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Abstract: In civil engineering, ultra-high-strength concrete (UHSC) is a useful and efficient building
material. To save money and time in the construction sector, soft computing approaches have been
used to estimate concrete properties. As a result, the current work used sophisticated soft computing
techniques to estimate the compressive strength of UHSC. In this study, XGBoost, AdaBoost, and
Bagging were the employed soft computing techniques. The variables taken into account included
cement content, fly ash, silica fume and silicate content, sand and water content, superplasticizer
content, steel fiber, steel fiber aspect ratio, and curing time. The algorithm performance was evaluated
using statistical metrics, such as the mean absolute error (MAE), root mean square error (RMSE),
and coefficient of determination (R2). The model’s performance was then evaluated statistically. The
XGBoost soft computing technique, with a higher R2 (0.90) and low errors, was more accurate than
the other algorithms, which had a lower R2. The compressive strength of UHSC can be predicted
using the XGBoost soft computing technique. The SHapley Additive exPlanations (SHAP) analysis
showed that curing time had the highest positive influence on UHSC compressive strength. Thus,
scholars will be able to quickly and effectively determine the compressive strength of UHSC using
this study’s findings.

Keywords: UHSC; building material; compressive strength; soft computing technique; concrete

1. Introduction

Ultra-high-strength concrete (UHSC) is becoming increasingly popular because of
its superior mechanical qualities, increased ductility, and longer life expectancy [1]. If
UHSC is cured for 28 days, it will have a compressive strength of more than 120 MPA,
even after cracking. To attain excellent characteristics, UHSC’s maximum density was
carefully designed. Particle packing density in UHSC results in low permeability and
dense microstructures [2,3]. Due to the inclusion of distributed discrete fibers, UHSC
has increased mechanical strength and crack resistance. There are a variety of civil engi-
neering applications using UHSC, which range from building to rehabilitation to repair.
The mechanical characteristics of UHSC are now being evaluated in current practice, by
conducting complete experimental examinations. Experimental approaches can be used to
determine the precise link between material qualities and mix design, but this requires a
significant investment, in terms of both time and money [4]. Variables for UHSC include
the cement content, the water content, the additive material content, the fiber content
(e.g., steel fibers), the content and type of admixtures, and aggregates content and type
(e.g., superplasticizer) [5–7]. The addition of dispersed short-discrete fibers to concrete
increased crack resistance and improved mechanical characteristics [8–16]. Steel fibers
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are employed to increase the toughness and post-cracking behavior of the cementitious
material [17–20]. Despite several experimental studies in the literature, it is still difficult
to predict the characteristics of UHSCs containing various mixtures of components using
computational methodologies. Thus, in this work, an attempt was made to anticipate the
compressive property of UHSC using soft computing techniques.

Complex issues in a variety of engineering domains can be effectively solved using
soft computing approaches. Machine learning (ML) approaches may be used to predict the
final output after being provided an input data set. In order to forecast the characteristics
of concrete, two ML strategies were used, i.e., a standalone approach (based on a single
model) and an ensemble approach (such as AdaBoost and bagging). Ensemble models beat
individual ML models in terms of performance, according to studies. However, there are
examples of ML models that may be used to predict cement composites characteristics.
There has been a detailed evaluation of the use of ML approaches to anticipate concrete
mechanical characteristics [21]. In addition, a number of studies have been done to predict
the mechanical characteristics of different types of concretes, such as high-performance
concrete (HPC) [22], self-healing concrete [23], recycled aggregate concrete (RCA) [24],
phase change material-integrated concrete [25], etc. Han, et al. [26] employed a machine
learning technique to forecast HPC compressive strength. Cement, fine aggregates, FA,
GGBFS, coarse aggregates, age, water, and five other combination variables were included
in the dataset’s input parameters. The compressive strength of HPC was accurately pre-
dicted by the established model. This article forecasts the compressive strength of UHSC
using soft computing techniques and will serve as a baseline to save time and money for
future researchers.

The previous studies were related to high performance concrete with a compressive
strength around 10–80 MPa [27]. However, this study is related to ultra-high strength
concrete (UHSC) with a compressive strength of 100–160 MPa, where the particle packing
theory is important. Additionally, the effect of raw ingredients on compressive strength
was not investigated by previous studies, which remains a research gap. Therefore, the
effect of input parameters (raw materials) on the output parameter (compressive strength)
was evaluated using SHapley Additive exPlanations and their interaction was explained.
The compressive strength of UHSC may also be predicted using machine learning methods
in an alternate approach, to save experimental time and money. In this paper, a variety
of ensembled machine learning approaches were used to estimate the compressive of
UHSC. XGBoost, AdaBoost, and Bagging are included as ensemble machine learning
models. In addition, all models were tested using statistical criteria, and a comparison
was made between several machine learning models. A better model was then proposed
based on the performance of several statistical parameters to predict UHSC outcomes.
Furthermore, a post hoc model-agnostic technique, i.e., SHapley Additive exPlanations
(SHAP), was also implemented to give ML model insight [28,29]. The integration of SHAP
with ML algorithms was performed in the current research to provide a comprehensive
understanding of the mix design of concrete, regarding its strength parameters through
its non-linear complex behavior, and to describe the contribution of input parameters by
assigning a weight factor to each input parameter. This will be highly beneficial for the
development of durable and sustainable concrete mixes.

2. Soft Computing Techniques

In order to get the best results, ensemble learning trains numerous base learners to
aggregate their findings according to a predetermined methodology [30]. The design and
building of fundamental learners, as well as their integration, is critical to ensemble learning
algorithms. Based on how base learners collaborate, ensemble learning may be divided
into parallel and sequential forms. No substantial connections between individual learners
can be found in the parallel ensemble, as demonstrated by the bagging technique. Learners
in a sequential ensemble are highly interdependent and sequentially formed, as shown by
boosting [31]. Here, the fundamentals of ensemble approaches are briefly discussed.
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Iteratively updating the previous classifier’s parameters reduces the gradient of the
loss function and generates a new classifier. The regression tree group is assured to have
the highest generalization ability by minimizing the error of prediction across numerous
regression trees. The loss function of the model is enhanced by including the regular term.
As part of this process, a Taylor expansion of the loss function is used to calculate the split
node. The performance of generalization and computation has been enhanced by the use of
the regularization approach and second-order derivative information [32]. Figure 1 shows
the XGBoost algorithm’s structure.
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Figure 1. Structure of XGBoost algorithm [32].

A sequential ensemble may be built using the boosting approach. It creates a mediocre
learner based on the first set of data. After that, a new weak learner is created to try to
correct the mistakes of the previous weak learner. To approach the final prediction model,
all weak learners must be included into it. All samples are given equal weight when
AdaBoost is used to start the dataset. When a new learner makes a mistake, the samples
that it gains weight on, obtain the weight that the first learner gets right. This process
has a predetermined number of repetitions, before an error occurs. Updating the training
sample weights in subsequent rounds takes the weaker learners’ performance into account.
Figure 2 depicts an ensembled support vector regressor technique with AdaBoost.
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Bootstrapping and aggregation are two parts of the process of bagging. Training sev-
eral models is made possible by regularly dividing the full dataset into smaller groups (base
learners). The final forecast is the sum of the individual model results. These estimations
are averaged together to obtain this forecast in the regression example. According to the
categorization example, the voting process is used to make a final forecast. Algorithms
such as support vector regressor, adaptive boosting, and bagging were used in this work
to predict concrete properties, all of which have been demonstrated to perform well in
previous studies for normal strength concrete. The process flow of the bagging algorithm is
shown in Figure 3.
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3. Interpretability of Model Using SHAP

The establishment of a robust prediction tool is gaining attention due to the ML models
learning ability from recognized data and for prediction responses in unknown areas. How-
ever, lower interpretability and greater complexity is common in most machine learning
modelling approaches [35]. SHAP is derived from game theory Shapley values [36]. Its
employment is intended to determine the importance of different features within mod-
els [35,37]. In SHAP, the feature importance (j) for model outcome f ; φj( f ), is allotted
weight for feature contribution summation towards output of model f (xi) for the overall
potential combinations of features [38]. The expression for φj( f ) is shown in Equation (1),
as given below:

φj( f ) = ∑S⊆{x1,......, xp}/{xj}
|S|!(p− |S| − 1)!

p!

(
f (S t {xj})− f (S)

)
(1)

where; S = features subset, p = feature number in model, and xj = feature j.
In the SHAP process, the importance of a feature is investigated by quantifying the

prediction errors when disturbing a specified value of a feature. The prediction error
sensitivity is considered for assigning a weight to feature importance, while perturbing
its value. The trained ML model performance is also explained by using SHAP. SHAP
uses an additional feature attribution method, i.e., linear input factor addition, to explain
an interpretable model, is taken by the model output. As an illustration, a model having
input factors xi; where i ranges from 1 to k, and; k represents input factors number and h
(xs), shows an explanation model having xs as a simplified input, whereas; Equation (2) is
implemented to present an original model f (x):

f (x) = h(xs) = ∅0 + ∑p
i=1 ∅ixi

s (2)
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where ∅0= constant without any information (i.e., no input), and p = input feature number.
The mapping function, i.e., x = mx(xs), has a correlation with both x and xs inputs.

Lundberg and Lee [35] explained Equation (9), in which the prediction value, i.e., (h ()) is
improved by ∅0, ∅1, and ∅3 terms and a decline of ∅4 in h () value is also noted (Figure 4).
There is a single value solution to Equation (9) that includes three preferred properties, i.e.,
missingness, consistency, and local accuracy. In missingness, it is ensured that no value
for importance is assigned to the missing features, i.e., ∅i = 0 is employed by xi

s = 0.
Consistency ensures no reduction in attribution, assigned to the respective features, as a
change in feature with more impact. In local accuracy, it is ensured that the summation of
feature attribution is taken as a function for the outcome, which includes a requirement
for the model to match the outcome f for xs as a simplified input. x = mxxs represents the
attainment of local accuracy.
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4. Data Set

Figure 5 shows the data set utilized to forecast UHSC’s compressive strength. The
literature [39] provides a compressive database and there were 372 mix proportions with 10
input parameters selected from the data in the range of 100–160 MPa. These include cement
content, fly ash, and silica fume content, as well as sand and water. Input parameters of
steel fiber aspect ratio and curing time are also included. Predictor variables of the output
parameter (compressive strength) are based on these input parameters. Each variable’s
range and lowest and maximum values are shown in Figure 5. There is also a figure that
presents the mean and standard deviation for each variable. Compressive strength was
predicted using Anaconda software’s Spyder and Python scripting. The histogram of
compressive strength used in this study is shown in Figure 6.
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5. Results and Discussion
5.1. XGBoost

The comparison of experimental and predicted values with the XGBoost algorithm for
compressive strength of UHSC is presented in Figure 7. The XGBoost exhibited reasonable
predicted results, with low variation for the compressive strength of UHSC. An acceptable
R2 value of 0.89 shows the suitability of the XGBoost model. Figure 8 illustrates the error
distribution of the experimental and XGBoost predicted values of compressive strength
for UHSC. The average values of error for compressive strength are 6.42 MPa. Whereas
50% of error values are less than 5 MPa, 37% are from 5 to 10 MPa, and 24% are higher than
10 MPa.
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5.2. AdaBoost

Figure 9 shows the experimental and predicted AdaBoost algorithm results for com-
pressive strength of UHSC. The R2 value for AdaBoost is 0.82 and represents less precise
results than that of the XGBoost algorithm. The distribution of experimental and Ad-
aboost predicted values with errors for compressive strength of UHSC is demonstrated
in Figure 10. It is noted that 30% of error data is below 5 MPa, 29% is from 5 to 10 MPa,
and 52% is higher than 10 MPa. The lower error and higher R2 value indicated the better
accuracy of XGBoost model compared to AdaBoost.
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5.3. Bagging

The experimental and bagging predicted results of UHSC for compressive strength
are shown in Figure 11. The R2 for this model is 0.78, which shows less suitable results
compared to the above two models. However, the predicted compressive strength results
of UHSC for XGBoost are better than the other ensembled models. Figure 12 demonstrates
the distribution of experimental and bagging predicted values with errors for compressive
strength of UHSC. Whereas 30% of error values are below 5 MPa, 17% of values range from
5 to 10 MPa, and 62% of values are found above 10 MPa. The error and R2 values for the
compressive strength of UHSC for XGBoost are more accurate than the bagging model.
Wang, et al. [33] reported that the AdaBoost machine learning approaches predicted the best
compressive strength of geopolymer composites. Zhu, et al. [40] used machine learning to
forecast the splitting tensile strength (STS) of concrete containing recycled aggregate (RA)
and revealed that the precision level of the bagging model was better. Ahmad, et al. [41]
studied the boosting and AdaBoost ML approaches to predict the compressive strength of
a high-calcium fly-ash-based geopolymer. Bagging indicated the best results. However,
the R2 and error values obtained for the XGBoost ensemble machine learning models are
acceptable. Thus, this finding implies that XGBoost could predict outcomes with a higher
degree of accuracy than the other models.

5.4. Comparison of All Models

The validity of a model during execution is assessed by employing the K-fold cross-
validation method. Statistical checks are used to evaluate the performance of models [42–45].
Usually, random dispersion is performed by splitting data into ten groups for k-fold cross-
validation, and this process is repeated ten times to obtain acceptable results. Table 1 shows
statistical checks for all models. The R2 values for the XGBoost, AdaBoost, and Bagging
models were 0.90, 0.82, and 0.78, respectively, as shown in Figure 13a–c. It was found that
the R2 of XGBoost was higher than that of all other models, with low error values for the
compressive strength of UHSC.
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Table 1. Statistical checks of the XGBoost, AdaBoost, and Bagging models.

Techniques MAE (MPa) RMSE (MPa) R2

XGBoost 6.4 7.6 0.90

Adaboost 11.0 13.1 0.82

Bagging 11.9 14.6 0.78
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The compressive strength of UHSC was predicted using ensembles of machine learning
approaches in this work, which aimed to provide efficient and reliable findings. With an R2

value of 0.90, XGBoost’s output provided more exact predictions for UHSC compressive
strength. Using an optimized model from the 20 sub-models shown in Figure 14a–c to
predict compressive strength, the XGBoost ensemble machine learning models performed
better. It was, thus, shown that, compared to the other models, the XGBoost ensembled
models demonstrated an excellent accuracy and low error.
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Mahjoubi, et al. [46] constructed an auto-tune learning framework for ultra-high-
performance concrete flowability, mechanical characteristics, and porosity prediction
(UHPC). Other models were also considered by Mahjoubi et al. [47,48] in previous studies
for multiple functions, and can be applied to similar types of studies in the future. This
study evaluated compressive strength in the range of 100–160 MPa, considering 372 mix
proportions with 10 input parameters selected from the database of Mahjoubi et al. [39,46].
A much more relevant model could be obtained by increasing the number of datasheets
and by importing a significantly higher number of mixtures, as well as by considering
higher input parameters. Therefore, it is suggested that the number of data points and
outcomes in future investigations be raised by experimental work, field tests, and numer-
ical analysis, using a range of approaches (e.g., Monte Carlo simulation, among others).
Environmental factors (such as high temperatures and humidity) could be included in the
input parameters, along with a detailed explanation of the raw materials, to improve the
models’ responses.

6. Enhanced Explainability of ML Models

In the current research, an in-depth description of the ML model and dependen-
cies/interactions of all the considered features is provided. Initially, by implementing the
SHAP tree explainer for the entire dataset, an enhanced global representation of feature
influences, by merging local explanations from SHAP, is provided. A tree-like SHAP ap-
proximation technique, named TreeExplainer, was employed [49]. In this technique, the
internal structure of tree-based models was evaluated; that is the sum of calculations set
having a linkage with the leaf node of a tree model that led to low-order complexity [49].
The XGBoost model denotes the performance forecasting with higher precision for compres-
sive strength of ultra-high strength concrete (UHSC), so in the current section, the model’s
interpretation is done for compressive strength of UHSC using SHAP. The correlation of
various features with SHAP values for compressive strength of UHSC (as obtained from
the XGBoost ensemble modelling) is presented in Figure 15.
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It can be noted here that the curing time has highest SHAP value in the case of
compressive strength prediction for UHSC. Increasing curing time would result in greater
compressive strength, as UHSC has a high quantity of binders, i.e., silica fume, slag,
fly-ash etc., so the hydration process requires more curing time, ultimately resulting in
enhanced compressive strength. The silica fume content feature, i.e., a key parameter of
UHSC and directly influencing the compressive strength, has the second highest SHAP
value. Subsequently, sand is the third most influential feature, as shown in Figure 15. In
UHSC, particle packing density would be difficult to achieve in the case of higher sand
contents. Super-plasticizer is fourth in the row, due to its higher SHAP value. More super-
plasticizer and a lesser water content positively influences the compressive strength of
UHSC. Similarly, the influence of cement is next in terms of SHAP value, followed by
the water, steel fiber, and fly-ash features. All these features have their unique roles in
the compressive strength of UHSC. Fly ash has little effect on compressive strength and
influences the workability of UHSC more.

Figure 16 depicts the violin plot SHAP values for all the corresponding features that
were considered to predict the compressive strength of UHSC. In the said plot, a unique
color represents every feature’s value and the corresponding SHAP value at the x-axis
represents the outcome contribution. For instance, for curing time and silica fume content
as input features, a positive influence can be observed from the right side of the axis,
showing a direct relationship for both the features with the compressive strength of UHSC.
A SHAP value of almost 14, in the form of red points at the rightmost, shows that a higher
curing time enhances the UHSC compressive strength. However, in case of the super-
plasticizer feature, a positive influence is seen, but only up to the optimal content. Beyond
this content, it has a negative influence, in the form of a blue color (i.e., lower values). It is
usually observed that upon enhancing the water-binder ratio, the compressive strength
tends to increase up to a certain limit, and then further enhancement of the water-binder
ratio decreases the compressive strength. In the same manner, a higher quantity of sand
negatively influences the compressive strength of UHSC, as its particle packing is disturbed.
Furthermore, a weaker bond would be observed in the case of a higher sand content with
respect to binder. Steel fiber and cement content also show a positive influence. Last, water
has both positive and negative influences and is directly related to the binder content. A
higher water content would result in a reduced UHSC compressive strength. Fly ash and
slag, although they do not have a considerable impact on compressive strength of UHSC,
still display more or less similar feature influences. These observations are dependent on
the database used in this study, and results with greater accuracy may be acquired in the
case of more data points.
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The interaction of the various considered features with the compressive strength of
UHSC is presented in Figure 17. The curing feature interaction is shown in Figure 17a. It
may be observed from the plot that curing time is a major influence of the compressive
strength of UHSC and is in a positive/direct relationship. In this scenario, the maximum
interaction of curing is with silica fume, hence, aiding in the enhancement of UHSC strength.
In Figure 17b, a positive influence of silica on the compressive strength of UHSC is observed.
A greater interaction of silica is found with curing time and it is negatively influential.
The fine aggregate/sand feature interaction is plot in Figure 17c. The sand content has a
negative influence, due to its effect on silica fume. Therefore, the effect of sand on silica
fume results in decreased compressive strength. Then, in a row, super-plasticizer shows
both positive and negative interactions, depending upon the content (Figure 17d). A lesser
content, up to the optimum content, would result in a positive interaction and vice versa.
In the same manner, cement content positively interacts and greatly influences the water
content, as the w/c ratio has a major role in the development of strength, due to multiple
factors, including the hydration process (Figure 17e). In Figure 17f, the interaction of silica
fume with water content is shown. The lesser surface area of silica fume demands a higher
water content. Furthermore, during pozzolanic activity in the hydration reaction, silica
fume needs more water; therefore, a higher interaction of silica fume with water content
is observed.



Materials 2022, 15, 3523 16 of 19Materials 2022, 15, x FOR PEER REVIEW 16 of 19 
 

 

  
(a)  (b) 

  
(c) (d) 

  
(e) (f) 

Figure 17. Interaction plot of various parameters: (a) Curing time; (b) Silica fume content; (c) Sand 
content; (d) Superplasticizer; (e) Cement content; (f) Water content. 

7. Conclusions 
Soft computing has recently been employed in the construction sector to forecast the 

mechanical characteristics of concrete, which has gained the attention of the industry. It 
was the goal of this study to evaluate the accuracy of soft computing approaches for pre-
dicting the compressive strength of UHSC. Ten input variables were used for estimation: 

Figure 17. Interaction plot of various parameters: (a) Curing time; (b) Silica fume content; (c) Sand
content; (d) Superplasticizer; (e) Cement content; (f) Water content.

7. Conclusions

Soft computing has recently been employed in the construction sector to forecast
the mechanical characteristics of concrete, which has gained the attention of the industry.
It was the goal of this study to evaluate the accuracy of soft computing approaches for
predicting the compressive strength of UHSC. Ten input variables were used for estimation:
i.e., cement content, fly ash, silica fume and silicate content, sand and water content,
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superplasticizer content, steel fiber, steel fiber aspect ratio, and curing time. As a result of
our research, we have come to the following conclusions:

• As evidenced by the R2 value of 0.90, the XGBoost method was able to accurately esti-
mate the compressive strength of UHSC from its actual data. However, the ensembled
machine learning models, i.e., AdaBoost and Bagging with R2 values of 0.82 and 0.78,
predicted unacceptable findings for the compressive strength of UHSC.

• A total of twenty sub-models, ranging from 10 to 200 estimators, were utilized to opti-
mize the anticipated compressive strength of UHSC. An ensembled model XGBoost
was able to accurately forecast the compressive strength more effectively than the
other models.

• XGBoost models demonstrated lower MAE and RMSE, with a higher R2 value for
compressive strength of UHSC, compared to the other model in the k-fold validation
results. XGBoost was proven to have the best compressive strength prediction accuracy
for UHSC.

• The model’s performance was evaluated using statistical measures such as MAE and
RMSE. However, XGBoost projected superior results, with less error and a higher
coefficient of determination for evaluating the compressive strength of UHSC.

• The XGBoost is the best method for predicting the compressive strength of UHSC
utilizing soft computing approaches.

• Curing time has highest impact on UHSC compressive strength estimation, followed
by silica fume, sand and super-plasticizer content, as depicted by SHAP analysis.
Whereas, the compressive strength of UHSC with fly ash content is the least influential.

• The feature interaction plot showed that curing time, cement content, and silica fume
positively influence UHSC compressive strength.
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