∣ĀX [m, l]

∣∣2 , (47)

where ψ[m, l] is some weighting function that is

generally zero or small at the origin (0, 0) and in-

creases with increasing |m| and |l|, and ‖ĀX‖22 ,∑
m,l∈[N ]

∣∣ĀX [m, l]
∣∣2 = ‖R̄X‖22. For an underspread

process X [n] and a reasonable choice of ψ[m, l], m
(ψ)
X

is small (≪ 1).

B. Bound on the MSE of the Basic RS Estimator

Our bound on the MSE εCS = E
{∥∥R̂X,CS − R̄X

∥∥2
2

}
is

a combination of a bound on the MSE of the basic (non-

compressive) RS estimator R̂X,MVU[n, k] and a bound on the

excess MSE introduced by the compression. First, we derive

the bound on the MSE of the basic RS estimator,

ε , E
{∥∥R̂X,MVU − R̄X

∥∥2
2

}
.

As in Section III, we use the decomposition

ε = B2 + V , (48)

with the squared bias term B2 =
∥∥E{R̂X,MVU}− R̄X

∥∥2
2

and

the variance V = E
{∥∥R̂X,MVU − E{R̂X,MVU}

∥∥2
2

}
.

1) Bias: An expression of the bias term is obtained by

setting φ[m, l] = φMVU[m, l] = IA[m, l] in (12):

B2 =
∑

m,l∈[N ]

∣∣(IA[m, l]− 1) ĀX[m, l]
∣∣2

=
∑

m,l∈[N ]

IA[m, l]
∣∣ĀX [m, l]

∣∣2,

where IA[m, l] = 1 − IA[m, l] is the indicator function of

the complement A of the effective EAF support region A =
{−M, . . . ,M}N × {−L, . . . , L}N , i.e.,

IA[m, l] =

{
1, (m, l) 6∈ A
0, otherwise.

We can write B2 in terms of the EAF moment (47) with

weighting function ψ[m, l] = IA[m, l]:

B2 = ‖ĀX‖22 m
(I

A
)

X = ‖R̄X‖22 m
(I

A
)

X . (49)

9For convenience, though with an abuse of notation, we denote by
G(K) both a set of indices k of (r)k and the corresponding set of 2D
indices (p, q) of (R)p+1,q+1 = (unvec{r})p+1,q+1 or equivalently of

R̂X,MVU[p∆n, q∆k]. Thus, depending on the context, we will write k ∈
G(K) or (p, q) ∈ G(K).
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Note that m
(I

A
)

X = 0, and thus B2= 0, if and only if the EAF

ĀX [m, l] is exactly supported on A.

2) Variance: In what follows, we will use the (scaled)

discrete TF shift matrices Jm,l of size N×N whose action on

x∈CN is given by

(Jm,lx)n+1 =
1√
N

(x)(n−m)N +1 e
j 2π

N
ln , n ∈ [N ] ,

with (n)N , nmodN . Basic properties of the family of TF

shift matrices {Jm,l}m,l∈[N ] are considered in Appendix B.

Using Jm,l, R̂X,MVU[n, k] can be written as a quadratic form

in x = (X [0] · · · X [N−1])T . In fact, starting from (17) and

using (85), we can develop R̂X,MVU[n, k] as follows:

R̂X,MVU[n, k]
(17)
=

1

N

M∑

m=−M

L∑

l=−L
AX [m, l] e−j

2π
N

(km−nl)

(85)
=

1√
N

M∑

m=−M

L∑

l=−L
〈xxH,Jm,l〉 e−j

2π
N

(km−nl)

=

〈
xx

H ,
1√
N

M∑

m=−M

L∑

l=−L
ej

2π
N

(km−nl)
Jm,l

〉
.

Setting

Cn,k ,
1√
N

M∑

m=−M

L∑

l=−L
ej

2π
N

(km−nl)
Jm,l , (50)

this becomes

R̂X,MVU[n, k] =
〈
xx

H,Cn,k

〉

= tr
{
xx

H
C
H
n,k

}

= x
H
C
H
n,kx . (51)

Note that the matrix Cn,k is not Hermitian in general.

Splitting R̂X,MVU[n, k] into its real and imaginary parts,

we have

var
{
R̂X,MVU[n, k]

}
= var

{
ℜ{R̂X,MVU[n, k]}

}

+ var
{
ℑ{R̂X,MVU[n, k]}

}
. (52)

It is easily shown that

ℜ{R̂X,MVU[n, k]} = x
H
C

(R)
n,kx , (53)

ℑ{R̂X,MVU[n, k]} = x
H
C

(I)
n,kx , (54)

with the Hermitian matrices

C
(R)
n,k ,

1

2

(
C
H
n,k +Cn,k

)
, C

(I)
n,k ,

1

2j

(
C
H
n,k−Cn,k

)
.

(55)

Inserting (53) and (54) into (52) and using a standard result

for the variance of a Hermitian form of a circularly symmetric

complex Gaussian random vector [65], we obtain

var
{
R̂X,MVU[n, k]

}
= tr

{
C

(R)
n,kΓXC

(R)
n,kΓX

}

+ tr
{
C

(I)
n,kΓXC

(I)
n,kΓX

}
, (56)

with ΓX , E{xxH}.

Using this expression, we next derive an upper bound on

V = E
{∥∥R̂X,MVU − E{R̂X,MVU}

∥∥2
2

}
. We have

V =
∑

n,k∈[N ]

E
{∣∣R̂X,MVU[n, k]−E{R̂X,MVU[n, k]}

∣∣2}

=
∑

n,k∈[N ]

var
{
R̂X,MVU[n, k]

}

(56)
=

∑

n,k∈[N ]

tr
{
C

(R)
n,kΓXC

(R)
n,kΓX

}

+
∑

n,k∈[N ]

tr
{
C

(I)
n,kΓXC

(I)
n,kΓX

}
. (57)

It is then shown in Appendix C that

V =
∑

m,l∈[N ]

∣∣ĀX [m, l]
∣∣2 χ[m, l] , (58)

with

χ[m, l] =
1

N

∑

m′,l′∈[N ]

IA[m
′, l′] ej

2π
N

(lm′−ml′) (59)

=
1

N

M∑

m′=−M

L∑

l′=−L
ej

2π
N

(lm′−ml′) . (60)

We can bound the magnitude of χ[m, l] according to

|χ[m, l]| ≤ 1

N

M∑

m′=−M

L∑

l′=−L

∣∣ej 2π
N

(lm′−ml′)∣∣

=
1

N
(2M + 1)(2L+ 1)

=
S

N
.

Combining with (58) leads to the following bound on V :

V ≤
∑

m,l∈[N ]

∣∣ĀX [m, l]
∣∣2 ∣∣χ[m, l]

∣∣

≤ S

N

∑

m,l∈[N ]

∣∣ĀX [m, l]
∣∣2

(6)
=

S

N
‖R̄X‖22 . (61)

3) MSE: Finally, the desired bound on the MSE ε =

E
{∥∥R̂X,MVU − R̄X

∥∥2
2

}
is obtained by inserting (49) and (61)

into the expansion (48):

ε = B2 + V

≤ ‖R̄X‖22 m
(I

A
)

X +
S

N
‖R̄X‖22

= ‖R̄X‖22
(
m

(I
A
)

X +
S

N

)
. (62)

This bound is small if X [n] is underspread, i.e., if m
(I

A
)

X ≪ 1
and S≪N .
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C. Bound on the Excess MSE Due to Compression

The excess MSE caused by the compression is given by

∆ε , E
{∥∥R̂X,CS − R̂X,MVU

∥∥2
2

}
.

Because of the Fourier transform relations (28) and (33), we

have

∆ε =
1

S′ E
{
‖r̂− r‖22

}
. (63)

As in Section IV-B, let K denote a nominal sparsity degree

that is chosen according to our intuition about the approxi-

mate sparsity of R̂X,MVU[p∆n, q∆k] and, equivalently, r. We

assume that the number P of randomly selected AF samples

is sufficiently large so that (32) is satisfied, i.e.,

‖r̂− r‖22 ≤ D2

K
‖r− r

G‖21 , (64)

for any index set G of size |G|=K . (A sufficient condition

is (30).) An intuitively reasonable choice of K and G can be

based on the smoothed RS R̃X,MVU[n, k] = E
{
R̂X,MVU[n, k]

}

in (41), (42): we choose K as the number of significantly

nonzero values R̃X,MVU[p∆n, q∆k], and G = G(K) of size K
as the set of those indices of r that correspond to these sig-

nificant values—equivalently, to the K largest (in magnitude)

values R̃X,MVU[p∆n, q∆k]. Thus, rG(K) comprises those K
values R̂X,MVU[p∆n, q∆k] for which the corresponding values

R̃X,MVU[p∆n, q∆k] are largest (in magnitude).

Based on this choice, we will now derive an approximate

upper bound on the excess MSE ∆ε. Inserting (64) into (63),

we obtain

∆ε ≤ D2

S′K
E
{∥∥r− r

G(K)
∥∥2
1

}
. (65)

Using the inequality10 ‖ · ‖21 ≤ ‖ · ‖0 ‖ · ‖
2
2, we have

∥∥r−
r
G(K)

∥∥2
1
≤

∥∥r−rG(K)
∥∥
0

∥∥r−rG(K)
∥∥2
2
≤ (S′−K)

∥∥r−rG(K)
∥∥2
2
,

and thus (65) becomes further

∆ε ≤ (S′−K)D2

S′K
E
{∥∥r− r

G(K)
∥∥2
2

}

(46)
=

(S′−K)D2

S′K

∑

(p,q)∈G(K)

hp,q (66)

(44)
=

(S′−K)D2

S′K
‖R̄X‖22 σ̃X(K) . (67)

In what follows, we will derive an approximate expres-

sion of hp,q = E
{∣∣(R)p+1,q+1

∣∣2} in terms of R̄X [n, k];
this expression will show under which condition σ̃X(K) ∝∑

(p,q)∈G(K) hp,q is small. We have

hp,q = E
{∣∣(R)p+1,q+1

∣∣2}

= var
{
(R)p+1,q+1

}
+

∣∣E
{
(R)p+1,q+1

}∣∣2

= var
{
ℜ
{
(R)p+1,q+1

}}
+ var

{
ℑ
{
(R)p+1,q+1

}}

+
∣∣E

{
(R)p+1,q+1

}∣∣2. (68)

10Indeed, the ℓ1-norm of an arbitrary vector z can be expressed as
‖z‖1 = zHa(z), where a(z) is given elementwise by (a(z))k , zk/|zk|
for zk 6= 0 and (a(z))k , 0 for zk = 0. Clearly, ‖a(z)‖22 = ‖z‖0, and

thus ‖z‖21 = (zHa(z))2 ≤ ‖z‖22 ‖a(z)‖
2
2 = ‖z‖22 ‖z‖0, where the Cauchy-

Schwarz inequality has been used.

Using (23) and (85), we can express (R)p+1,q+1 as a quadratic

form:

(R)p+1,q+1

(23)
=

M∑

m=−M

L∑

l=−L
AX [m, l] e−j2π

(
qm
∆M

− pl
∆L

)

(85)
=

√
N

M∑

m=−M

L∑

l=−L
〈xxH,Jm,l〉 e−j2π

(
qm
∆M

− pl
∆L

)

= 〈xxH,Tp,q〉
= tr

{
xx

H
T
H
p,q

}

= x
H
T
H
p,qx , (69)

with

Tp,q ,
√
N

M∑

m=−M

L∑

l=−L
ej2π

(
qm
∆M

− pl
∆L

)
Jm,l . (70)

Note that the matrix Tp,q is not Hermitian in general. Inserting

(69) into (68) then yields

hp,q = var
{
x
H
T

(R)
p,q x

}
+var

{
x
H
T

(I)
p,qx

}
+
∣∣E

{
x
H
T
H
p,qx

}∣∣2,

with the Hermitian matrices

T
(R)
p,q ,

1

2

(
T
H
p,q +Tp,q

)
, T

(I)
p,q ,

1

2j

(
T
H
p,q −Tp,q

)
. (71)

Using standard results for the variance and mean of a Hermi-

tian form of a circularly symmetric complex Gaussian vector

[65], we obtain further

hp,q = tr
{
T

(R)
p,qΓXT

(R)
p,qΓX

}
+ tr

{
T

(I)
p,qΓXT

(I)
p,qΓX

}

+
∣∣tr

{
ΓXT

H
p,q

}∣∣2. (72)

There does not seem to exist a simple closed-form ex-

pression of (72) in terms of the EAF ĀX [m, l] or the RS

R̄X [n, k]. However, under the assumption that the process

X [n] is underspread and the effective EAF support dimensions

M , L (cf. (18)) are accordingly chosen to be small, the

following approximation is derived in Appendix D:

hp,q ≈ N
∑

n,k∈[N ]

∣∣R̄X [n, k] ΦMVU[n−p∆n, k−q∆k]
∣∣2

+

∣∣∣∣∣
∑

n,k∈[N ]

R̄X [n, k] ΦMVU[n−p∆n, k−q∆k]
∣∣∣∣∣

2

, (73)

where, as before, ∆n = N/∆L and ∆k = N/∆M . Compar-

ing with (42) and noting that ΦMVU[−n,−k] = ΦMVU[n, k],
it is seen that the second term on the right hand side of (73)

is N2
∣∣R̃X,MVU[p∆n, q∆k]

∣∣2. Using the inequality ‖ · ‖22 ≤
‖ · ‖21 [58] to bound the first term on the right-hand side of

(73), and using a trivial upper bound on the second term, we

obtain

hp,q / N

[
∑

n,k∈[N ]

∣∣R̄X [n, k] ΦMVU[n−p∆n, k−q∆k]
∣∣
]2

+

[
∑

n,k∈[N ]

∣∣R̄X [n, k] ΦMVU[n−p∆n, k−q∆k]
∣∣
]2
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= (N+1)

[
∑

n,k∈[N ]

∣∣R̄X [n, k] ΦMVU[n−p∆n, k−q∆k]
∣∣
]2

.

(74)

Here,
∑
n,k∈[N ]

∣∣R̄X [n, k] ΦMVU[n− p∆n, k− q∆k]
∣∣ can be

interpreted as a local average of the RS modulus
∣∣R̄X [n, k]

∣∣
about the TF point (p∆n, q∆k). Thus, the (approximate)

upper bound (74) shows that hp,q is small if R̄X [n, k] is small

within a neighborhood of (p∆n, q∆k) or, said differently, if

(p∆n, q∆k) is located outside a broadened version of the

effective support of R̄X [n, k]. The broadening is stronger for

a larger spread of ΦMVU[n, k]. According to (43), ΦMVU[n, k]
is the 2D DFT of the indicator function IA[m, l], and thus the

broadening depends on the size of the effective EAF support

A; it will be stronger if A is smaller, i.e., if the process X [n]
is more underspread. Since a stronger broadening implies a

poorer sparsity, this demonstrates an intrinsic tradeoff between

the underspreadness and the TF sparsity of X [n]: better

underspreadness implies a smaller effective EAF support A,

whereas better TF sparsity requires a larger A.

With this “broadening” interpretation in mind, we recon-

sider σ̃X(K) ∝
∑

(p,q)∈G(K) hp,q in the bound (67). Recall

that G(K) was defined as the set of those indices of r such

that the corresponding values R̃X,MVU[p∆n, q∆k] are the K
largest (in magnitude). Therefore, a small σ̃X(K) requires

that K is chosen such that K∆n∆k is approximately equal

to the area of the broadened effective support of R̄X [n, k],
because then

∑
n,k∈[N ]

∣∣R̄X [n, k] ΦMVU[n−p∆n, k−q∆k]
∣∣ ≈

0 for (p, q) ∈ G(K) and thus, using (74), σ̃X(K) ∝∑
(p,q)∈G(K) hp,q ≈ 0.

Using (74), we can upper-bound the MSE bound in (66),

∆ε ≤ (S′−K)D2

S′K

∑
(p,q)∈G(K) hp,q, which results in a simpler

(but generally looser) upper bound. Indeed, we have

∑

(p,q)∈G(K)

hp,q
(74)

/ (N+1)
∑

(p,q)∈G(K)

[
∑

n,k∈[N ]

∣∣R̄X [n, k]

× ΦMVU[n−p∆n, k−q∆k]
∣∣
]2

(∗)
≤ (N+1)

[
∑

(p,q)∈G(K)

∣∣∣∣∣
∑

n,k∈[N ]

∣∣R̄X [n, k]

× ΦMVU[n−p∆n, k−q∆k]
∣∣
∣∣∣∣∣

]2

= (N+1)

[
∑

(p,q)∈G(K)

∑

n,k∈[N ]

∣∣R̄X [n, k]
∣∣

×
∣∣ΦMVU[n−p∆n, k−q∆k]

∣∣
]2

= (N+1)

[
∑

n,k∈[N ]

∣∣R̄X [n, k]
∣∣

×
∑

(p,q)∈G(K)

∣∣ΦMVU[n−p∆n, k−q∆k]
∣∣
]2

= (N+1)

[
∑

n,k∈[N ]

∣∣R̄X [n, k]
∣∣wΦ[n, k]

]2

,

(75)

where ‖ · ‖22 ≤ ‖ · ‖21 was used in the step labeled with (∗)
and

wΦ[n, k] ,
∑

(p,q)∈G(K)

∣∣ΦMVU[n−p∆n, k−q∆k]
∣∣ . (76)

Comparing with the definition of the TF sparsity moment σ
(w)
X

in (40), it is seen that the approximate bound (75) can be

written as
∑

(p,q)∈G(K)

hp,q / (N+1) ‖R̄X‖22 σ
(wΦ)
X . (77)

Inserting (77) into (66) then gives the approximate MSE bound

∆ε /
(S′−K)D2

S′K
(N+1) ‖R̄X‖22 σ

(wΦ)
X . (78)

A small excess MSE ∆ε can be achieved if the TF sparsity

moment σ
(wΦ)
X ∝

[∑
n,k∈[N ]

∣∣R̄X [n, k]
∣∣wΦ[n, k]

]2
is small.

This, in turn, is the case if the RS R̄X [n, k] is negligible within

the effective support of the TF weighting function wΦ[n, k].
Due to (76), the size of the effective support of wΦ[n, k], which

is concentrated around the points
{
(p∆n, q∆k)

}
(p,q)∈G(K)

, is

not larger than S′−K times the size of the effective support of

ΦMVU[n, k] (recall that
∣∣G(K)

∣∣ = S′−K). Because of the DFT

expression (43) and the fact that
∣∣[N ]

2∩A
∣∣ = S (see (18)), the

size of the effective support of ΦMVU[n, k] within one period

[N ]2 can be estimated by N2/S. Thus, for a small TF sparsity

moment σ
(wΦ)
X , the RS R̄X [n, k] should effectively vanish

(within [N ]2) on a region of size at least (S′−K)N2/S
(20)

≥
(S − K)N2/S = N2 − KN2/S. Since typically S′ ≈ S,

implying that (S′ − K)N2/S ≈ N2 − KN2/S, it follows

that the size of the effective support (within [N ]2) of the RS

R̄X [n, k] should not be larger than KN2/S. Note that K was

defined as our prior intuition about the number of significantly

nonzero values R̃X,MVU[p∆n, q∆k]; furthermore, N2/S is re-

lated to the TF undersampling in R̃X,MVU[p∆n, q∆k] because

(for S′ ≈ S) it is approximately equal to the ratio of the

number of samples
{
R̃X,MVU[n, k]

}
n,k∈[N ]

(which is N2) to

the number of samples
{
R̃X,MVU[p∆n, q∆k]

}
p∈[∆L],q∈[∆M ]

(which is S′).

D. Combining the Two MSE Bounds

We will now combine the bound (62) on ε =
E
{∥∥R̂X,MVU − R̄X

∥∥2
2

}
and the bound (67) or (78) on ∆ε =

E
{∥∥R̂X,CS − R̂X,MVU

∥∥2
2

}
into a bound on the MSE εCS =

E
{∥∥R̂X,CS−R̄X

∥∥2
2

}
of the proposed compressive RS estimator

R̂X,CS[n, k]. To this end, let us define the norm of a random

process Y [n, k] that is N -periodic in n and k as

‖Y ‖R ,
√
E
{
‖Y ‖22

}
=

√ ∑

n,k∈[N ]

E
{
|Y [n, k]|2

}
.
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The estimation error of the compressive RS estimator can

be expanded as

R̂X,CS[n, k]− R̄X [n, k]

= R̂X,CS[n, k]− R̂X,MVU[n, k] + R̂X,MVU[n, k]− R̄X [n, k]

= Y1[n, k] + Y2[n, k] ,

where we have set Y1[n, k] , R̂X,MVU[n, k]− R̄X [n, k] and

Y2[n, k] , R̂X,CS[n, k]− R̂X,MVU[n, k]. Hence, the MSE of

the compressive RS estimator can be rewritten as

εCS = E
{∥∥R̂X,CS−R̄X

∥∥2
2

}
= E

{
‖Y1 + Y2‖22

}
= ‖Y1 + Y2‖2R .

Using the triangle inequality [58] ‖Y1 + Y2‖R ≤ ‖Y1‖R +

‖Y2‖R, we obtain the bound εCS ≤
(
‖Y1‖R + ‖Y2‖R

)2
.

Recognizing that ‖Y1‖R =
√
E
{∥∥R̂X,MVU − R̄X

∥∥2
2

}
=

√
ε

and ‖Y2‖R =
√
E
{∥∥R̂X,CS − R̂X,MVU

∥∥2
2

}
=

√
∆ε, this bound

can be rewritten as

εCS ≤
(√
ε+

√
∆ε

)2
.

Inserting the bounds (62) on ε and (67) on ∆ε then results in

the following bound on εCS:

εCS ≤ ‖R̄X‖22

[√
m

(I
A
)

X +
S

N
+

√
(S′−K)D2

S′K
σ̃X(K)

]2

.

Alternatively, using the approximate bound (78) on ∆ε instead

of (67), we obtain the simpler (but looser) approximate bound

εCS / ‖R̄X‖22

[√
m

(I
A
)

X +
S

N

+

√
(S′−K)D2

S′K
(N+1)σ

(wΦ)
X

]2

.

We note that our bounds on ∆ε are based on the CS

bound (32) together with (30), which is known to be very

loose [61]. Thus, for a given nominal sparsity degree K
and a given number of measurements P satisfying (30), our

upper bounds on ∆ε and, in turn, on εCS will generally be

quite pessimistic, i.e., too high. However, the bounds are still

valuable theoretically in the sense of an asymptotic analysis,

because they show that the MSE decreases with increasing

underspreadness (expressed by a smaller moment m
(I

A
)

X and a

smaller ratio S/N ) and with increasing TF sparsity (expressed

by a smaller moment σ
(wΦ)
X ).

VI. NUMERICAL STUDY

We will assess the performance of our compressive spectral

estimator for two simple examples. The first example is

inspired by a cognitive radio application; the second example

concerns the analysis of chirp-like signals.

A. Orthogonal Frequency Division Multiplexing Symbol Pro-
cess

1) Simulation Setting: In a cognitive radio system, a

given transmitter/receiver node has to monitor a large overall

frequency band and determine the unoccupied bands that it

can use for its own transmission [3]–[5]. In our simulation,

we consider a single active transmitter employing orthogonal

frequency division multiplexing (OFDM) [66], [67], which is

a modulation scheme employed, e.g., for wireless local area

networks [67], [68], digital video broadcasting [69]–[71], and

long term evolution cellular systems [72]. We use Q = 64
subcarriers and a cyclic prefix whose length is 1/8 of the

symbol length. Each subcarrier i∈ [Q] transmits a symbol si
that is randomly selected from a quadrature phase-shift keying

(QPSK) constellation with normalized symbol energy |si|2 =
1. All QPSK symbols are equally likely, and the different

subcarrier symbols si are statistically independent. The OFDM

modulator uses an inverse DFT of length Q = 64 to map

the frequency-domain transmit symbols si into the (discrete)

time domain; this is followed by insertion of a cyclic prefix.

Assuming an idealized, noise-free channel for simplicity, the

resulting transmit signal is also observed by the receiver.

However, we assume that our receiver monitors an overall

bandwidth that is twice the nominal OFDM bandwidth, B.

This corresponds to a twofold oversampling, i.e., a sampling

period of 1/(2B), and can be easily realized by using an

inverse DFT of length Ns = 2Q = 128. The lengths of an

OFDM symbol and of the cyclic prefix are then given by

Ns = 128 and Ncp = 128/8 = 16 samples, respectively. To

keep the simulation complexity low, we assume that a single

OFDM symbol is transmitted, with silent periods before and

afterwards. Thus, the received time-domain signal (discrete-

time baseband representation) is given by

X [n] =





∑

i∈[Q]

si e
j 2π
2Q (n−n0)i, n ∈ {n0−Ncp, . . . ,

n0+Ns−1}N
0 , otherwise.

(79)

Here, n0 denotes an arbitrary but fixed time offset. In our

simulation, we used n0 = Ncp and considered X [n] for n ∈
[N ] with N=512.

Because of the random si, X [n] is a nonstationary random

process. The RS and EAF of X [n] are easily obtained from,

respectively, (4) and (1) as

R̄X [n, k] =





∑

i∈[Q]

dir

(
Ns +Ncp ,

k

N
− i

2Q

)
e−j

2π
N
nk,

n ∈ {n0−Ncp, . . . , n0+Ns−1}
N

0 , otherwise;

ĀX [m, l] =






∑

i∈[Q]

dir

(
Ns +Ncp−m,− l

N

)
e−j

2π
2Qmi,

m ∈ {−Ncp−Ns +1, . . . , 0}
N

Ā∗
X [−m,−l]N e−j

2π
N
ml,

m ∈ {1, . . . , Ncp +Ns−1}
N

0 , otherwise,
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Fig. 1. TF representation of the OFDM process X[n]: (a) Real part of RS R̄X [n, k], displayed for (n, k) ∈ [N ]×{−N/2, . . . , N/2− 1}, with N= 512;

(b) magnitude of EAF ĀX [m, l], displayed for (m, l) ∈ {−N/2, . . . , N/2 − 1}2 .

where dir(n, θ) ,
∑n−1

n′=0 e
jπθn′

= ejπθ(n−1) sin(πθn)
sin(πθ) . Note

that the expression for ĀX [m, l] requires that Ns+Ncp < N/2,

a condition that is fulfilled in our simulation since 128+16 <
512/2. The RS and EAF are shown in Fig. 1. From this

figure, we can conclude that the process X [n] is reasonably TF

sparse but only moderately underspread (the latter observation

follows from the fact that R̄X [n, k] is not very smooth).

Note that the TF sparsity could be further improved if we

considered longer silent periods before and/or after the OFDM

symbol, and if we considered a wider band (i.e., if we used

an oversampling factor larger than 2).

For the design of the compressive RS estimator R̂X,CS[n, k]
in (33), we used M = 3, L = 7, ∆M = 8, and ∆L =
16. This corresponds to choosing the effective EAF support

(see (2)) as A = {−3, . . . , 3}512 × {−7, . . . , 7}512, of size

S ≡ (2M +1)(2L+1) = 105; furthermore, the size of the

extended effective EAF support A′ is S′ ≡ ∆M∆L = 128.

For an assessment of the TF sparsity of X [n], we consider

hp,q = N2 E
{∣∣R̂X,MVU[p∆n, q∆k]

∣∣2}, which underlies the

TF sparsity profile σ̃X(K) in (44). Let (p, q)r with r ∈
{1, . . . , S′} be the TF index of the rth largest (in magni-

tude) value of the set
{
R̃X,MVU[p∆n, q∆k]

}
(p,q)∈[∆L]×[∆M ]

,

where, as before, R̃X,MVU[n, k] = E
{
R̂X,MVU[n, k]

}
=

1
N

∑
n′,k′∈[N ]ΦMVU[n−n′, k−k′] R̄X [n′, k′] (see (41), (42)).

In Fig. 2, we show the values h(p,q)
r

along with the cor-

responding approximations (73)—here denoted h̃(p,q)
r
—as a

function of the index r. It is seen that h(p,q)
r

is close to

zero for r larger than 15. Furthermore, we can conclude
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Fig. 2. h(p,q)r
normalized by h(p,q)1

and the corresponding normalized

approximation h̃(p,q)r
/h(p,q)1

according to (73) versus r.

that the ordering of the values R̃X,MVU[p∆n, q∆k] according

to decreasing magnitude matches the ordering of the values

hp,q very well. Thus, for TF positions (p∆n, q∆k) for which∣∣R̃X,MVU[p∆n, q∆k]
∣∣ is large, we can expect that also hp,q

is large. Finally, it is seen that the curves representing h̃(p,q)
r

and h(p,q)r coincide, which shows that the approximation (73)

is very accurate.

2) Simulation Results: We now consider the estimation

of the RS R̄X [n, k] from a single realization of X [n] that is

observed for n ∈ [512]. To evaluate the estimation perfor-

mance, we generated 1000 realizations of the QPSK symbols

{si}i∈[64] and computed the corresponding realizations of

X [n]. In Fig. 3, we show the average of 1000 realizations

of the compressive RS estimator R̂X,CS[n, k] (obtained for

the 1000 realizations of X [n]) as well as a single realization

of R̂X,CS[n, k] for compression factors S′/P = 1, 2, and

approximately 5 or, equivalently, P = 128, 64, and 25
randomly located AF measurements. The optimization in (31),

which is required for the computation of R̂X,CS[n, k] in (33),

was carried out using the MATLAB library CVX [63]. The

true RS is also re-displayed for easy comparison with the

estimates.

The case S′/P =1 corresponds to the basic RS estimator

R̂X,MVU[n, k] in (17) (cf. the discussion at the end of Section

IV-D). We see that already in this case, even for the average

R̂X,CS[n, k], there are noticeable deviations from the true

RS. In fact, the average of the 1000 basic RS estimates

R̂X,MVU[n, k] closely approximates the expected basic RS esti-

mator R̃X,MVU[n, k] = E
{
R̂X,MVU[n, k]

}
, which according to

(42) is a smoothed version of the RS. This smoothing leads to

a noticeable deviation from the RS, because the RS itself is not

very smooth. The limited smoothness of the RS corresponds to

the fact that the process X [n] is only moderately underspread.

For compression factor S′/P = 2, there is no visible degrada-

tion of the average estimate relative to the basic estimator. For

S′/P ≈ 5, a small degradation is visible. The results obtained

for the individual realizations suggest a random variation and

deviation from the true TF support of the RS that are higher for

compression factor S′/P ≈ 5. The results of the symmetrized

compressive estimator R̂
(s)
X,CS[n, k] in (38) are not shown in

Fig. 3 because they can hardly be distinguished visually from



14

kk

kkkk

k

n

nnnn

nn

(a) (b) (c) (d)

(e) (f) (g)

Fig. 3. Averages and single realizations of RS estimators: (a) RS of the OFDM process X[n]; (b) average of the noncompressive estimator R̂X,MVU[n, k]

(compression factor S′/P = 1); (c) and (d) average of the compressive estimator R̂X,CS[n, k] for S′/P = 2 and S′/P ≈ 5, respectively; (e) realization

of R̂X,MVU[n, k]; (f) and (g) realization of R̂X,CS[n, k] for S′/P = 2 and S′/P ≈ 5, respectively. The real parts of all TF functions are shown for

(n, k) ∈ {−150, . . . , 361} × {−N/2, . . . , N/2 − 1}, with N= 512.

those of R̂X,CS[n, k].

For a quantitative analysis of the degradation caused by

the compression, we show in Fig. 4 the empirical normalized

MSE (NMSE) of the compressive estimator R̂X,CS[n, k] versus

the compression factor S′/P . The NMSE is an empirical,

normalized version of the MSE εCS = E
{∥∥R̂X,CS − R̄X

∥∥2
2

}
,

with the expectation replaced by the sample average over the

1000 process realizations and with normalization by
∥∥R̄X

∥∥2
2
.

In the same figure, we also show the empirical normalized

versions of the squared bias term B2
CS =

∥∥E{R̂X,CS}− R̄X
∥∥2
2

and of the variance VCS = E
{∥∥R̂X,CS − E{R̂X,CS}

∥∥2
2

}
, again

with normalization by
∥∥R̄X

∥∥2
2
. (Recall that εCS = B2

CS+VCS.)

These results demonstrate a “graceful degradation” with in-

creasing compression factor S′/P . Again, the result for S′/P =
1 corresponds to the basic RS estimator R̂X,MVU[n, k]. Fig.

4 also shows the NMSE, normalized squared bias term, and

normalized variance of the symmetrized compressive estimator

R̂
(s)
X,CS[n, k]. It is seen that the variance and MSE are reduced
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Fig. 4. Empirical NMSE, normalized squared bias, and normalized variance

of the compressive RS estimator R̂X,CS[n, k] (solid curves) and of the

symmetrized compressive RS estimator R̂
(s)
X,CS

[n, k] (dash-dotted curves)

versus the compression factor S′/P .

by the symmetrization. We did not plot the MSE bounds

derived in Section V because they are much larger than the

empirical MSE. As mentioned in Section V-D, this lack of

tightness is mostly due to the notoriously loose [61] CS error

bound used in (64) (combined with (30)).

3) Comparison with a Reference Method: Next, we

compare our compressive nonstationary spectral estimator

R̂X,CS[n, k] with the compressive spectral estimation method

proposed in [50], hereafter termed “reference estimator.” The

reference estimator was devised for estimating the power

spectral density of a stationary random process; the underlying

stationarity assumption allows the use of long-term averaging.

However, for the nonstationary processes considered in this

paper, long-term averaging is not an option and hence a

deteriorated performance must be expected. We nevertheless

chose the reference estimator for a performance comparison

because we are not aware of any previously proposed com-

pressive spectral estimation method for general nonstationary

processes.

The reference estimator uses as its input an observed

realization x of a block of a stationary discrete random

process X [n] and calculates a reduced number of compres-

sive measurements, for some compression factor c. From

these measurements, it derives an estimate P̂X(ω) of the

power spectral density PX(ω) ,
∑

m∈Z
rX [m] e−jωm (here,

rX [m] , E{X [m]X∗[0]} is the autocorrelation function of

X [n]). In our case, however, X [n] is the nonstationary OFDM

process of length N defined in (79). In order to impart a time

dependence (time resolution) to the reference estimator, we

consecutively apply it to a sequence of overlapping length-Nb

blocks x(b) , (x[b∆N ] x[b∆N +1] · · · x[b∆N +Nb −1])T ,

b ∈ {0, . . . , B − 1} of the observed realization x[n] of

X [n]. Here, B =
⌊
N−Nb+1

∆N

⌋
+ 1 and Nb ≥ ∆N ; note

that Nb −∆N is the overlap length. For each block x
(b),

we thus obtain a (discrete-frequency) local power spectrum
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Fig. 5. Averages and single realizations of the reference estimator R̂(ref)
X

[n, k]: (a) real part of the RS of the OFDM process X[n]; (b), (c), and (d) magnitude

of the average of R̂(ref)
X

[n, k] for c= 1, c= 2, and c≈ 5, respectively; (e), (f), and (g) magnitude of a realization of R̂(ref)
X

[n, k] for c= 1, c= 2, and c≈ 5,

respectively. All TF functions are shown for (n, k) ∈ {−150, . . . , 361} × {−N/2, . . . , N/2 − 1}, with N= 512.

estimate11 P̂
(b)
X (2πk/N), k ∈ [N ]. From the sequence of local

power spectrum estimates P̂
(b)
X (2πk/N), b = 0, . . . , B− 1,

we then construct a time-dependent (more specifically, piece-

wise constant) compressive power spectral density estimate

R̂(ref)
X [n, k] by setting R̂(ref)

X [n, k] , P̂
(b)
X (2πk/N) for n ∈

{b∆N, b∆N+1, . . . , (b+1)∆N−1}, with b ∈ {0, . . . , B−1}.

In Fig. 5, we show the average of R̂(ref)
X [n, k] obtained for

1000 realizations of the OFDM process X [n] as well as a sin-

gle realization of R̂(ref)
X [n, k] for compression factors c= 1, 2,

and approximately 5. We used block length Nb=32 and time

increment ∆N =16 for c=1 and c=2, and12 Nb =128 and

∆N=64 for c≈ 5. For convenience, the true RS is again re-

displayed in part (a). A comparison of Fig. 5 with Fig. 3 shows

that the proposed estimator R̂X,CS[n, k] clearly outperforms

the reference estimator R̂(ref)
X [n, k], especially when single

realizations are considered and in the compressive case (c >1),

which are the cases of greatest relevance in our context.

This result is not surprising and should not be interpreted as

evidence of poor performance of the estimator proposed in

[50]. In fact, as noted previously, that estimator was devised

for stationary random processes where long-term averaging

can be used, and it was not intended for our straightforward

and somewhat naïve adaptation to nonstationary processes.

B. Chirp Process

Next, we apply our compressive RS estimator to a two-

component chirp process. Chirp signals arise, e.g., in the con-

text of engine diagnosis [73]–[75], system identification and

radar [76]–[79], and the study of bat echolocation [80], [81].

11We note the following details of our implementation of the reference
estimator (cf. [50] for background and notation). The maximum correlation lag
was chosen as L=1. The second-order statistics (cross-correlation functions)
ryi,yj [k] were estimated by time-averages over blocks of length L+ 1= 2.

The weights ci[n] were randomly drawn from the set {−1, 1} with equal
probabilities.

12These different choices of Nb and ∆N for c = 1, 2 and for c ≈ 5
are due to the condition Nb ≥ 2(2c−1)c that is required by the reference
estimator [50].

In our simulation, we construct a finite-length, nonstationary,

discrete-time process as X [n] , X(nTs), n ∈ [512], where Ts

is some sampling period. The continuous-time process X(t)
is given by

X(t) = a1s(t− t1) + a2s(t− t2) ,

where t1 = 128Ts and t2 = 384Ts; a1 and a2 are in-

dependent zero-mean Gaussian random variables with unit

variance; and s(t) is a chirp pulse defined as s(t) =
exp

(
− (t/T0)

2/2
)
exp(−jπβt2), with pulse width parameter

T0 = 60Ts and chirp rate β = 1/(600T 2
s ). The RS and EAF

of the discrete-time process X [n] are shown in Fig. 6. We see

that the process X [n] is only moderately TF sparse and not

very underspread, i.e., the underspread approximation used,

e.g., in Section III can be hardly justified.

We implemented the compressive RS estimator R̂X,CS[n, k]
in (33) as well as the symmetrized compressive estimator

R̂
(s)
X,CS[n, k] in (38) using M = L = 15 and ∆M = ∆L =

32. This corresponds to the effective EAF support A =
{−15, . . . , 15}512 × {−15, . . . , 15}512, of size S ≡ (2M +
1)(2L +1) = 961. The size of the extended effective EAF

support A′ is S′ ≡ ∆M∆L = 1024. Fig. 7 shows the

average of 1000 realizations of R̂X,CS[n, k] and R̂
(s)
X,CS[n, k]

(obtained for 1000 realizations of X(t)) as well as a single

realization of R̂X,CS[n, k] for compression factors S′/P ≈ 5
and 10 or, equivalently, P = 204 and 102 randomly located

AF measurements. We see that already in the noncompressive

case S′/P = 1, where R̂X,CS[n, k] and R̂
(s)
X,CS[n, k] coincide

with the basic RS estimator R̂X,MVU[n, k], there are noticeable

deviations from the true RS; these differences are again due

to the smoothing employed by R̂X,MVU[n, k]. However, the

proposed compressive RS estimator R̂X,CS[n, k] still performs

well in the sense that it indicates the main characteristics

of the two chirp signal components—the TF locations and

the chirp rate—up to a compression factor of 10, i.e., based

on the observation of a significantly reduced number of AF

samples. In this sense, our estimator appears to be robust
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Fig. 7. Averages and single realizations of RS estimators: (a) RS of the chirp process X[n]; (b) average of the noncompressive estimator R̂X,MVU[n, k]

(compression factor S′/P = 1); (c) and (d) average of the compressive estimator R̂X,CS[n, k] for S′/P ≈ 5 and 10, respectively; (e) realization of

R̂X,MVU[n, k]; (f) and (g) realization of R̂X,CS[n, k] for S′/P ≈ 5 and 10, respectively; (h) and (i) average of the symmetrized compressive estimator

R̂
(s)
X,CS

[n, k] for S′/P ≈ 5 and 10, respectively. The real parts of all TF functions are shown for (n, k) ∈ [N ]× {−N/2, . . . , N/2− 1}, with N= 512.

to deviations from the assumed properties of approximate

TF sparsity and underspreadness. More specifically, the main

deviation from the true RS is due to the fact that the oscillatory

structures (inner interference terms [82]) contained in the RS

are suppressed by the smoothing; this result is in fact desirable

in most applications. It is furthermore seen that the average

results of the symmetrized estimator R̂
(s)
X,CS[n, k] are similar

to those of R̂X,CS[n, k].

VII. CONCLUSION

For estimating a time-dependent spectrum of a nonstation-

ary random process, long-term averaging cannot be used as

this would smear out the time-dependence of the spectrum.

However, if the spectrum as a function of time and frequency

is sufficiently smooth, which amounts to an underspread as-

sumption, a local TF smoothing can be used. In particular, the

RS of an underspread nonstationary process can be estimated

by a local smoothing of a TF distribution known as the RD.

In this paper, we have considered the practically relevant

case of underspread processes that are approximately TF

sparse in the sense that only a moderate percentage of the RS

values are significantly nonzero. For such processes, we have

proposed a “compressive” RS estimator that exploits the TF

sparsity structure for a significant reduction of the number of

measurements required for good estimation performance. The

measurements are values of the AF of the observed signal
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at randomly chosen time lag/frequency lag positions. Our

overall approach is advantageous if dedicated hardware units

for computing values of the AF from the original continuous-

time signal are employed, and/or if the AF values have to be

transmitted over low-rate links or stored in a memory. The

proposed compressive RS estimator extends a conventional

RS estimator for underspread processes (a smoothed RD

using an MVU design of the smoothing function) by a CS

reconstruction technique. For the latter, we used the Basis

Pursuit because it is supported by a convenient performance

guarantee (a bound on the ℓ2-norm of the reconstruction error);

however, other CS reconstruction techniques can be used as

well.

We provided upper bounds on the MSE of both the MVU

RS estimator and its compressive extension. The MSE bound

for the compressive estimator is based on the error bound of

the Basis Pursuit, which is known to be quite loose. Therefore,

the MSE bound for the compressive estimator is usually quite

pessimistic. However, it is still useful theoretically, since it re-

veals the asymptotic dependence of the estimation accuracy on

the underspreadness and TF sparsity properties of the process.

Numerical experiments demonstrated the good performance of

our compressive estimator for two typical scenarios.

We considered the RS because in the discrete setting used,

it is the simplest time-dependent spectrum from a computa-

tional viewpoint. However, for underspread processes, the RS

is very close to other important time-dependent spectra such

as the Wigner-Ville spectrum and the evolutionary spectrum.

Therefore, the proposed RS estimator can also be used for

estimating other time-dependent spectra if the process is suf-

ficiently underspread. Finally, the proposed RS estimator can

also be used for estimating the EAF and the autocorrelation

function, which are related to the RS via DFTs.

APPENDIX A: MSE OF THE SYMMETRIZED COMPRESSIVE

RS ESTIMATOR

We will prove the MSE inequality (39). Let us define the

symmetrization operator corresponding to (37), i.e.,

PsA[m, l] =
1

2

[
A[m, l] +A∗[−m,−l] e−j 2π

N
ml

]

and note that (see (36b), (37))

PsĀX [m, l] = ĀX [m, l] , PsÂX,CS[m, l] = Â
(s)
X,CS[m, l] .

(80)

Furthermore, let us consider the estimation error of

the compressive EAF estimator ÂX,CS[m, l], E[m, l] ,
ÂX,CS[m, l] − ĀX [m, l]. Using the triangle inequality [83],

‖PsE‖2 = 1
2 ‖E[m, l] + E∗[−m,−l]e−j 2π

N
ml‖2 ≤ 1

2

[
‖E‖2 +

‖E‖2
]
= ‖E‖2. Using PsE = PsÂX,CS −PsĀX and (80), it

is seen that the above inequality is equivalent to

∥∥Â(s)
X,CS − ĀX

∥∥2
2
≤

∥∥ÂX,CS − ĀX
∥∥2
2
. (81)

Furthermore, since ĀX [m, l], ÂX,CS[m, l], and Â
(s)
X,CS[m, l] are

related to R̄X [n, k], R̂X,CS[n, k], and R̂
(s)
X,CS[n, k], respectively

via the 2D DFT in (35), which is norm-preserving, the

inequality (81) implies that

∥∥R̂(s)
X,CS − R̄X

∥∥2
2
≤

∥∥R̂X,CS − R̄X
∥∥2
2
.

Finally, taking the expectation on both sides yields the MSE

inequality (39).

APPENDIX B: TF SHIFT MATRICES

We consider the family of (scaled) discrete TF shift matri-

ces {Jm,l}m,l∈[N ] of size N×N whose action on x∈CN is

given by

(Jm,lx)n+1 =
1√
N

(x)(n−m)
N
+1 e

j 2π
N
ln , n ∈ [N ] , (82)

with (n)N , nmodN . These matrices can be written Jm,l =
1√
N
MlTm, where Ml is the diagonal N × N matrix with

diagonal elements 1, ej
2π
N
l, . . . , ej

2π
N
l(N−1) and Tm is the

circulant N×N matrix whose entries (Tm)n,n′ are given by 1
if (n−n′)N = (m)N and 0 otherwise. It can be easily verified

that the set {Jm,l}m,l∈[N ] forms an orthonormal basis for the

linear space of matrices CN×N equipped with inner product

〈A,B〉 = tr{AB
H}, i.e.,

〈Jm,l,Jm′,l′〉 = δ[m−m′]N δ[l− l′]N (83)

and

A =
∑

m,l∈[N ]

〈A,Jm,l〉Jm,l , for all A∈C
N×N . (84)

It can furthermore be shown that the EAF in (1) and the AF

in (3) can be written as

ĀX [m, l] =
√
N 〈ΓX ,Jm,l〉

AX [m, l] =
√
N 〈xxH,Jm,l〉 , (85)

where ΓX = E{xxH} with x = (X [0] · · · X [N−1])T . Thus,

according to (84), we have the expansions

ΓX =
1√
N

∑

m,l∈[N ]

ĀX [m, l]Jm,l (86)

xx
H =

1√
N

∑

m,l∈[N ]

AX [m, l]Jm,l .

Finally, from (82), one can deduce the following relations:

Jm,lJm′,l′ =
1√
N

Jm+m′,l+l′ e
−j 2π

N
ml′ (87)

J
H
m,l = J−m,−l e

−j 2π
N
ml , (88)

and, in turn,

Jn,k Jm,lJ
H
n,k =

1

N
Jm,l e

−j 2π
N

(nl−km) . (89)
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APPENDIX C: DERIVATION OF EXPRESSIONS (58) AND (59)

We will derive (58) and (59) from (57). Our derivation will

be based on expansions of C
(R)
n,k and C

(I)
n,k into the TF shift

matrices Jm,l. Using (55), (50), and (88), we have

C
(R)
n,k

(55),(50)
=

1

2
√
N

[
M∑

m=−M

L∑

l=−L
e−j

2π
N

(km−nl)
J
H
m,l

+

M∑

m=−M

L∑

l=−L
ej

2π
N

(km−nl)
Jm,l

]

(88)
=

1

2
√
N

[
M∑

m=−M

L∑

l=−L
e−j

2π
N

(km−nl)
J−m,−l e

−j 2π
N
ml

+

M∑

m=−M

L∑

l=−L
ej

2π
N

(km−nl)
Jm,l

]

=
1

2
√
N

M∑

m=−M

L∑

l=−L
ej

2π
N

(km−nl) (e−j 2π
N
ml + 1

)
Jm,l

=
∑

m,l∈[N ]

ej
2π
N

(km−nl) c
(R)
m,l Jm,l , (90)

with

c
(R)
m,l ,

1

2
√
N

IA[m, l]
(
e−j

2π
N
ml +1

)
. (91)

In a similar way, we obtain from (55)

C
(I)
n,k =

∑

m,l∈[N ]

ej
2π
N

(km−nl) c(I)
m,l Jm,l , (92)

with

c
(I)
m,l ,

1

2j
√
N

IA[m, l]
(
e−j

2π
N
ml−1

)
. (93)

The first term in (57) can then be written as
∑

n,k∈[N ]

tr
{
C

(R)
n,kΓXC

(R)
n,kΓX

}
= tr

{
DΓX

}
= tr

{
DΓ

H
X

}
,

(94)
with

D ,
∑

n,k∈[N ]

C
(R)
n,kΓXC

(R)
n,k

=
∑

n,k∈[N ]

C
(R)
n,kΓXC

(R)H
n,k

(90)
=

∑

m,l,m′,l′∈[N ]

c
(R)
m,l c

(R)∗
m′,l′

×
[

∑

n,k∈[N ]

ej
2π
N

[k(m−m′)−n(l−l′)]
]

︸ ︷︷ ︸
N2 δ[m−m′]

N
δ[l−l′]

N

Jm,lΓXJ
H
m′,l′

= N2
∑

m,l∈[N ]

∣∣c(R)
m,l

∣∣2 Jm,lΓXJ
H
m,l

(86)
= N

√
N

∑

m,l,m′,l′∈[N ]

∣∣c(R)
m,l

∣∣2 ĀX [m′, l′]Jm,lJm′,l′J
H
m,l

(89)
=

√
N

∑

m,l,m′,l′∈[N ]

∣∣c(R)
m,l

∣∣2 ĀX [m′, l′]Jm′,l′

× e−j
2π
N

(ml′−lm′) (95)

and

Γ
H
X

(86)
=

1√
N

∑

m,l∈[N ]

Ā∗
X [m, l]JHm,l . (96)

Inserting (95) and (96) into (94) then yields

∑

n,k∈[N ]

tr
{
C

(R)
n,kΓXC

(R)
n,kΓX

}

= tr

{
∑

m,l,m′,l′,m′′,l′′∈[N ]

∣∣c(R)
m,l

∣∣2 ĀX [m′, l′]Jm′,l′

× e−j
2π
N

(ml′−lm′) Ā∗
X [m′′, l′′]JHm′′,l′′

}

=
∑

m,l,m′,l′,m′′,l′′∈[N ]

∣∣c(R)
m,l

∣∣2 ĀX [m′, l′]Ā∗
X [m′′, l′′]

× e−j
2π
N

(ml′−lm′) tr
{
Jm′,l′J

H
m′′,l′′

}
︸ ︷︷ ︸

〈Jm′,l′ ,Jm′′,l′′ 〉
(83)
= δ[m′−m′′]N δ[l

′−l′′]N

=
∑

m,l,m′,l′∈[N ]

∣∣c(R)
m,l

∣∣2 ∣∣ĀX [m′, l′]
∣∣2 e−j 2π

N
(ml′−lm′)

=
∑

m,l,m′,l′∈[N ]

∣∣c(R)
m,l

∣∣2 ∣∣ĀX [m′, l′]
∣∣2 ej 2π

N
(ml′−lm′) , (97)

where the symmetry relation (36b) has been used in the last

step.

In a similar manner, using (92), we obtain for the second

term in (57)
∑

n,k∈[N ]

tr
{
C

(I)
n,kΓXC

(I)
n,kΓX

}

=
∑

m,l,m′,l′∈[N ]

∣∣c(I)
m,l

∣∣2 ∣∣ĀX [m′, l′]
∣∣2 ej 2π

N
(ml′−lm′) . (98)

Inserting (97) and (98) into (57) then gives (58):

V =
∑

m,l,m′,l′∈[N ]

∣∣c(R)
m,l

∣∣2 ∣∣ĀX [m′, l′]
∣∣2 ej 2π

N
(ml′−lm′)

+
∑

m,l,m′,l′∈[N ]

∣∣c(I)
m,l

∣∣2 ∣∣ĀX [m′, l′]
∣∣2 ej 2π

N
(ml′−lm′)

=
∑

m′,l′∈[N ]

∣∣ĀX [m′, l′]
∣∣2 χ[m′, l′] ,

with

χ[m, l] ,
∑

m′,l′∈[N ]

(∣∣c(R)
m′,l′

∣∣2 +
∣∣c(I)
m′,l′

∣∣2) ej 2π
N

(m′l−l′m) . (99)

Using (91) and (93), we have

∣∣c(R)
m,l

∣∣2 +
∣∣c(I)
m,l

∣∣2

=
1

N
IA[m, l]

[∣∣∣∣
e−j

2π
N
ml + 1

2

∣∣∣∣
2

+

∣∣∣∣
e−j

2π
N
ml − 1

2j

∣∣∣∣
2
]

=
1

N
IA[m, l]

[
cos2

( π
N
ml

)
+ sin2

( π
N
ml

)]
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=
1

N
IA[m, l] .

Inserting this into (99) yields (59).

APPENDIX D: DERIVATION OF EXPRESSION (73)

We will derive (73) from (72).

1) Expansions of T
(R)
p,q and T

(I)
p,q: Our derivation will be

based on the underspread assumption and on expansions of

T
(R)
p,q and T

(I)
p,q into the TF shift matrices Jm,l. Inserting (70)

into the definition of T
(R)
p,q in (71) yields

T
(R)
p,q =

√
N

2

[
M∑

m=−M

L∑

l=−L
e−j2π

(
qm
∆M

− pl
∆L

)
J
H
m,l

+

M∑

m=−M

L∑

l=−L
ej2π

(
qm
∆M

− pl
∆L

)
Jm,l

]

(88)
=

√
N

2

[
M∑

m=−M

L∑

l=−L
e−j2π

(
qm
∆M

− pl
∆L

)
J−m,−l e

−j 2π
N
ml

+
M∑

m=−M

L∑

l=−L
ej2π

(
qm
∆M

− pl
∆L

)
Jm,l

]

=

√
N

2

M∑

m=−M

L∑

l=−L
ej2π

(
qm
∆M

− pl
∆L

)(
e−j

2π
N
ml +1

)
Jm,l

=
∑

m,l∈[N ]

ej2π
(

qm
∆M

− pl
∆L

)
t
(R)
m,l Jm,l , (100)

with

t
(R)
m,l =

√
N

2
IA[m, l]

(
e−j

2π
N
ml +1

)
. (101)

In a similar manner, we obtain the expansion

T
(I)
p,q =

∑

m,l∈[N ]

ej2π
(

qm
∆M

− pl
∆L

)
t
(I)
m,l Jm,l , (102)

with

t
(I)
m,l =

√
N

2j
IA[m, l]

(
e−j

2π
N
ml− 1

)
. (103)

For an underspread process X [n], the effective EAF sup-

port A ≡ {−M, . . . ,M}N ×{−L, . . . , L}N is a small region

about the origin of the (m, l) plane (plus its periodically

continued replicas, which are irrelevant to our argument and

will hence be disregarded). Looking at the expressions of

t
(R)
m,l and t

(I)
m,l in (101) and (103), we can then conclude from

the presence of the factor IA[m, l] that t
(R)
m,l and t

(I)
m,l can be

nonzero only for |ml| ≪ N . This means that in (101) and

(103), we can approximate e−j
2π
N
ml by 1, yielding

t
(R)
m,l ≈

√
N IA[m, l] (104)

t
(I)
m,l ≈ 0 . (105)

Using (105) in (102) yields

T
(I)
p,q ≈ 0 , (106)

and thus (72) approximately simplifies to

hp,q ≈ tr
{
T

(R)
p,qΓXT

(R)
p,qΓX

}
+

∣∣tr{ΓXTH
p,q}

∣∣2 . (107)

2) First term in (107): We will now develop the two terms

on the right-hand side of (107). The first term can be written

as

tr
{
T

(R)
p,qΓXT

(R)
p,qΓX

}
=

〈
T

(R)
p,qΓX ,

(
T

(R)
p,qΓX

)H〉
. (108)

In order to find an approximation for this inner product, we

use the following general result for the product C = AB of

two N×N matrices A and B. The matrices A, B, and C

can be expanded into the orthonormal basis {Jm,l}m,l∈[N ],

with respective expansion coefficients am,l, bm,l, and cm,l,
e.g., A =

∑
m,l∈[N ] am,l Jm,l. Then the cm,l are related to the

am,l and bm,l by the “twisted convolution” [24], [29], [84],

[85]

cm,l =
1√
N

∑

m′,l′∈[N ]

am′,l′ bm−m′,l−l′ e
−j 2π

N
m′(l−l′) . (109)

This expression can be verified using (87). Let us apply it to

the matrix product T
(R)
p,qΓX . We have the expansion

T
(R)
p,qΓX =

∑

m,l∈[N ]

dp,q;m,l Jm,l . (110)

The expansion coefficients of T
(R)
p,q are ej2π

(
qm
∆M

− pl
∆L

)
t
(R)
m,l

(see (100)); those of ΓX are 1√
N
ĀX [m, l] (see (86)). Inserting

these expressions into (109) yields

dp,q;m,l =
1√
N

∑

m′,l′∈[N ]

[
ej2π

(
qm′

∆M
− pl′

∆L

)
t
(R)
m′,l′

]

×
[

1√
N
ĀX [m−m′, l− l′]

]
e−j

2π
N
m′(l−l′)

≈ 1√
N

∑

m′,l′∈[N ]

ej2π
(

qm′

∆M
− pl′

∆L

)
IA[m

′, l′]

× ĀX [m−m′, l− l′] e−j 2π
N
m′(l−l′) , (111)

where the approximate expression (104) was used in the last

step. For an underspread process, because of the support of

IA[m, l] and the effective support of ĀX [m, l], the terms in the

sum (111) are significantly nonzero only for |m′(l− l′)| ≪ N .

We can thus use the approximation e−j
2π
N
m′(l−l′) ≈ 1, which

yields

dp,q;m,l ≈ 1√
N

∑

m′,l′∈[N ]

IA[m
′, l′] ĀX [m−m′, l− l′]

× ej2π
(

qm′

∆M
− pl′

∆L

)
. (112)

Next, we consider

(
T

(R)
p,qΓX

)H (110)
=

∑

m,l∈[N ]

d∗p,q;m,l J
H
m,l

(88)
=

∑

m,l∈[N ]

d∗p,q;m,l J−m,−l e
−j 2π

N
ml

=
∑

m,l∈[N ]

d∗p,q;−m,−l Jm,l e
−j 2π

N
ml , (113)

where the N -periodicity of dp,q;m,l with respect to m and l
was used in the last step. For an underspread process, again
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because of the support of IA[m, l] and the effective support of

ĀX [m, l], it follows from (112) that the coefficients dp,q;m,l
are significantly nonzero only for |ml| ≪ N . Hence, we can

set e−j
2π
N
ml ≈ 1 in (113), which gives

(
T

(R)
p,qΓX

)H ≈
∑

m,l∈[N ]

d∗p,q;−m,−l Jm,l . (114)

In a similar way, we obtain from (36b) the following approx-

imation:

Ā∗
X [−m,−l] ≈ ĀX [m, l] , for |ml| ≪N . (115)

We now insert (110) and (114) into (108), and obtain

tr
{
T

(R)
p,qΓXT

(R)
p,qΓX

}

≈
〈

∑

m,l∈[N ]

dp,q;m,l Jm,l ,
∑

m′,l′∈[N ]

d∗p,q;−m′,−l′ Jm′,l′

〉

(83)
=

∑

m,l∈[N ]

dp,q;m,l dp,q;−m,−l . (116)

From the underspread approximations (112) and (115), it

readily follows that dp,q;−m,−l ≈ d∗p,q;m,l. Indeed,

dp,q;−m,−l
(112)≈ 1√

N

∑

m′,l′∈[N ]

IA[m
′, l′] ĀX [−m−m′,−l− l′]

× ej2π
(

qm′

∆M
− pl′

∆L

)

(115)≈ 1√
N

∑

m′,l′∈[N ]

IA[m
′, l′] Ā∗

X [m+m′, l+ l′]

× ej2π
(

qm′

∆M
− pl′

∆L

)

(∗)
=

1√
N

M∑

m′=−M

L∑

l′=−L
Ā∗
X [m+m′, l+ l′]

× ej2π
(

qm′

∆M
− pl′

∆L

)

=
1√
N

M∑

m′=−M

L∑

l′=−L
Ā∗
X [m−m′, l− l′]

× e−j2π
(

qm′

∆M
− pl′

∆L

)

(∗)
=

1√
N

∑

m′,l′∈[N ]

IA[m
′, l′] Ā∗

X [m−m′, l− l′]

× e−j2π
(

qm′

∆M
− pl′

∆L

)

(112)≈ d∗p,q;m,l , (117)

where the periodicity of the summand with respect to m′ and

l′ has been exploited in the steps labeled with (∗). Using (117)

in (116) then gives

tr
{
T

(R)
p,qΓXT

(R)
p,qΓX

}
≈

∑

m,l∈[N ]

|dp,q;m,l|2 . (118)

3) Second term in (107): Next, we consider the second

term on the right-hand side of (107). We have

tr{ΓXTH
p,q}

(71)
= tr

{
ΓXT

(R)
p,q

}
+ j tr

{
ΓXT

(I)
p,q

}

(106)≈ tr
{
ΓXT

(R)
p,q

}

= tr
{
T

(R)
p,qΓX

}
. (119)

Using J0,0 =
1√
N
I, where I denotes the N×N identity matrix,

we obtain further

tr{ΓXT
H
p,q}

(119)≈ tr
{
T

(R)
p,qΓXI

}

=
√
N tr

{
T

(R)
p,qΓXJ

H
0,0

}

=
√
N

〈
T

(R)
p,qΓX , J0,0

〉

(110)
=

√
N

〈
∑

m,l∈[N ]

dp,q;m,l Jm,l ,J0,0

〉

(83)
=

√
N dp,q;0,0 . (120)

4) Approximation of hp,q: Inserting (118) and (120) into

(107), we obtain the following approximation of hp,q:

hp,q ≈
∑

m,l∈[N ]

|dp,q;m,l|2 + N |dp,q;0,0|2 .

This can be expressed as

hp,q ≈
∑

n,k∈[N ]

|d̂p,q;n,k|2 + N

∣∣∣∣∣
1

N

∑

n,k∈[N ]

d̂p,q;n,k

∣∣∣∣∣

2

, (121)

where d̂p,q;n,k is the 2D DFT of dp,q;m,l with respect to (m, l).
We have

d̂p,q;n,k

=
1

N

∑

m,l∈[N ]

dp,q;m,l e
−j 2π

N
(km−nl)

(112)≈ 1√
N

∑

m′,l′∈[N ]

IA[m
′, l′]

[
1

N

∑

m,l∈[N ]

ĀX [m−m′, l− l′]

× e−j
2π
N

(km−nl)
]
ej2π

(
qm′

∆M
− pl′

∆L

)

(5)
=

1√
N

∑

m′,l′∈[N ]

IA[m
′, l′] R̄X [n, k]

× e−j
2π
N

(km′−nl′) ej2π
(

qm′

∆M
− pl′

∆L

)

=
1√
N
R̄X [n, k]

∑

m′,l′∈[N ]

IA[m
′, l′]

× e−j
2π
N

[(
k− N

∆M
q

)
m′−

(
n− N

∆L
p

)
l′
]

(43)
=

√
N R̄X [n, k] ΦMVU[n− p∆n, k− q∆k] , (122)

where, as before, ∆n = N/∆L and ∆k = N/∆M . Finally,

inserting (122) into (121) yields (73).
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